Supplementary Material for
RS2G: Data-Driven Scene-Graph Extraction and Embedding for Robust
Autonomous Perception and Scenario Understanding

1. Additional Ablation Studies
1.1. Downstream Component Analysis

We analyze each component of our downstream model
as demonstrated in TABLE 1. As elaborated in the main
submission, our downstream model consists of a spatial
model (either MLP or MR-GCN) and a temporal model (ei-
ther “mean”, i.e., a linear layer, or LSTM). Here we com-
pare the results of using different downstream models for
the SOTA rule-based graph extraction and RS2G with the
edge encoder based on the Transformer. In general, regard-
less of the downstream model, RS2G (Transformer) sig-
nificantly outperforms the rule-based graph learning (GL)
method in terms of accuracy, MCC, and AUC, indicating
our proposed data-driven graph extraction approach pro-
vides more expressive and dynamic graph representations.
Additionally, using MR-GCN for the spatial model provides
considerably better performance than using MLP for both
the rule-based graph extraction method and RS2G, indicat-
ing explicitly modeling relations among road users effec-
tively enhances model performance for risk assessment.

For the rule-based graph extraction method, using LSTM
as the temporal model provides better accuracy than using
a linear layer ("mean”), as LSTM offers better performance
in modeling temporal patterns in graph embeddings. How-
ever, it is noteworthy that for RS2G (Transformer), using
’mean’ as the temporal model provides considerably better
performance than using LSTM. This indicates the extraor-
dinary capability and robustness of our Transformer edge
encoder in extracting scene graphs, as even a simple mean
operation can achieve adequate performance. In particular,
as autonomous vehicles are embedded devices with limited
resources, our model also provides a more resource-efficient
solution for scenario understanding and risk assessment. On
the other hand, using a more complicated model such as
LSTM can potentially introduce unnecessary complexity,
causing overfitting and degrading model performance.

1.2. Cosine Relation Similarity

We compare the cosine similarity between the data-
driven relations learned by RS2G and the set of relations ex-

Graph Spatial Temporal
Extra(?tion l\jl)odel Mo%el Accuracy Mece AUC
Rule-Based MLP mean 52.15% 0.0000  0.4973
Rule-Based MLP LSTM 62.90% 0.2741  0.6811
Rule-Based MRGCN  mean 63.44% 0.2696  0.6867
Rule-Based MRGCN LSTM 75.27 % 0.5197  0.8248
RS2G MLP mean 81.74% 0.1857  0.9228
RS2G MLP LSTM 81.45% 0.402 0.9472

RS2G MRGCN  mean
RS2G MRGCN LSTM

87.80% 0.5403  0.9468
84.15% 0.402  0.9362

Table 1. Analysis of each component of the downstream model.
Models are trained and evaluated on 27/-dash. We demonstrate
the impacts of different spatial and temporal models using rule-
based graph extraction [3] and RS2G (Transformer).

tracted by the SOTA rule-based graph extraction method [3]
for the dataset 1043-carla and 620-dash, and present our
result as heatmaps demonstrated in Figure 1. Cosine sim-
ilarity is a widely-used metric for comparing sparse vec-
tors, and is often employed in the computation of docu-
ment similarity using term-frequency vectors [1]. Specif-
ically, we employ cosine similarity to compare the adja-
cency matrices extracted by the rule-based graph extraction
method with the data-driven adjacency matrices produced
by RS2G. As the rule-based graph extraction method de-
fines edges by physical meaning, e.g., left, very close, and
in front of, this evaluation determines if the relations estab-
lished by our data-driven approach can reflect similar in-
formation. Here our extracted graphs are 3-dimensional
binary adjacency matrices; specifically, an n x n matrix for
each relation r € R, where n denotes the number of nodes.
Therefore, for each of the learned relations of our RS2G,
we calculate the cosine similarity of its adjacency matrices
with those relations extracted by the rule-based method, and
then average across all the graphs in the dataset.

The similarity in relations highlighted across datasets
supports the fact that RS2G can effectively transfer knowl-
edge from training domains to real-world scenarios. We an-
alyze our results from the following three perspectives:

» Edges with Varying Degree of Importance: As shown
in Figure 1, it is notable that some rule-based relations,
such as ”isIn,” which reflects the direction information
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Figure 1. Cosine similarity between relations learned by RS2G (2D MLP) and the set of rule-based relations used in [3] for the synthetic

1043-carla dataset and the real-world 620-dash dataset.

and the current lane of the vehicle, exhibit high similarity
scores with multiple data-driven relations. This observa-
tion suggests that the “isIn” relation plays a more critical
role than other relations in risk assessment. In contrast to
the rule-based graph extraction model, where all relation
types carry equal weight, our proposed data-driven graph
extraction approach exhibits a remarkable ability to dis-
cern and assign varying degrees of importance to each re-
lation type. This capability enables a more nuanced repre-
sentation of the underlying data, and thereby significantly
enhances the adaptability of our model in capturing intri-
cate relations among road users in real-world scenarios.

e Transfer learning Capability: We observe that the rela-
tions deemed as important by RS2G in 1043 Carla are
also considered relevant in 620 dash. In other words,
relations learned from the simulation dataset, e.g., 1043
Carla, will remain useful in handling more complex real-
world scenarios in 620 dash. For instance, in Fig. 1,
the Relation 7 and Relation 9 of our data-driven GL
model exhibit higher importance than other relations in
both datasets. Additionally, the differences in the relative
weights of these relations across datasets demonstrate the
adaptability of our model. Specifically, RS2G can adapt
to different datasets by adjusting the density of different
relation types depending on the data, thereby providing
enhanced performance for transfer learning.

e Comprehensive Representations of Relations: 1t is note-
worthy that a relation learned by RS2G can include in-

formation from multiple rule-based relations, and thereby
provide more expressive and complete graph representa-
tions. For instance, Relation 5 from RS2G exhibits some
degrees of similarity to all the rule-based relations. This
evaluation further shows that our data-driven graph ex-
traction method can effectively enhance the quality of
graph representations for road scenes.

2. Discussion

In this section, we discuss the practicality of deploying
RS2G in a real-world autonomous system, the limitations of
our research scope, and potential future research directions.

2.1. Practicality

Fundamentally, RS2G leverages existing deep-
learning and graph-learning libraries, e.g., PyTorch,
scikit—-learn, and NetworkX, for implementation
and execution; thus, RS2G is readily compatible with
standard procedures for training, validation, and model
compilation that are typically employed in autonomous
computing platforms. The complexity of deploying RS2G
is approximately equivalent to that of deploying a rule-
based graph model, with the primary difference being a few
additional layers for node and edge encoding. Additionally,
the input and output requirements RS2G well align with
the standard components found in most autonomous
driving and Advanced Driver Assistance Systems (ADAS)
pipelines, e.g., camera inputs, object detection models, and



ADAS control systems. In terms of practical utility, the
output of RS2G can integrate with the ADAS system and
offer valuable insights to inform critical tasks such as driver
control handoff, emergency braking, and dynamic driving
profile adjustments.

2.2. Limitations and Future Work

RS2G has demonstrated considerably improved gener-
alization capabilities compared to the rule-based graph ex-
traction method. However, we believe the following three
areas are worth further exploration:

* Node Preprocessing: For our proposed RS2G, we com-
bine Kullback-Liebler (KL) divergence and the Trans-
former to construct an effective data-driven edge encoder
and deliver expressive graph representations. Neverthe-
less, the model performance can potentially be further
improved by introducing a learned self-supervision com-
ponent between the node and edge encoder. Specifically,
the self-supervision module can be added between inputs
and the edge encoder as a pre-processing step to further
enhance the performance of our edge encoder. Along with
our data-driven edge encoder, this self-supervision com-
ponent can potentially model an invertible function map-
ping from the inputs to the outputs and produce a more
general graph representation.

e Edge Encoder: In this work, we exhaustively studied
the performance of various edge encoders, including 1D
MLP, 2D MLP, and the Transformer. However, it is likely
that some more sophisticated deep learning models can
better capture intricate relations between nodes and pro-
vide more expressive graph representations. Addition-
ally, it is also possible to integrate rule-based graphs with
learned graphs, e.g., by combining their adjacency matri-
ces, to leverage the benefits of both methods.

* Applications: In application domains, this paper primar-
ily studies subjective risk assessment for AVs. However,
the operational landscape for AVs demands a multifaceted
array of tasks encompassing perception, planning, and
safe maneuvering. Tasks such as localization, motion pre-
diction, and path planning inherently require a nuanced
comprehension of the semantic scene, and there is sub-
stantial evidence to suggest that the integration of graph-
based modeling approaches can notably enhance perfor-
mance in these areas [2]. Our data-driven graph extrac-
tion method can potentially benefit these applications by
providing expressive and dynamic graph representations.
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