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1. Datasets
We provide a statistical summary of the three

datasets (Office31 [9], OfficeHome [12], DomainNet [7])
in Table 1 and overviews of them in Figure 3,4,5.

2. Implementation
2.1. Architecture

backbone F The backbone consists of a ResNet-50 [5] pre-
trained on ImageNet-1K [3] provided by PyTorch model
zoo [1] followed by a single fully connected layer down-
sizing the feature vector dimension from 2048 to e. e is set
to 256 for Office31/OfficeHome and 512 for DomainNet,
since DomainNet has larger capacity.
classifier C The classifier is a single fully connected layer
with input dimension e and output dimension K, where K
equals to number of classes.
domain discriminator D The domain discriminator is a
three-layer fully connected network with ReLU activations
and Dropouts of 0.5. Hidden dimensions are set to 512
and 1024 for Office31/OfficeHome and DomainNet, respec-
tively.
gradient reversal layer When doing backpropagation, it
weights and reverses the sign of the gradients transferred
from D to F to achieve adversarial learning. During pre-
training, the weight η = 2

1+exp(−10p)−1 as in original im-
plementation [14], where p ∈ [0, 1] is the training progress.
During domain adapted training in active learning stages, η
is constantly set to 1.0 since it is a continuation of pretrain-
ing.

2.2. Training recipes

We provide pseudocodes for unsupervised pretraining
and domain adapated training in Algorithm 1 and 2 re-
spectively. We use SGD as optimizer with momentum 0.9
and weight decay of 0.005 for stable convergence. The
initial learning rate is 0.001 and 0.0003 for unsupervised

pretraining and domain adapted training stages, respec-
tively. The learning rate of backbone F except for the ap-
pended fully connected layer is decreased to 1

10 as normal
learning rate. As in [14], we adjust the learning rate as
ηp = η0(1 + qp)−0.75, where p is the training progress.
q is set to be 10 for unsupervised pretraining as in [6], and
1.0 for domain adapted training during active learning to
ensure a smooth finetuning progress. We define the train-
ing epochs w.r.t. the source dataloader, and set them to
values to ensure training convergence. On Office31, the
numbers of pretrain epochs are 200, 672, 432 for source
domains as amazon,dslr,webcam respectively. On Office-
Home, the number is 200 for art as source and 120 oth-
erwise. On DomainNet, it is 24 for quickdraw as source
and 64 otherwise, since we empirically found quickdraw
as source easily leads to overfitting. The number of train-
ing epochs for each active domain adapted training stage is
halved instead. During training, we first resize all images
into size 256× 256, then random resized crop a 224× 224
patch from it with scale [0.08, 1.0] and ratios [ 34 ,

4
3 ], imple-

mented by PyTorch’s RandomResizedCrop class. We then
apply random horizontal flip and Imagenet normalization.
During testing, we center crop a 224 × 224 patch from the
resized 256× 256 images. Results are averaged from 3 ran-
dom trials on Office31/OfficeHome and 2 random trials on
DomainNet. Batch sizes are set to values to ensure the bal-
ance between source and target data, as introduced below.

Unsupervised domain adapted pretraining: We use dat-
aloader DS to load source data. For the k-th target domain,
we have a dataloader DTk

. In each iteration, classification
loss is computed as the average loss on the source batch,
and domain discrimination loss is computed as the average
on all data. We set the batch sizes for the source dataloader
and each target dataloader to be 64 and 32 on Office31, 64
and 24 on OfficeHome, and 48 and 8 on DomainNet.

Domain adapted training: Similar as pretraining, we use
a source dataloader DS to load all source data and K dat-
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Dataset class Domain Train Test Explanation

Office31 31
amazon 2817 Images downloaded from amazon website

dslr 498 Images captured with a digital SLR camera in realistic environments with natural lighting conditions
webcam 795 Images captured with a simple webcam towards the same objects in dslr domain

OfficeHome 65

art 2426 Artistic depictions of objects in the form of sketches, paintings, ornamentation, etc.
clipart 4364 Collection of clipart images
product 4438 Images of objects without a background, akin to the amazon category in Office31 dataset

real 4356 Images of objects captured with a regular camera

DomainNet 345

clipart 33525 14814 Collection of clipart images, akin to clipart in OfficeHome
infograph 36023 15582 Infographic images with specific object
painting 50416 21850 Artistic depictions of objects in the form of paintings

quickdraw 120750 51750 Drawings of the worldwide players of game “Quick Draw!”
real 120906 52041 Photos and real world images

sketch 48212 20916 Sketches of specific objects

Table 1. Details of datasets used in our experiments.

aloaders DTk

K
k=1 to load all target data. Besides, we also

use K dataloaders Dl
Tk

K

k=1
to load labeled data in each

target domain. Note that DTk
includes data in Dl

Tk
. In

each iteration, classification loss is averaged on source do-
main’s classification loss and target domains classification
loss, while domain discrimination loss is computed as av-
erage on source and target all-data batches. We set the
batch sizes for the source dataloader, each labeled target
dataloader, and each target dataloader to be 64/32/8 on Of-
fice31, 64/24/8 on OfficeHome, and 48/8/8 on DomainNet.

2.3. Baselines

We implemented several state-of-the-art active learning
sampling algorithms based on their official code implemen-
tations. We include the comparison between some baselines
and GU-KMeans, and their implementations below:
Coreset [11]: Coreset intends to select a subset of data
that have the smallest distance with the original set, where
the distance between two sets of data is determined by the
smallest pairwise distance between any two samples from
the two sets, respectively. However, it ignores contributions
of the selected subset towards the classification tasks.
BADGE [2]: BADGE computes the classifier gradient
of classification loss supervised by pseudo-labels for each
sample. It then finds a subset of samples by applying
KMeans++ on the gradient space. Compared with BADGE,
GU-KMeans instead computes the gradients in the feature
space, which is in much lower dimension thus much more
efficient. We also consider domain alignment gradient, and
cluster using the more effective KMeans algorithm.
AADA [4]: Since AADA did not make their implementa-
tions public, we directly followed their paper to use 1−pS

p∫

to weight entropy.
LAMDA [10]: LAMDA proposed multiple techniques,
including a cosine classifier, source data resampling dur-
ing training time, pseudo-labeling to utilize unlabeled data,

Algorithm 1 Unsupervised domain adapted pretraining
Input: source dataloader DS , target dataloaders
{DT1 , ..., DTN

}, number of training iterations te, model θ,
optimizer opt
Initialize: training iteration t← 0
Training:

while t < te do
// get source images, classification and domain labels
xS , yS ,mS ← DS .next
// get target images and domain labels
xT1 ,mT1 ← DT1 .next
...
xTN

,mTN
← DTN

.next

// compute classification loss
lcls ← Lcls(xS , yS)
// compute domain discrimination loss
x← concat(xS , xT1

, ..., xTN
)

m← concat(mS ,mT1
, ...,mTN

)
ldom ← Ldom(x,m)

// update model
l← lcls + ldom
l.backpropagate
θ ← opt.update
t← t+ 1

end while

and a sampling algorithm to minimize the selected subset’s
MMD with the whole selection pool.
CLUE [8]: CLUE is the most related work to our method.
It uses the entropy scores as weights for KMeans sampling.
We use the default temperature value of 1.0 as described in
the paper. However, entropy score is less effective in mea-
suring sample’s contribution to classification task, as shown
in Table 4 in our main paper. Besides, although being pro-



Algorithm 2 Domain adapted training in active learning
Input: source dataloader DS , labeled target dataloaders
{Dl

T1
, ..., Dl

TN
}, target dataloaders {DT1

, ..., DTN
}, num-

ber of training iterations te, model θ, optimizer opt
Initialize: training iteration t← 0
Training:

while t < te do
// get source images, classes, and domains
xS , yS ,mS ← DS .next
// get labeled target images, classes, and domains
xl
T1
, ylT1

,ml
T1
← Dl

T1
.next

...
xl
TN

, ylTN
,ml

TN
← Dl

TN
.next

// get target images and domains
xT1 ,mT1 ← DT1 .next
...
xTN

,mTN
← DTN

.next

// compute classification loss
xl
T ← concat(xl

T1
, ..., xl

TN
)

ylT ← concat(ylT1
, ..., ylTN

)

lcls ← 0.5Lcls(xS , yS) + 0.5Lcls(x
l
T , y

l
T )

// compute domain discrimination loss
x← concat(xS , xT1 , ..., xTN

)
m← concat(mS ,mT1

, ...,mTN
)

ldom ← Ldom(x,m)

// update model
l← lcls + ldom
l.backpropagate
θ ← opt.update
t← t+ 1

end while

posed as an active domain adaptation sampling algorithm,
CLUE did not consider domain shifts in its algorithm. GU-
KMeans instead uses the more effective gradient value to
consider each sample’s contributions to both classification
and domain alignment.

SDM [13]: SDM is an improved version of margin sam-
pling and was proposed to maximize the prediction margin
for classification. It is composed of a dynamically adjusted
margin loss and a query score to consider gradient direc-
tion consistency, which attempts to push a sample’s feature
representation z toward direction that minimizes the mar-
gin sampling function. SDM, however, does not consider
domain shift either. In comparison, our GU-KMeans in-
stead considers gradient correlation between classification
task and domain alignment task, and explicitly measures
sample’s contribution in the feature space.

α all-way
0(binary) 0.1 0.2 0.3 0.4 0.5

D′ 1.3579 1.3541 1.3516 1.3373 1.3280 1.3220 1.2974

Table 2. Average normalized domain distances with varying α
values in domain discrimination.

3. Distance of aligned domains

To measure the degree of alignment between domains,
we explicitly measure domain distances after unsupervised
pretraining. We take quickdraw → rest as the multi-target
domain adaptation setting and measure the domain dis-
tances on the test data. Given encoded features {zD1

i }
N1
i=1

and {zD2
i }

N2
i=1 from two domains D1 and D2 respectively,

we define the domain distance between D1 and D2 to be:

D(D1,D2) =
1

N1 ×N2

N1∑
i=1

N2∑
j=1

∥zD1
i − zD2

j ∥2 (1)

Due to randomness in the training progress, the encoded
feature space may not be in exactly the same scale. Con-
sequently, Equation 1 is not scale-invariant. To avoid in-
fluence of feature space scales, we normalize the computed
distance by the average distance of source samples:

D(S,S) = 2

NS(NS − 1)

NS∑
i=1

NS∑
j=i+1

∥zS
i − zS

j ∥2 (2)

D′(D1,D2) =
D(D1,D2)

D(S,S)
(3)

Such a normalized distance measure will be invariant to the
scale changes of features due to randomness of training,
thus can be used to measure the extent of domain alignment
between different algorithms.

We report the average pairwise domain distances of vary-
ing α values in Equation 4 in the main paper in Table 2.
As shown in the table, all-way discrimination indeed leads
to smaller average domain distances thus a more compact
feature space. By increasing value of α, the domains are
aligned better.

4. Visualization of selected sample distribu-
tions

In Figure 1, we visualize the distribution of selected sam-
ples in the feature space using PCA, taking the first active
learning stage with art as source on OfficeHome. As shown
in the figure, GU-KMeans not only selects many uncertain
data, but also results in a much more diverse uncertain-data
distribution compared to CLUE, LAMDA, and SDM.



5. Multi-target active domain adaptation re-
sults

We include more MT-ADA results in Table 3 and
4, where GU-KMeans demonstrates superior performance
compared to other baselines with any domain adaptation
methods. Decomposed domain discrimination can also im-
prove upon binary and all-way alignment when combined
with multiple active sampling baselines, as shown in Ta-
ble 3.

6. Single-target active domain adaptation re-
sults

We conducted single-target active domain adaptation ex-
periments on OfficeHome with average results from 3 ran-
dom trials. We apply active learning for 4 stages with 100
annotation budget in each stage. As shown in Figure 2, per-
formance of GU-KMeans sampling (red) still stays at the
top in almost all source → target settings, except for
adaptation between art and real, where score-based meth-
ods (AADA, margin, SDM) stand out to be more superior.
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Figure 1. PCA visualization of selected subsets at the first active learning stage, with art as source on OfficeHome. Red stands for high
entropy score and blue stands for low entropy score.

DA Method

Office31 OfficeHome

budget=30/stage-1 budget=120/stage-4 budget=100/stage-1 budget=400/stage-4

amzn dslr web AVG amzn dslr web AVG art clip prod real AVG art clip prod real AVG

B
in

ar
y

random 85.38 81.14 81.44 82.65 92.64 85.03 85.75 87.80 63.37 62.43 56.78 63.64 61.55 68.20 68.47 61.99 68.15 66.70
entropy 89.62 81.11 81.53 84.08 98.16 86.44 87.20 90.60 63.27 63.80 57.17 63.44 61.92 70.05 71.35 65.25 70.19 69.21
margin 89.80 82.24 83.46 85.16 98.92 87.89 87.75 91.52 63.75 64.98 57.90 64.31 62.73 71.12 71.86 65.79 70.64 69.85
coreset 85.52 80.50 81.08 82.36 90.51 83.22 83.41 85.71 62.00 62.75 55.23 62.94 60.73 66.48 67.22 60.38 66.47 65.14

BADGE 89.16 81.61 82.86 84.54 98.54 86.53 87.82 90.97 64.25 64.65 57.38 64.57 62.71 70.70 72.14 64.57 70.28 69.42
AADA 89.48 81.78 82.64 84.63 98.33 86.15 87.25 90.58 63.15 63.44 57.48 63.73 61.95 69.77 71.33 64.53 69.91 68.88
SDM 89.67 82.28 83.35 85.10 98.83 87.57 88.09 91.50 63.79 65.32 57.79 64.31 62.80 70.85 72.72 65.26 70.40 69.81

LAMDA 90.12 81.53 82.66 84.77 98.67 87.36 87.88 91.30 64.31 64.29 57.87 64.93 62.85 70.37 71.67 65.13 70.39 69.39
CLUE 90.22 83.61 83.92 85.92 97.73 87.80 88.49 91.34 65.39 65.94 58.17 65.27 63.69 71.68 71.83 64.54 70.35 69.60

GU-KMeans 90.68 83.00 85.58 86.42 98.65 87.98 89.38 92.00 65.32 65.92 58.46 65.11 63.70 72.40 72.94 65.66 70.71 70.43

A
ll-

w
ay

AADA 89.32 80.70 82.76 84.26 98.34 86.01 87.10 90.48 63.72 64.56 57.85 64.89 62.76 70.28 71.65 64.87 70.32 69.28
SDM 89.85 81.94 83.55 85.11 99.06 87.62 88.32 91.67 64.23 64.85 58.09 65.65 63.21 71.03 72.72 65.88 70.92 70.13

LAMDA 90.74 82.34 83.49 85.52 98.57 87.60 88.30 91.49 65.44 64.37 58.55 65.74 63.52 70.87 71.61 65.46 70.58 69.63
CLUE 90.74 84.21 84.12 86.36 97.93 87.74 88.86 91.51 66.02 65.36 59.40 65.79 64.14 71.75 71.33 64.89 70.56 69.63

GU-KMeans 91.17 83.88 85.18 86.74 98.62 88.45 89.23 92.10 66.23 66.73 59.19 65.87 64.50 72.42 72.90 66.04 71.36 70.68

D
ec

om
po

se
d AADA 89.50 81.85 82.85 84.73 98.08 86.80 87.94 90.94 63.91 64.81 58.16 65.53 63.10 70.96 71.98 65.11 70.57 69.65

SDM 89.95 82.28 82.96 85.06 99.05 87.33 88.07 91.48 64.51 64.82 58.29 65.51 63.28 71.33 72.30 65.78 71.21 70.15
LAMDA 91.09 83.46 84.29 86.28 98.70 88.24 88.16 91.70 64.94 64.94 58.87 65.57 63.58 71.05 71.78 65.78 70.47 69.77

CLUE 91.15 84.22 84.61 86.66 98.16 88.40 88.65 91.73 66.25 64.93 59.23 65.62 64.01 71.70 71.20 65.15 70.69 69.68
GU-KMeans 91.14 84.23 85.16 86.84 99.16 88.55 89.29 92.33 65.96 66.53 59.29 66.30 64.52 72.36 72.65 65.75 71.43 70.55

Table 3. MT-ADA accuracies with total budget 120 and 400 on Office31 and OfficeHome, respectively. We conducted 4 active learning
stages with equal budgets. We mark the best results in bold and underline the second-best ones. The best average results across all the
source domains on each dataset are marked in red.

DA Method C I P Q R S AVG

binary

SDM 43.06 43.26 43.82 40.42 42.97 46.41 43.32
LAMDA 44.08 46.34 44.75 40.73 43.25 46.94 44.35

CLUE 43.79 46.48 44.41 40.03 43.01 46.71 44.07
GU-KMeans 44.16 47.50 44.86 40.61 43.55 47.18 44.64

all-way GU-KMeans 42.72 46.06 43.52 39.95 41.17 44.94 43.06

decomposed GU-KMeans 44.40 47.23 44.82 40.90 43.23 47.13 44.62

Table 4. MT-ADA accuracies on DomainNet with total budget =10, 000. Capital letters are short for source domain names.



Figure 2. ST-ADA results on OfficeHome, with 100 annotation budget in each of the 4 active learning stages.

Figure 3. Office31 overview.

Figure 4. OfficeHome overview.



Figure 5. DomainNet overview.
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