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A. Analysis of General Data Augmentation
A.1. Summary of data augmentation strategies in prior works

As shown in Tab. 2, we summarize the detailed data augmentation strategies of 40 trackers published in recent five
years. All trackers adopt the similar augmentation pattern which is random cropping along with several general image
transformations. In particular, among 12 transformer-based trackers, eight of them follow the same strategy as prior CNN-
based trackers, which are random cropping, grayscale, flip and brightness jitter. In our work, we explore the impact of
common used image transformations on modern transformer-based trackers, like flip, brightness jitter, blur, and rotation, and
the impact of jitter degree of random cropping.

A.2. Preliminary experiments on general data augmentation

Table 1. Preliminary experiments for blur and rotation.

Method — Blur Rotation
Probability — 0.2 0.5 0.2 0.2 0.5 0.2
Magnitude — 1 1 2 15 15 45

LaSOT [13] 68.1 674 673|679 678 673
LaSOT_EXT [12] | 47.2 46.1 45.7 | 46.6 46.6 46.0

In our work, we add (blur or rotation) or remove (brightness jitter or flip) each augmentation to explore their impact
on transformer-based trackers separately. To avoid negative effects from inappropriately tuned probability and magnitude,
we perform a set of preliminary experiments with different parameter settings for these two added approaches, i.e. blur and
rotation, and then choose the best-performing parameters in our systematic experiments. Success plots (AUC) on LaSOT [13]
and LaSOT_EXT [12] are shown in Tab. 1, where the chosen settings for our systematic experiments are highlighted with
colors. We find that for both of them, the setting of low probability with low magnitude is able to obtain relatively better
performance.

B. Attribute analysis

To analyze the effect of our DATT in the face of different challenges, we report the AUC gains from our DATr on different
attributes. As shown in Fig. 1, the baseline tracker here is OSTrack256 [37]. The dotted lines represent the AUC gains
on each benchmark, while the red solid line represents the average performance gain. We can see that our DATr improves
models mainly from challenges like viewpoint change, out-of-view, fast motion, low resolution and motion blur, which often
accompany by failure tracking and obvious shifts of objects’ positions between adjacent frames. In particular, for each
challenge like aspect ratio change, scale variation, background clutter, and occlusion, our DATr also obtains more than 1.5%
AUC average gain on the two benchmarks.



Table 2. Summary of data augmentation strategies of 40 trackers published in recent five years.

Method Source  Grayscale Random cropping Flip Brightness jitter Blur Rotation
SiamRPN [19] CVPR18 v v v
DaSiamRPN [44] ECCV18 v v v
ATOM [9] CVPR19 v v
SiamDW [40] CVPR19 v v v
SiamMask [31]  CVPRI19 v v
SiamRPN++[18] CVPR19 v v v
DiMP [1] ICCV19 v v
GradNet [20] ICCV19 (%4 (%4
D3S [23] CVPR20 v v
PrDiMP [10] CVPR20 v v v
ROAM [36] CVPR20 v
SiamAttn [38] CVPR20 v v v v
SiamBAN [6] CVPR20 v v v
CNN SiamCAR [17] CVPR20 v v v
SiamRCNN [29]  CVPR20 v v v v
CLNet [11] ECCV20 v v v
DCEFST [41] ECCV20 v v v
KYS [2] ECCV20 4 v v
Ocean [42] ECCV20 (%4 ("4
PG-Net [21] ECCV20 v
SiamFC++ [34]  AAAI20 v
SiamGAT [16] CVPR21 v v v
SiamRN [7] CVPR21 v v v
STMTrack [14]  CVPR21 v
AutoMatch [39]  ICCV21 v v
KeepTrack [26] ICCV21 v v (4 (4
SAOT [43] ICCV21 v v 4 v
RTS [27] ECCV22 v v v v 4
TransT [5] CVPR21 v v v
TrDiMP [30] CVPR21 v v v v
STARK [35] ICCV21 v v v v
CSWinTT [28] CVPR22 v v v v
MixFormer [8] CVPR22 v v v v
Transformer SBT [33] CVPR22 4 v v
ToMP [25] CVPR22 v v v v
UTT [24] CVPR22 v v v
SwinTrack [22] NIPS22 v
AiATrack [15] ECCV22 (4 v v v
OSTrack [37] ECCV22 4 v v v
SimTrack [3] ECCV22 v v 4 v
Amount 40 21 40 12 34 13 1

C. Analysis of hyper-parameters

To demonstrate the impact of different hyper-parameters on our approaches, we conduct a series of ablation studies with
different hyper-parameter settings, shown as Fig. 2. Considering that the results can be used as the basis for setting parameters
in future work, we apply our augmentations on the baseline step by step, in the order of dynamic selection of search radius
factor v, generating boundary samples, and synthesizing hard samples by our TEMix. As a reference, the performance of the
baseline tracker OSTrack256 is plotted as the dotted auxiliary lines in Fig. 2.
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Figure 1. Performance gain on different attributes.
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Figure 2. Robustness for hyper-parameters of our approaches. Dotted auxiliary lines indicate the performance of the baseline tracker.

Parameters in ORC. We set different dynamic selection ranges of search radius factor, and probability of boundary
samples for our optimized random cropping (ORC), respectively. As shown in Fig. 2 (a), our dynamic v mechanism is able
to obtain performance gain when we set an appropriate selection range, which is symmetric to the value of + in the inference,
e.g. [3,5] to [2,6]. In addition, our ORC also keeps superior performance under different probability settings of boundary
samples compared with the baseline.

Comparison of TFMix and CutMix. To avoid the risk of model drifting by the synthetic hard samples, we evaluate
TFMix under two relatively low probabilities, and also image-level bbox mixing (CutMix) for comparison. As shown in
Fig. 2 (b), our TFMix performs superior to the image-level CutMix under different probability settings. Besides, setting a
lower probability (like 0.1) for these synthetic hard samples seems to be able to help train a more robust model.

D. Analysis of limitations

D.1. Generalization of TFMix on CNN backbones

Settings of experiments on CNN backbones. To further demonstrate the generalization ability of our methods, we
apply the proposed data augmentations to a hybrid CNN-Transformer-based tracker (STARK with ResNet50), and a CNN-
based tracker (SiamFC++). For our optimized random cropping (ORC), we apply it to STARK using the same settings as



Table 3. Quantitative analysis of performance bias

LaSOT |LaSOT_EXT| UAVI123 NFS ALL
Num Gain |[Num Gain [Num Gain |Num Gain|Num Gain

® 51 +81] 82 +56 | 21 +160| 17 +8.8| 171 +79
® 229 -12] 68 -1.1 | 102 -0.2 | 83 -1.1|482 -1.0

® 38 +44] 72 +28 | 17 +58 | 15 +3.1| 142 +3.6
® 242 -03] 78 -0.1 | 106 -09 | 8 -1.5|511 -0.6

@ 51 +22| 75 +4.0 | 18 +2.0 | 16 +5.1| 160 +3.3
@ 229 -05]75 -00 |105 -04 | 8 -0.1]|493 -03

OSTrack256

OSTrack384

MixFormer

MixFormer, where the dynamic search factor range is set to [4.0, 6.0], and the probability of simulating boundary samples is
set to 0.05. While for SiamFC++, the parameter used to control the scope of the context is turned from a fixed value (0.5) to
a dynamic range ([0.3,0.7]). The probability of boundary samples is also set to 0.05.

For the token-level feature mixing (TFMix), we take STARK as an example, and explore the effect of our TFMix on
CNN-based backbones. Specifically, we transfer the feature vectors belonging to the distractor to the corresponding positions
on search feature maps extracted from the last layer of the CNN backbone.

Analysis of TFMix. As we claimed in the main paper, since our TFMix is customized based on the characteristics
of transformer models, i.e. global correlation between independent tokens, it shows to be less effective for CNN-based
backbones. The potential reason might be the strong inductive bias in CNN networks.

First, the main reason might be the locality of CNN networks. In feature maps extracted from CNN networks, important
target information is contained on a wide range of spatial vectors, instead of on the only pixels belonging to the target area.
Replacing several pixels in the search feature map with distractor vectors will not only bring an incomplete representation of
the distractor, but also miss part of the target information, which might affect target representations from CNN backbones.

Besides, because of the shift invariance in CNN networks, trackers with CNN backbones usually distinguish objects and
other distractors in the late feature fusion stage, instead of the feature extraction stage. This type of tracking framework
weakens the role of our TFMix to some extent in improving the discriminative ability of the model to represent different
objects. In contrast, the pure transformer models usually merge the feature extraction and feature fusion stages. Our TFMix
simulates training samples with background interference by introducing another object (i.e. distractor) in the search area,
which provides the model more chances during training to learn discriminative representations for different objects.

Nevertheless, due to the significant superiority of pure transformer frameworks, many trackers [4, 32] with Transformer
backbones have emerged in the past two years. Therefore, the applicability of our TEMix is still considerable.

D.2. Performance bias on different benchmarks and models

As we mentioned in the main paper (‘“Limitation”), our methods tend to improve models in terms of tracking robustness,
instead of accuracy. Therefore, the advantages of our methods are more evident under challenging settings, like small
resolution, or facing unseen categories and challenging situations. Being more effective on hard cases also potentially causes
a performance bias of our method on different trackers and benchmarks.

To evidence this conjecture, we dynamically separate each benchmark as two subsets based on the baseline trackers’
performance. Subset @ includes challenging sequences where the success plots (AUC) of the baseline trackers is lower
than 50.0, while the subset @ includes relatively simple sequences where AUC of not less than 50.0 can be obtained by
baseline trackers. We record the sequence numbers (Num) of each subset in each benchmark, and corresponding AUC gains
(Gain) brought from our DATT, shown as Tab. 3. Although the performance gains from our DATr show a bias on different
benchmarks, our DATr performs consistently on the same subset, i.e. improving challenging sequences (subset @), instead of
simple cases (subset @). However, due to the different proportions of challenge sequences in each benchmark, and also the
different tracking robustness of baseline trackers, the overall performance evaluation shows a bias on different benchmarks.
For example, even though there is a slight decline for MixFormer on LaSOT and UAV 123, our method still improves the
tracking robustness for those challenging sequences inside benchmarks.
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Figure 3. Examples of diverse samples generated by our optimized random cropping. (a): We set different values of the search radius
factor « for the same image to visualize the variety that can be brought by our dynamic v mechanism. (b): Visualization of boundary
samples with different directions.

E. Additional Visualizations
E.1. Visualization of diverse samples produced by OCR

We visualize several training samples generated by our optimized random cropping (OCR) in Fig. 3. First, Fig. 3 (a) shows
that our dynamic v mechanism is able to enrich training samples from the perspective of contextual information. Second,
Fig. 3 (b) visualizes boundary samples with different directions. Models are able to be more flexible to boundary targets due
to such boundary training samples. Compared with the existing random cropping, which has a fixed search radius (see the
second row in Fig. 3 (a)), our OCR could crop samples with a more diverse context scope, object scale, and object position.

E.2. Qualitative comparison with state-of-the-art trackers

We visualize several qualitative results as shown in Fig. 4. It can be demonstrated that our models are more robust to
challenging situations, like severe background interference (see the 1-st, 2-nd, 5-th, and 6-th rows), fast motion (see the 3-th,
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Figure 4. Qualitative comparison with state-of-the-art trackers. “_DATr” indicates our method.
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Figure 5. Visualization of discriminative ability brought by our TFMix. Objects (framed by red bounding boxes) in the search images
are to be tracked, while objects (framed by green bounding boxes) in the distractor images are used to be mixed into the search patches as
distractors. Score maps for search images represent that the model processes the original search image, while score maps for mixed images
represent that the model processes the mixed search patch with distractors.




4-th, and 6-th rows), and frequent occlusion (see the 1-st and 5-th rows).

In addition, we also provide a video (“qualitative_results.avi” in the zip file) to show more qualitative comparisons on three
challenging sequences, which include challenges like scale variation, occlusion, fast motion, and distractors. Compared with
baseline trackers, we can see that our models perform more robustly in the face of extremely challenging situations.

E.3. Comparison of discriminative ability

In addition to the “Fig. 5” shown in the main paper, we visualize more examples here to show the comparison of dis-
criminative ability between the baseline model and our methods DATr. As shown in Fig. 5, our TEMix enables the model
responses much weaker for distractors. Besides, when we only compare the score maps for the original search image, we can
still conclude that our models are more powerful to deal with some challenging situations, like low resolution (see the first
row), distractor (see the 2-nd, 6-th rows), scale variation (see the seventh row), and out-of-view (see the 5-th, 8-th rows).
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