
Supplementary Material: Consistent Multimodal Generation via A Unified GAN
Framework

Zhen Zhu
UIUC

zhenzhu4@illinois.edu

Yijun Li
Adobe Inc.

yijli@adobe.com

Weijie Lyu
UIUC

wlyu3@illinois.edu

Krishna Kumar Singh
Adobe Inc.

krishsin@adobe.com

Zhixin Shu
Adobe Inc.

zshu@adobe.com

Sören Pirk
Adobe Inc.

soeren.pirk@gmail.com

Derek Hoiem
UIUC

dhoiem@illinois.edu

A. More Details About Method

While StyleGAN3 [6] uses critical sampling in the last
two layers of the generator to ensure a good balance be-
tween antialiasing and the retention of high-frequency de-
tails, we maintain the same design in the RGB branch
whereas we turn off this option for depth and normal
branches since high-frequency details are not desired for
these two modalities. StyleGAN3 provides two config-
urations: StyleGAN3-T and StyleGAN3-R. Compared to
StyleGAN3-T, StyleGAN3-R replaces 3 × 3 convolutions
with 1 × 1 convolutions and doubles the channel dimen-
sion to compensate for the lost capacity. Besides, it uses
a radially symmetric jinc-based downsampling filter to re-
place the sin-based one. Though in practice, we noticed
that StyleGAN3-R introduces many kaleidoscope-like pat-
terns in results for the use of symmetric filters, this con-
figuration achieves better performance on Stanford2D3D
than StyleGAN3-T in terms of FID. Therefore, we use
StyleGAN3-R by default. We follow StyleGAN3 [6] to
disable style mixing and path length regularization as they
introduce extra difficulties in convergence for complex
datasets. We also blur all modalities to discriminators using
a Gaussian filter with σ = 10 pixels over the first 200k im-
ages. As noted in [6], this prevents the discriminator from
focusing too heavily on high frequencies as training starts.

For data augmentation operations, we follow ADA [5] to
use pixel blitting (x-flip, 90◦ rotations, integer translation),
general geometric translations (isotropic scaling, arbitrary
rotation, anisotropic scaling, fractional translation), color
transformations (brightness, contrast, luma flip, hue rota-
tion, saturation), image-space filtering and image-space cor-
ruptions (additive noise, cutout). Since only color transfor-
mations require different processing for different channels
while other operations can work on individual channels, we

only apply color transformations for the RGB modality.

B. Implementation Details
The original Stanford2D3D dataset [1] provides training

and validation splits. Training an unconditional generator
does not explicitly require the split. Therefore, we use all
data tuples from the dataset to train our Full models. The
image resolution is up to 1024 × 1024. For quicker exper-
iments, we resize all modalities to 256 × 256. For RGB,
it would be transformed to the range of [-1, 1]. The Stan-
ford2D3D dataset stores depth within the range between 0
and 65,535. To cope with such large depth range, we per-
form max rescaling by:

d′ =

(
d− d.min()

d.max()
− 0.5

)
∗ 2, (1)

so that the ground-truth for the depth modality lies within
[-1, 1]. The original data of depth contains large areas of
blank holes, so we use the hole filling method [10] to in-
paint the holes for better generation quality. The original
Stanford2D3D dataset saves surface normal as RGB images
and we maintain the same procedure as RGB images when
dealing with normals. So the channels for RGB, depth and
surface normal are 3, 1, and 3, respectively.

We use a batch size of 4 for each GPU and 8 A100 GPUs
using PyTorch 1.10.0 of CUDA 11.3 for most experiments.
We use Adam optimizer [8] to optimize both generator and
discriminators with β1 = 0, β2 = 0.99 and ϵ = 10−8.
Following StyleGAN3 [6], we also use equalized learning
rate for all trainable parameters [4], minibatch standard de-
viation layer at the end of the discriminator [4], exponential
moving average of generator weights [4], mixed-precision
FP16/FP32 training [5] to facilitate training, R1 regulariza-
tion [9], and lazy regularization [7] to stabilize training.

1



C. More details about depth estimation and
surface normal estimation

We build RGB→DEPTH and RGB→DEPTH* compari-
son methods, use LeReS [11] to evaluate SIE and perform
depth estimation using the combination of real and gen-
erated data. When building RGB→DEPTH, we pretrain
LeReS [11] on the training set created in Sec. 5.3 while us-
ing the validation set to choose the best performing model
as the final supervision model. While evaluating the SIE,
we use its pretrained ResNeXt101 model1. We follow the
provided training script2 to train the model using the same
configurations on 8 A100 GPUs for 30K iterations. We use
the same procedure to train depth estimation models using
real and generated data unless different number of train-
ing data. For RGB→DEPTH*, we use the same pretrained
ResNeXt101 model as in evaluating SIE. When evaluating
the metrics of surface normal estimation, we use pre-trained
models downloaded using the official script [2, 3]3.

D. More results

D.1. More Qualitative Results

In Sec. 4.3 of the manuscript, we show that our approach
of training multiple modalities together gives better per-
formance than RGB→DEPTH and RGB→DEPTH* which
are trained on the RGB modality first and then move to
depth using direct supervised learning. Aside from the dif-
ficulty of retrieving information from the features learned
from RGB images for depth synthesis, an obvious drawback
of this approach is the dependence on pre-trained models
to provide supervisions. If the pre-trained models behave
poorly on the target domain, learning from those models is
not reliable. We show in Fig. 1 that when compared to pre-
trained models, our generated depth (2nd column) and sur-
face normal prediction (5th column) are better in capturing
correct depth ranges and presenting clear layouts. The pre-
trained depth estimator (3rd column) gives incorrect depth
ranges and the surface normal estimator (final column) suf-
fers from local blurriness. Even after we train the depth es-
timator on the whole Stanford2D3D dataset and then apply
the depth estimator to provide supervision, the results (4th
column) are still inferior to ours. In a sense, it is reasonable,
since our approach directly learns from real ground-truth
annotations while using pre-trained models (e.g., depth es-
timator) assumes learning from synthetic predicted annota-

1https : / / cloudstor . aarnet . edu . au / plus / s /
lTIJF4vrvHCAI31

2https://github.com/aim-uofa/AdelaiDepth/tree/
main/LeReS

3https : / / github . com / EPFL - VILAB / omnidata /
blob / 2a661c93285018b71141759d2a1ad53d8aed0e62 /
omnidata _ tools / torch / tools / download _ surface _
normal_models.sh

tions which could be unreliable.
We have two accompanying videos entitled

“RGB+depth.mp4” and “RGB+depth+normal.mp4”
under the “videos” folder to show the generated results
of our model trained on {RGB, depth} and {RGB, depth,
normal}, respectively. The results show the smoothness
of transitions across different scenes and the consistency
of different modalities. Even without clear guidance
of camera poses, our model is still able to interpolate
reasonably in a particular scene.

For each video clip, we sample 11 distinct latent codes,
z, projecting them to corresponding intermediate latent
codes, w. We perform a linear interpolation between two
successive ws at a frame rate of 60, generating the asso-
ciated RGB images and other modalities with the genera-
tor. The video is composed by compiling these sequential
frames.

D.2. Consistent RGBD Generation Video

We have provided a video titled “consistent-rgbd-
generation.mp4” in the “videos” directory to demonstrate
the consistency between our generated depths and RGB im-
ages. Conversely, the depth estimations based on RGB im-
ages using the off-the-shelf depth estimator [11] present in-
consistencies, either locally or globally, across frames.

D.3. Cross-domain Fine-tuning Video

As described in Sec. 5.2 of the manuscript, we can hold
out a particular scene from the Stanford2D3D dataset, i.e.,
auditorium, to pre-train our model and then fine-tune our
model on the held-out scene by using only a few pairs and
the rest RGB images. During fine-tuning, we observe that
data augmentation for discriminators would cause incorrect
layouts in the results, e.g., chairs in the same auditorium
scene facing towards opposite directions. We assume when
the number of pairs drastically decreases, it also decreases
the chances for the discriminator to see real data and tu-
ples. Hence, the distorted data is leaked to the generator,
causing incorrect geometries. We hence remove the ADA
for fine-tuning. These models are fine-tuned using around
10K training iterations, which is around 1/78 of pre-training
iterations.

We provide one accompanying video entitled
“finetune.mp4” under the “videos” folder, which shows
the result of the pre-trained model and then the models
trained on different portions of pairwise data. Note that
we use the same latent code z to generate those videos and
observe that though these are different models, the results
at the same time step interestingly have related structures,
indicating that after fine-tuning, some initial properties still
remain. The transition is quite smooth and the quality is
decent for the fine-tuning results, considering that we only
use a small number of pairwise data.

2

https://cloudstor.aarnet.edu.au/plus/s/lTIJF4vrvHCAI31
https://cloudstor.aarnet.edu.au/plus/s/lTIJF4vrvHCAI31
https://github.com/aim-uofa/AdelaiDepth/tree/main/LeReS
https://github.com/aim-uofa/AdelaiDepth/tree/main/LeReS
https://github.com/EPFL-VILAB/omnidata/blob/2a661c93285018b71141759d2a1ad53d8aed0e62/omnidata_tools/torch/tools/download_surface_normal_models.sh
https://github.com/EPFL-VILAB/omnidata/blob/2a661c93285018b71141759d2a1ad53d8aed0e62/omnidata_tools/torch/tools/download_surface_normal_models.sh
https://github.com/EPFL-VILAB/omnidata/blob/2a661c93285018b71141759d2a1ad53d8aed0e62/omnidata_tools/torch/tools/download_surface_normal_models.sh
https://github.com/EPFL-VILAB/omnidata/blob/2a661c93285018b71141759d2a1ad53d8aed0e62/omnidata_tools/torch/tools/download_surface_normal_models.sh


Generated 
image

Generated 
depth

Estimated 
depth*

Estimated 
depth

Generated 
normal

Estimated 
normal

Figure 1. Demonstration of the comparison of our generated depth and surface normal with pre-trained depth estimators and normal
estimator. The first column, second column and 5th column are generated RGB images, depths and normals from our model. The third
column (Estimated depth*) represents the results estimated by pre-trained LeReS [11] by feeding the generated RGB images. The fourth
column (Estimated depth) is the result obtained from LeReS which is trained on the in-domain dataset, namely Stanford2D3D. The final
column (Estimated normal) is obtained by a pre-trained surface normal estimator [2, 3] tested on the generated RGB images.

3



Figure 2. Depth estimation performance of LeReS [11] when
trained on different number of generated data. The x-axis rep-
resents different portions of generated images. The left y-axes are
the numbers of AbsRel or WHDR obtained by the correspond-
ing models, respectively. The dashed horizontal lines indicate the
performances of training on different portions of training dataset.
“g” represent the numbers of generated images. In this case,
g = 12, 045, which is 20% size of the training set.

D.4. Using Only Generated Data for Depth Estima-
tion

In addition to the results of using both generated and real
data (20%) to train the depth estimation network [11], we
also experiment on using generated data only. As shown in
Fig. 2, using more generated data can get a steady improve-
ment over both metrics. When the size of generated data
equals to that of real data (5g=100% real training data), the
performance is close to using 60% of real training data. This
promising result indicates the possibility of using our model
to generate datasets for learning downstream tasks.

References
[1] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.

Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017. 1

[2] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir

Zamir. Omnidata: A scalable pipeline for making multi-task
mid-level vision datasets from 3d scans. In CVPR, 2021. 2,
3

[3] Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir
Zamir. 3d common corruptions and data augmentation. In
CVPR, 2022. 2, 3

[4] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 1

[5] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In NeurIPS, 2020. 1

[6] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In NeurIPS, 2021. 1

[7] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 1

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, ICLR, 2015. 1

[9] Lars M. Mescheder, Andreas Geiger, and Sebastian
Nowozin. Which training methods for gans do actually con-
verge? 2018. 1

[10] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012. 1

[11] Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus,
Long Mai, Simon Chen, and Chunhua Shen. Learning to
recover 3d scene shape from a single image. In CVPR, 2021.
2, 3, 4

4


	. More Details About Method
	. Implementation Details
	. More details about depth estimation and surface normal estimation
	. More results
	. More Qualitative Results
	. Consistent RGBD Generation Video
	. Cross-domain Fine-tuning Video
	. Using Only Generated Data for Depth Estimation


