A. Appendix
A.1. Commands for standard codecs

The following commands are used to obtain compres-
sion results for standard codecs FFmpeg (x264 and x265)
and HM. For FFmpeg, we disable B-frames and use de-
fault settings otherwise. We use HM-16.25 with default
settings using the LowDelay-P config, for more details see
https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tags/HM-16.25.

ffmpeg x264

ffmpeg -y —-f rawvideo \
—pix_fmt yuv420p \
—-s:v <width>x<height> \
-i <input.yuv> \
-r <framerate> \
—c:v libx264 \
—preset <preset> \
—crf <crf> \
-x264-params bframes=0 \
<output>

ffmpeg x265

ffmpeg —y —-f rawvideo \
—pix_fmt yuv420p \
—-s:v <width>x<height> \
-i <input.yuv> \
-r <framerate> \
—c:v 1ibx265 \
—preset <preset> \
—crf <crf> \
-x265-params bframes=0 \
<output>

HM-16.25 LowDelayP
./bin/TAppEncoderStatic -c \
./ cfg/encoder_lowdelay_P_main.cfg \
—i <input.yuv> \
——InputBitDepth=8 \
—wdt <width> \
—hgt <height> \
—fr <framerate> \
—-f <numframes> \
-q <gp> \
-0 <output>

A.2. Source Data

Per-video and per-color channel benchmark results are
included in a csv file in the Supplementary Materials, ex-
amples of videos decoded with our codec can be viewed at
https://www.youtube.com/watch?v=jXH6utaZirU.

A.3. Additional Results

Additional results are shown on the following pages.
Tab. 5 lists the hyperparameters used in the various training
stages of our model. The full model architecture is detailed
in Figure 6. Figure 8 shows the RD performance for the
models discussed in the model and quantization ablation in
the main text of our paper and Figure 5 details the pipeline
for our flow-agnostic model in this ablation. Finally, Fig-
ure 7 shows the benchmark of our model and various base-
lines on the UVG and MCL-JVC datasets.

|
:
i Frame embedder
|

Motion auto-encoder

Xt

-

+
1
|
|
1

Figure 5. Model architecture of our flow-agnostic model. *

3Image data from Tango video from Netflix Tango in Netflix El Fuente.
Video produced by Netflix, with CC BY-NC-ND 4.0 license: https:
/Imedia.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt

https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tags/HM-16.25
https://www.youtube.com/watch?v=jXH6utaZirU
https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt
https://media.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt

Stage 1 Stage 2 Stage 3 Stage 4

Training finetuning PTQ QAT

Data Size batchsize 8 16 2 16

gop 4 7 3 4

crop size 256x256 256x384 256x256 256x256
Loss Multipliers (3 I-frame B B B

[P-frame 23 243 - 28

P-frame loss modulation 7 = 1 (no modulation) 7 = 1.2 - T=12

predicted flow £¥ A=0.1 A=0 - A=0

reconstructed flow f A=0.1 A=0 - A=0
Optim Ir le-04 Se-05 - 5e-07

Ir schedule - - - cosine decay to 1e-9
Quantization datatype float32 float32 int8 int8 (STE)
Training Time steps IM 250k 30 100k

walltime ~ 4 days ~ 3 days ~ 2 minutes ~ 1 day

Table 5. Different training stages and their corresponding hyperparameters.
We train a model for each value of 3 € {0.0001,0.0002, 0.0004, 0.0008, 0.0016, 0.0032, 0.0064 }

|-frame encoder |-frame decoder Flow extrapolator | Flow encoder Flow decoder Residual encoder Residual decoder
x{ x/V Y RV [X! xPY i) i & £V
v v A Iy v vy A v v Iy A
[5x512812] [3x3128]| [5x6112] [B5x52 | [5632 | @ [concotenate] [%52] [5x512812] [3x3128 | [5x5112] [5x52 |
(concatenate) (split) (concatenate) (split)
1x1128 1x1256 1x1128 1x1 64
5x52 5x5128 12
5x5128 |2 5x5128 12 e 5x5192 12 5t 5x5128 12 5x5 64 12
M
5x5192 12 5x5128 12 5x5192 12 5x5 96 12
yi yE yi yi
I-frame hyper-encoder I-frame hyper-decoder Flow hyper-encoder Flow hyper-decoder Residual hyper-encoder Residual hyper-decoder
vi o} w yi ol H yi af u
=n =n =n
3x3192 3x3192 3x3192
[5x5192¢2 | (split) [5x5128 42 | (split) [5x5192¢2 | (split)
5x5192 12 5x5192 12 [5x519212 | [5x5192 12 | [5x519212 |
5 12
5619212
z 7 z

Figure 6. Model architecture for the neural networks inside of our P-frame model. Convolutional layers are displayed as k£ x k ¢ where
k refers to kernel size and c refers to the number of output channels. Convolutions with stride s are indicated by | s and transposed
convolutions with stride s are shown as 7 s.

Parameters [M, |] kMACs/px [{]
MobileNVC MobileCodec SSF SSF-Pred MobileNVC MobileCodec SSF SSF-Pred
Sender I-frame AE 5.66 6.68 9.47 9.47 116.11 211.60 118.01 118.01
Motion pred. 0.21 - - 0.75 1.66 - - 6.44
Motion AE 5.59 11.63 9.48 10.10 28.34 175.60 118.70 124.14
Residual pred. - - - 0.75 - - - 6.32
Residual AE 6.82 6.57 10.09 10.09 36.59 183.60 123.45 123.45
Pframe total 12.42 18.20 19.57 21.69 64.93 359.20 242.15 260.35
Receiver I-frame AE 2.94 2.94 5.82 5.82 93.39 130.90 94.64 94.64
Motion pred. 0.21 - - 0.75 1.66 - - 6.44
Motion AE 291 5.98 5.83 6.45 9.5 156.20 94.64 100.08
Residual pred. - - - 0.75 - - - 6.32
Residual AE 3.18 2.75 6.44 6.44 13.36 102.90 100.08 100.08
Pframe total 6.30 8.65 1227 14.39 24.52 259.10 194.72 212.92

Table 6. Model complexity per subnetwork for 1080 x 1920 YUV420 input. AE refers to (hypper-prior) autoencoder components and
pred. refers to predictor models. Models are: MobileNVC (ours), MobileCodec [21], SSF [1], and SSF-Pred [33].

42

Rate/Distortion on UVG

Rate/Distortion on MCL-JCV

Non-neural Codecs

H.265 (FFmpeg)
H.264 (FFmpeg)

-+x- DCVC-DC (Li, 2023)

-4 SSF-Pred (Pourreza, 2023)

%+ SSF-YUV (Pourreza, 2023)

—H - MobileNVC fp32 (ours)
MobileCodec fp32 (Le, 2022)

On-device Neural Codecs
—@— MobileNVC int8 (ours)
MobileCodec int8 (Le, 2022)

Bounds

—m - float32 Baseline
1. Only flow + symbols
| + weights
Il + activations
IV. Ill + scale

PTQ Models

—v—V. Latent step size =1
—<—ViII. Latent step size =}

—©— VIl Latent int16

QAT Models
—e—VIl. Latent step size =3
—eo—VIIl. Latent int16

A 41 4~
better
414
40 A —a=H.265 (HM)
40+ 391
< <
o 39 o Neural Codecs
) 3 381
£ E
& 38 L 374
— —
© ©
37 A
3 3 361
> >
36 35 4
37 344
34 T T T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Bitrate [Mb/s, 1] Bitrate [Mb/s, 1]
Figure 7. Rate-distortion performance of all models on UVG and MCL-JCV.
Architecture Ablation (float32) on Xiph-5N Quantization Ablation on Xiph-5N
41
better ,,”’, better
Baseline 41 / 404
I. MobileNVC
-- (no finetuning)
40 4 39
Warping p oy
—<—1I. Block warp o 391 o 38 ’
Ill. Dense warp 2 2 4
o o
—v—IV.N 38 1 /4
o warp § § 374 i o
Prior a 37 5 / /
—x—V. Scale-only > > 361 J
=) =) i
> 361 > /
Optimization 35
_ V1. MobileNVC
+ finetuning 35 A
344
34 A /i
v
T T T T T T T 33 T T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Bitrate [Mb/s, 1]

Bitrate [Mb/s, L]

Figure 8. Model ablation (Left) and Quantization Ablation (Right). The models in these plots are described in more detail in Tab. 3 and 4

respectively.

A.4. Warping Samples

The effect of the different warping strategies is shown
in Table 7. In this experiment, we compress a single P-
frame as usual, but instead of conditioning the model on the
previously reconstructed frame x;_; we use the previous
groundtruth frame x;_;. Doing so allows us focus on the
differences in warping only.

The frame warped with dense warping (III) does not
show any clear artifacts. When we use block-warp (II) in-

IIL. Dense Warp I1. Block Warp

Transmitted Flow
f,

g/-\
“&H’\
L]
=]
T X
55
2 B

Warping Residual
w _
t T Xt

stead, we see discontinuities where the edges of the object
to warp do not align with the blocks (i.e. notice the “gaps”
in the yellow mast pole). We see that for the Block-Overlap
Warp (I) these artifacts have disappeared. Finally, when we
do not use warping but deploy a conditional model (IV) in-
stead, the predicted frame becomes a lot less crisp.

Note that a checkerboard-like pattern can be seen in the
flow for our Block-Overlap warping model. This pattern
arises as the network learns to exploit the merging of neigh-
boring blocks in blending kernel for a better final result.

L Block-Overlap IV. No Warp

Table 7. Visualization of the output of different warping strategies. Numerals respond to the models in Table 3.
Datapoint obtained from https://www.pexels.com/video/sky-blue-boat-sailing-4602958. Crop location:

https://www.pexels.com/video/sky-blue-boat-sailing-4602958

