A. Appendix
A.1. Commands for standard codecs

The following commands are used to obtain compres-
sion results for standard codecs FFmpeg (x264 and x265)
and HM. For FFmpeg, we disable B-frames and use de-
fault settings otherwise. We use HM-16.25 with default
settings using the LowDelay-P config, for more details see
https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tags/HM-16.25.

# ffmpeg x264

ffmpeg -y —-f rawvideo \
—pix_fmt yuv420p \
—-s:v <width>x<height> \
-i <input.yuv> \
-r <framerate> \
—c:v libx264 \
—preset <preset> \
—crf <crf> \
-x264-params bframes=0 \
<output>

# ffmpeg x265

ffmpeg —y —-f rawvideo \
—pix_fmt yuv420p \
—-s:v <width>x<height> \
-i <input.yuv> \
-r <framerate> \
—c:v 1ibx265 \
—preset <preset> \
—crf <crf> \
-x265-params bframes=0 \
<output>

# HM-16.25 LowDelayP
./bin/TAppEncoderStatic -c \
./ cfg/encoder_lowdelay_P_main.cfg \
—i <input.yuv> \
——InputBitDepth=8 \
—wdt <width> \
—hgt <height> \
—fr <framerate> \
—-f <numframes> \
-q <gp> \
-0 <output>

A.2. Source Data

Per-video and per-color channel benchmark results are
included in a csv file in the Supplementary Materials, ex-
amples of videos decoded with our codec can be viewed at
https://www.youtube.com/watch?v=jXH6utaZirU.

A.3. Additional Results

Additional results are shown on the following pages.
Tab. 5 lists the hyperparameters used in the various training
stages of our model. The full model architecture is detailed
in Figure 6. Figure 8 shows the RD performance for the
models discussed in the model and quantization ablation in
the main text of our paper and Figure 5 details the pipeline
for our flow-agnostic model in this ablation. Finally, Fig-
ure 7 shows the benchmark of our model and various base-
lines on the UVG and MCL-JVC datasets.
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Figure 5. Model architecture of our flow-agnostic model. *

3Image data from Tango video from Netflix Tango in Netflix El Fuente.
Video produced by Netflix, with CC BY-NC-ND 4.0 license: https:
/Imedia.xiph.org/video/derf/ElFuente/Netflix_Tango_Copyright.txt
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Stage 1 Stage 2 Stage 3 Stage 4

Training finetuning PTQ QAT

Data Size batchsize 8 16 2 16

gop 4 7 3 4

crop size 256x256 256x384 256x256 256x256
Loss Multipliers (3 I-frame B B B

[ P-frame 23 243 - 28

P-frame loss modulation 7 = 1 (no modulation) 7 = 1.2 - T=12

predicted flow £¥ A=0.1 A=0 - A=0

reconstructed flow f A=0.1 A=0 - A=0
Optim Ir le-04 Se-05 - 5e-07

Ir schedule - - - cosine decay to 1e-9
Quantization datatype float32 float32 int8 int8 (STE)
Training Time steps IM 250k 30 100k

walltime ~ 4 days ~ 3 days ~ 2 minutes ~ 1 day

Table 5. Different training stages and their corresponding hyperparameters.
We train a model for each value of 3 € {0.0001,0.0002, 0.0004, 0.0008, 0.0016, 0.0032, 0.0064 }
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Figure 6. Model architecture for the neural networks inside of our P-frame model. Convolutional layers are displayed as k£ x k ¢ where
k refers to kernel size and c refers to the number of output channels. Convolutions with stride s are indicated by | s and transposed
convolutions with stride s are shown as 7 s.



Parameters [M, |] kMACs/px [{]
MobileNVC  MobileCodec SSF  SSF-Pred MobileNVC  MobileCodec SSF  SSF-Pred
Sender I-frame AE 5.66 6.68 9.47 9.47 116.11 211.60 118.01 118.01
Motion pred. 0.21 - - 0.75 1.66 - - 6.44
Motion AE 5.59 11.63 9.48 10.10 28.34 175.60 118.70 124.14
Residual pred. - - - 0.75 - - - 6.32
Residual AE 6.82 6.57 10.09 10.09 36.59 183.60  123.45 123.45
Pframe total 12.42 18.20  19.57 21.69 64.93 359.20 242.15 260.35
Receiver I-frame AE 2.94 2.94 5.82 5.82 93.39 130.90 94.64 94.64
Motion pred. 0.21 - - 0.75 1.66 - - 6.44
Motion AE 291 5.98 5.83 6.45 9.5 156.20 94.64 100.08
Residual pred. - - - 0.75 - - - 6.32
Residual AE 3.18 2.75 6.44 6.44 13.36 102.90  100.08 100.08
Pframe total 6.30 8.65 1227 14.39 24.52 259.10  194.72 212.92

Table 6. Model complexity per subnetwork for 1080 x 1920 YUV420 input. AE refers to (hypper-prior) autoencoder components and
pred. refers to predictor models. Models are: MobileNVC (ours), MobileCodec [21], SSF [1], and SSF-Pred [33].
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Figure 7. Rate-distortion performance of all models on UVG and MCL-JCV.
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Figure 8. Model ablation (Left) and Quantization Ablation (Right). The models in these plots are described in more detail in Tab. 3 and 4

respectively.



A.4. Warping Samples

The effect of the different warping strategies is shown
in Table 7. In this experiment, we compress a single P-
frame as usual, but instead of conditioning the model on the
previously reconstructed frame x;_; we use the previous
groundtruth frame x;_;. Doing so allows us focus on the
differences in warping only.

The frame warped with dense warping (III) does not
show any clear artifacts. When we use block-warp (II) in-
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stead, we see discontinuities where the edges of the object
to warp do not align with the blocks (i.e. notice the “gaps”
in the yellow mast pole). We see that for the Block-Overlap
Warp (I) these artifacts have disappeared. Finally, when we
do not use warping but deploy a conditional model (IV) in-
stead, the predicted frame becomes a lot less crisp.

Note that a checkerboard-like pattern can be seen in the
flow for our Block-Overlap warping model. This pattern
arises as the network learns to exploit the merging of neigh-
boring blocks in blending kernel for a better final result.

L Block-Overlap IV. No Warp

Table 7. Visualization of the output of different warping strategies. Numerals respond to the models in Table 3.
Datapoint obtained from https://www.pexels.com/video/sky-blue-boat-sailing-4602958. Crop location:
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