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Abstract

Anomaly detection aims at identifying images that devi-
ate significantly from the norm. We focus on algorithms that
embed the normal training examples in space and, when
given a test image, detect anomalies based on the features’
distance to the k-nearest training neighbors. We propose a
new operator that takes into account the varying structure
& importance of the features in the embedding space. Inter-
estingly, this is achieved by considering not only the near-
est neighbors but also the neighbors of these neighbors (k-
NNN). Our results demonstrate that by simply replacing the
nearest neighbor component in existing algorithms with our
k-NNN, while leaving the rest of the algorithms unchanged,
the performance of each algorithm is improved. This holds
true for both common homogeneous datasets, such as spe-
cific flowers, as well as for more diverse datasets.

1. Introduction
Anomaly detection aims at finding patterns in the data

that do not conform to the expected ”behavior” [3]. It
has numerous applications, most notably in manufactur-
ing, surveillance, fraud detection, medical diagnostics, au-
tonomous cars, and detecting outliers. Out of the variety
of anomaly detection methods [10, 13, 14, 47], we focus
on those that rely on the k-Nearest-Neighbor (k-NN) op-
erator [5, 15, 20, 38, 39]. These methods learn the embed-
ding of normal images or patches. Given a test image, the
distance of its embedding to its k-nearest (training) neigh-
bors is computed and this distance determines whether the
test image is anomalous or not. The underlying assumption
is that anomalous features should reside farther away from
normal features than normal features from each other. Thus,
a point is considered anomalous when its average distance
to its k nearest neighbors exceeds a certain threshold.

A major disadvantage of this approach is that the struc-
ture and the importance of the features in the embedding
space is not taken into account when looking for anomalies.
Figure 1 shows such a case, in which the normal set varies
and consists of flowers that belong to different classes, with

(a) k-NN (b) k-NNN

Figure 1. Neighbors of neighbors illustration. A common ap-
proach is to base the anomaly score on the distances between a
test image to its k-nearest neighbors (k-NN) in the feature space.
In this figure, the yellow and the white flowers are considered nor-
mal, whereas the flower in the red rectangle is anomalous. The
background color represents the anomaly score. (a) Since the nor-
mal set is diverse, k-NN-based methods might fail, since the dis-
tances of the anomalous image to its neighbors is smaller than the
distances between similar images to each other (e.g., between the
white flowers). (b) Our k-NNN operator sets better distances be-
tween neighbors, which reflect the diversity of the normal exam-
ples. It will correctly detect the anomalous flower as such.

different inner distances (the flowers are not classified be-
forehand). A flower that does not resemble any of the nor-
mal flowers (in the red rectangle) will not be detected as
anomalous by the k-NN operator, because its distance to its
nearest flowers is less than the distances between normal
flowers in different regions of the embedding space. Our
operator, which implicitly takes the structure of the space
into account, will detect this flower as anomalous.

The structure of the embedding space is important also
when the normal set is homogeneous, as illustrated in Fig-
ure 2 for a synthetic example. The 2D embedding of the
normal training points lie on three lines, two of which are
parallel and one is perpendicular to them. Two anomalous
points, marked as 1 and 2 (in red), lie above the horizontal
line and to the right of the vertical line, respectively. Their
5-NN distance is the same as that of the normal points be-
tween themselves, and thus they might not be identified as
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(a) k-NN: 1,2 are normal (b) k-NNN: 1,2 are anomalous

Figure 2. k-NNN benefit. The cyan points represent the 2D em-
bedding of normal images. The heat maps show the 5-NN distance
of each point on the plane; the yellower a region, the more anoma-
lous it is. The distance between the red anomalous points to their
5-nearest cyan neighbors is equal to the distances between the cyan
points themselves. Thus, the classical k-NN operator fails to detect
them as anomalous. Differently, our k-NNN operator, which uses
the neighbors statistics, detects them correctly.

anomalous by k-NN-based methods. Similar cases are likely
to occur when there are not enough training samples.

We propose a novel operator, termed the k-nearest
neighbors-of-neighbors (k-NNN), which addresses this
problem, as illustrated in Figures 1-2. It differentiates be-
tween regions and considers the more indicative features at
certain regions as more influential. For instance, in Fig-
ure 2 the feature that makes point 2 anomalous is its y fea-
ture, whereas the feature that makes point 1 anomalous is
its x feature. We show how to efficiently realize this idea
of considering regions differently, by simply looking at the
neighbors of neighbors of a test point. Intuitively, the neigh-
bors of neighbors provide information about regions, which
balances between a global view of the dataset and a more lo-
cal view, which is based only on the immediate neighbors.

To consider the feature importance, we analyze the di-
rections associated with the anomalies. The classical Prin-
cipal component analysis (PCA) analyzes datasets of high-
dimension features, while preserving the maximum amount
of information. We observe that for anomaly detection,
Eigen vectors associated with small Eigen values matter
more than those of large values. Furthermore, as shown in
Figure 2, the difference between an anomalous point and its
nearest neighbor(s) is perpendicular to the direction of the
large Eigen vector(s). Intuitively, this is so since anomalies
are characterized by features not present in the dataset. We
show how to utilize this observation within our operator.

To demonstrate the benefit of our approach, we replace
the k-NN operator used in several anomaly detection algo-
rithms with our k-NNN operator. We show how this modifi-
cation manages to improve the results of each algorithm on
a variety of datasets.

Hence, this paper makes two contributions:

1. It introduces a novel, general, efficient and accurate
operator—the k-NNN operator, which provides an ”in-
between” look at the data, between local and global. It
benefits both diverse and homogeneous normal sets.

2. It proposes a novel normalization scheme that priori-
tizes the small Eigen values, effectively handling the
challenges associated with small datasets. Addition-
ally, it shows how to address the data high dimension-
ality, even when the number of neighbors is limited.

2. Related work
Anomaly detection. Anomaly detection is important to dis-
cover potentially dangerous situations, in the manufacturing
industry for detecting product faults, in medicine for diag-
nosing diseases etc. It is a highly challenging task due to
image structure, varying environmental conditions, imbal-
anced datasets, and data diversity. Hence, this task has at-
tracted a huge amount of research. We refer the reader to a
couple of comprehensive and excellent surveys [11,12,49].

Hereafter, we consider methods that detect whether or
not an image is anomalous and do not aim to segment it.
They may be categorized to three classes, as follows.

Reconstruction-based methods learn a set of basis func-
tions on the training data. Given a test image, they at-
tempt to reconstruct it using these functions. If the test
image cannot be reconstructed, it is considered anoma-
lous. The set of basis functions vary. Examples include
K-means [21], K nearest neighbors (k-NN) [16], principal
component analysis (PCA) [2] etc. Deep learning has been
used as well [43, 53].

Distribution-based methods model the probability den-
sity function (PDF) of the distribution of the normal
data [16,29]. Given a test example, it is evaluated using the
PDF. If the probability is small, it is considered anomalous.
Deep learning can be applied as well [27, 54].

Classification-based methods are the most prevalent re-
cently. They includes one-class methods [42, 44, 48] and
self-supervised learning [6, 17, 18, 22]. Recently it was
shown in [5] that a simple method, which is based on k-
NN, outperforms such self-supervised methods.

Nearest neighbors, which we pursue in this paper, may
be considered as reconstruction-based or as distribution-
based, since it performs density estimation.

The k-NN operator. Nearest neighbor search has been uti-
lized across a wide range of applications in computer vision.
The k-NN operator has been found beneficial in classifica-
tion and correspondence [4, 8, 46], intrusion detection [28],
medical applications [26, 31], fault detection [5, 38], out of
distribution detection [45] and more. In some applications
approximation of the k-NN operator was studied [23,30,36].
We focus, however, on the exact k-NN operator in the con-
text of anomaly detection. The most related works to ours
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(a) k-NN (b) Global (c) Local (d) k-NNN

Figure 3. Different types of normalization. The cyan points represent the normal points in a 2D embedding space; they lie along two
circular arcs. We expect that all the normal points will reside along these arcs, even if the arcs contain holes or terminate; we also expect
that points that lie in other regions of the plane will be anomalous. The background color represents the anomaly score of each region
according to the specific method: The more yellowish a region, the more anomalous it is. While our k-NNN (d) correctly classifies the
plane (blue regions are only along the arcs), the local method erroneously considers as normal the region in-between the arcs (c), and the
global and k-NN method erroneously detect regions along the arcs (in holes or beyond termination) as anomalous (a-b). In this figure green
rectangles mark correct outcome (normal/anomalous) and red rectangles mark incorrect outcome.

are [15, 19, 33, 34, 38, 41, 50], which use nearest neighbors
for anomaly detection.

3. Method

Given an image, our goal is to determine whether it is
anomalous or not. This should be done in a semi-supervised
manner, utilizing only a dataset of normal images, with-
out anomalies. We follow the approach in which features
are extracted during training, in order to represent normal
images. During inference, a given test image is passed
through the feature extractor and the k-nearest neighbors
in the (training) feature space are found. An anomaly score
is derived from the distances to these nearest neighbors.

Eigen-vector for anomaly detection. In order to take into
account the shape of the embedding space, we estimate the
space directions using its Eigen vectors. Recall that the
greater the Eigen value, the larger the variance of the data
in the direction of the corresponding Eigen vector. Our pro-
posed normalization is based on our observation that small
Eigenvalues tend to correspond to anomaly directions more
than large Eigenvalues. This can be explained by the fact
that a small variation means that normal images are close in
that direction [40]. Thus, a small deviation in this direction
is more likely to be an anomaly.

The neighbors of neighbors operator. One may consider
a couple of setups. In a global setup, the Eigen vectors are
determined for the whole training (normal) set during pre-
processing. In a local setup, the Eigen vectors are calcu-
lated for a test point based on its k-nearest neighbors in the
training set. We propose an ”in-between” operator, which
gathers more statistical information on the embedding space
than the local operator and not as much as the global oper-
ator. In particular, for each neighbor we utilize the Eigen

vectors (/values) of its neighbors. We elaborate on the real-
ization of this idea hereafter.

Figure 3 illustrates the intuition behind our operator. The
normal points, in cyan, lie along one of two circular arcs.
Obviously, normal points should lie along these arcs, even
in holes and beyond the arcs’ termination, whereas anoma-
lous points should reside elsewhere in the plane. In this fig-
ure, the plane is colored according to its normality/anomaly,
as determined by each method. Blue regions are considered
to be normal by the method, whereas yellow regions are
considered anomalous. The green rectangles highlight re-
gions where the specific method correctly classifies points
as normal or anomalous. The red rectangles highlight re-
gions in which the specific method fails to classify points.
It can be seen that our method enjoys the benefits of all
worlds—global & local. This result is analyzed and sup-
ported quantitatively in Section 5.

To realize our operator, during training (Figure 4), we
first compute the feature vector of each training image, us-
ing any preferable embedding model. Then, we compute
the k nearest neighbors in feature space for each point of
the training data. From these neighbors, we compute the
point’s n Eigen vectors and their corresponding Eigen val-
ues and store this information. Hence, the Eigen vectors
(/values) are relative to each individual training point, re-
gardless of the test point.

At inference (Figure 5), given a test point and its feature
vector, f , we find its k nearest neighbors among the train-
ing samples, fi, 1 ≤ i ≤ k. Each of these fis is already
associated with n Eigen vectors and Eigen values, vij and
eij , 1 ≤ j ≤ n, computed during training.

Following our observation, for a point to be considered
normal, the difference vector between it and its neighbor
should be parallel to the large Eigen vectors (parallel to the

1007



Figure 4. k-NNN training. Given training normal images, their embeddings, fi, are computed. Then, the nearest neighbors of each image
embedding is computed. The Eigen vectors and Eigen values, derived from their k neighbors, are computed and stored.

Figure 5. k-NNN inference. Given an input image, its embedding f is first computed. Its k nearest neighbors are found and the Eigen
values & vectors of each neighbor are extracted from the memory. An anomaly score is calculated according to Eq. 1.

distribution of the normal embeddings). Reversely, for a
point to be considered anomalous, this vector should be per-
pendicular to the large Eigen vectors. Thus, we calculate the
anomaly score AS of a feature vector f as follows.

AS(f) =

k∑
i=1

n∑
j=1

|(f − fi) · vij | ·
1

√
eij

. (1)

In Eq. 1, the difference between the test feature vector and
that of its neighbor is multiplied by the different Eigen vec-
tors, specific to the ith nearest neighbor. The more parallel
these vectors are, the larger the value of this multiplication.
Furthermore, this number is multiplied by square root of the
inverse of the Eigen value, giving more weight to the small
Eigen values. Figure 3(d) demonstrates that the k-NNN op-
erator indeed classifies the plane properly.

Feature partition & re-ordering. Evaluating the Eigen
vectors by neighbors-of-neighbors (let alone locally) means
that only a small number of points in the neighborhood of f
is used for estimating the Eigen vectors. This might be pro-
hibitive since a feature vector of dimension N cannot be
estimated by k << N neighbors, as it will result in major
loss of information.

To address this problem, we propose to estimate the

Eigen vectors in parts. We divide the vector features (en-
tries) into equal-size sets and calculate the Eigen vectors for
each set separately. In particular, we divide the feature vec-
tors of dimension N into at least N/k sets. In the following
we denote the number of sets by S and the dimension of the
(sub)-feature vector of a set by L (e.g. if S = N/k then
L = k). In general, the more samples used to calculate the
Eigen vectors, the larger L may be.

Specifically, given a feature vector of the test point , f ,
and its k nearest neighbors among the training samples,
fi, 1 ≤ i ≤ k, we partition f and fi into parts, fs & fi,s,
1 < i < k, 1 < s < S. We denote the Eigen vectors and
Eigen values associated with fi, which are similarly parti-
tioned, by vij,s, eij,s, 1 ≤ j ≤ n (n < L), respectively.

As before, we calculate the difference between f and
each of its neighbors, however this time this is done per set.
The anomaly score of f , AS, takes into account the results
of all the sets, as follows:

AS(f) =

k∑
i=1

n∑
j=1

S∑
s=1

|(fs − fi,s) · vij,s| ·
1

√
eij,s

. (2)

The remaining question is how to partition the vectors
into sets. The disadvantage of using independent sets is that
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(a) Initial order: 1 & 2, 3 & 4 (b) Correlated order: 1 & 3, 2 & 4

Figure 6. Reordering by correspondence. Suppose we are given 100 feature vectors, each with 4 entries (features). In the graphs, every
axis represents one feature. (a) shows that there is no correlation between features 1 and 2 (left), and similarly between features 3 and
4 (right). Thus, the anomalous red point cannot be distinguished from the normal cyan points. However, after the features are reordered
according to their correlation, it is much easier to distinguish between the anomalous point and the normal ones (b).

the relations between the features in the different sets are not
taken into account. This may be harmful when the anoma-
lies depend on these relationships. Figure 6 illustrates such
a synthetic case, for vectors of 4 features, where the red
point is anomalous. In a partition of the features into sets
{1, 2}, {3, 4}, as in (a), the red point is indistinguishable
from the normal cyan points and thus will not be detected.

This problem can be mitigated by re-ordering the fea-
tures before partitioning them into sets, based on the cor-
relation between them. If properly done, every set will
contain the features that are most correlated to one an-
other, resulting in more meaningful Eigen vectors. Fig-
ure 6(b) illustrates the reordering effect, where the features
are partitioned into sets {1, 3}, {2, 4}. When reordering is
performed prior to splitting the features into sets, the red
anomaly point is easily spotted and distinguished from the
normal cyan ones, and is thus detected as anomalous.

We propose to apply the following procedure for feature
re-ordering. First, the correlations between all pairs of en-
tries of all the feature vectors in the training set are com-
puted. To maximize the correlation within each set, we re-
order the feature vector entries of all the vectors simultane-
ously. This is done in a greedy fashion as follows. The first
entry remains in place; the second entry is switched with the
one that is most correlated to the first. From now on, until
the number of features in the set is L, the subsequent entry
is chosen as the one that has the highest average correlation
with its previous two entries. When L is reached, we start a
new set, whose first entry is chosen as the one that is least
correlated with the last two features of the previous set.

4. Experiments
We demonstrate the benefits of our method in two ways.

In Section 4.1, we replace the k-NN component of state-of-
the-art anomaly detection methods with our k-NNN operator
and show improved results. In Section 4.2, we apply our
operator to structured synthetic features. In both cases, we

demonstrate that even when applying our method to features
extracted by networks not specifically designed for anomaly
detection, the results are excellent. For evaluation, we use
the AUROC metric, which is commonly used for evaluating
anomaly detection performance.

4.1. Improving anomaly detection methods

In the following, we replace the k-NN component
of state-of-the-art k-NN-based anomaly detection methods
with our K-NNN and evaluate the results on several datasets.

Networks & datasets. We examine three systems that use
k-NN: (1) k-NN applied to the features of ResNet18 [47],
(2) SPADE [15], and (3) Panda [38]. We use four datasets:
(1) MVTec [7], which contains 5, 354 high-resolution im-
ages of different object and texture classes. It is divided
into 3, 629 normal images for training and 1, 725 anoma-
lous images for testing. The images contain more than 70
different types of defects (anomalies), such as scratches,
dents, and structural changes. The ground truth was spec-
ified manually. (2) Oxford flowers 102 [32], which con-
tains 102 flower categories, with 1, 020 training and val-
idation images and 6, 149 test images, where each class
includes 40-258 images. (3) Fashion MNIST [51], which
contains 10 categories, with 60, 000 training and validation
images and 10, 000 test images; each class includes 6, 000
images. (4) CIFAR10 [25], which contains 10 categories,
with 50, 000 training and validation images and 10, 000 test
images; each class includes 6, 000 images.

Results. Table 1 shows the results on MVTec. In this
dataset, every class has anomalous examples of its own.
Our method improves the mean performance of all three
networks. Furthermore, it improves the performance for al-
most all the classes (except 3 classes for a single network).

Table 2 reinforces the above results. It shows im-
proved performance on three additional datasets, which dif-
fer greatly from one another, in their size, type and diversity.

Table 3 evaluates our model on highly diverse normal
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Classes Feature Feature [15] [15] [38] [38]
+k-NN +k-NNN +k-NNN +k-NNN

carpet 0.896 0.990 0.928 0.959 0.843 0.898
grid 0.444 0.777 0.473 0.663 0.554 0.723
leather 0.792 0.986 0.954 0.974 0.960 0.975
tile 0.986 0.993 0.965 0.970 0.985 0.976
wood 0.636 0.938 0.958 0.985 0.913 0.906
bottle 0.971 0.983 0.972 0.988 0.992 0.982
cable 0.882 0.934 0.848 0.899 0.821 0.863
capsule 0.803 0.919 0.897 0.941 0.911 0.919
hazelnut 0.903 0.991 0.881 0.966 0.925 0.968
metal nut 0.813 0.913 0.710 0.857 0.788 0.860
pill 0.738 0.882 0.801 0.822 0.757 0.786
screw 0.712 0.840 0.667 0.839 0.690 0.805
toothbrush 0.886 0.969 0.889 0.953 0.861 0.914
transistor 0.878 0.936 0.903 0.929 0.871 0.902
zipper 0.937 0.964 0.966 0.949 0.934 0.951
mean 0.819 0.934 0.854 0.913 0.854 0.895

Table 1. Replacing the k-NN component by our k-NNN on
MVTec. Our k-NNN improves the mean performance of all net-
works, as well as the performance for almost all the classes.

Dataset Feature Feature [15] [15] [38] [38]
+k-NN +k-NNN +k-NNN +k-NNN

CIFAR10 0.841 0.871 0.893 0.922 0.939 0.943
Fashion 0.935 0.936 0.911 0.919 0.954 0.958
Flowers 0.615 0.895 0.917 0.919 0.935 0.944

Table 2. Replacing k-NN by our k-NNN on three additional
datasets. Our AUROC results outperform those of the 3 methods.

classes. We consider all classes from a specific dataset as
normal, except one, without prior classification. Conse-
quently, only images from that single class are considered
anomalous. Despite the challenges posed by diverse normal
sets, our k-NNN consistently improved networks’ results,
often showing even greater improvements in performance.

Table 4 further studies the issue of diversity. In MVTec,
every class has its own normal and anomalous examples,
hence it may be considered as a set of independent datasets.
In this experiment, we gradually increase the number of
classes, i.e. if the number of classes is 5, we consider all
the normal (unclassified) images of the 5 classes as normal
and all the anomalous (unclassified) images of these classes
as anomalous. (Table 1 is the base case.) The table shows
that generally the more diverse the normal class is, the more
advantageous our method is. This is not surprising, as after
all this is exactly what k-NNN is supposed to do—be adap-
tive to the structure of the feature space.

Dataset Feature Feature [15] [15] [38] [38]
+k-NN +k-NNN +k-NNN +k-NNN

CIFAR10 0.662 0.719 0.694 0.667 0.599 0.610
Fashion 0.760 0.780 0.729 0.739 0.683 0.698
Flowers 0.612 0.681 0.624 0.686 0.668 0.689

Table 3. Performance on diverse normal sets. Images from
all the categories, expect one, are considered normal, and images
from that single class are anomalies. The AUROC results are aver-
aged across all the classes, i.e. each class is considered anomalous
once. When replacing k-NN by our k-NNN in various networks,
our operator is usually more beneficial than for homogeneous sets.

#normal Feature Feature [15] [15] [38] [38]
classes +k-NN +k-NNN +k-NNN +k-NNN

5 0.806 0.890 0.760 0.938 0.599 0.783
7 0.743 0.852 0.716 0.913 0.597 0.817
11 0.680 0.760 0.747 0.901 0.631 0.809
15 0.627 0.757 0.691 0.884 0.627 0.814

Table 4. Performance when increasing the normal sets. Out
of the 15 highly diverse classes of MVTec, we use an increasing
number of sets, where all their normal and anomalous images are
considered as such. As before, no classification is performed be-
forehand. Our operator is especially beneficial on diverse sets.

4.2. Performance on synthetic benchmarks

We evaluate our method on synthetic, well-thought
benchmarks commonly used for visualizing clustering and
classification algorithms [1]. These datasets demonstrate
the strength of our method in structured embedding spaces.
The benchmarks are created by various random sampling
generators, allowing us to control their size and complexity.
Figure 7 illustrates the three benchmarks we use:

1. Moons. The points form two interleaving half circles.

2. Circles. The points are organized into two circles,
sharing the same center point but having different radii.

3. Swiss roll. The points are structured in a shape that
resembles a rolled-up Swiss roll pastry.

In our setup, we consider all the generated points as em-
beddings of normal examples. The farthest a point in the
plane is from the specific distribution, the more anomalous
it should be. For the training, half of the generated points
were used. For the evaluation, the other half was considered
as the true positives. We generated the negatives (anoma-
lies) by uniformly sampling the plane. In our experiments
we used 100-500 points for training and 5, 000 for testing.

Table 5 quantitatively demonstrates the benefits of our
operator. It is important to note that we cannot directly
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(a) Moons (b) Circles (c) Swiss roll

Figure 7. Synthetic benchmarks

Dataset k-NN Local Global k-NNN
Moons 0.8214 0.8408 0.8860 0.9162
Circles 0.8079 0.8123 0.8109 0.8163
Swiss roll 0.9496 0.9496 0.9794 0.9816

Table 5. Performance on the synthetic dataset. This table shows
that our k-NNN method outperforms all variants of k-NN.

compare against other state-of-the-art methods because they
compute the embedding as an integral part of the network,
whereas in our case, the embedding is given. Figure 8 pro-
vides a qualitative illustration of the results. The classical
k-NN erroneously identifies a wide area around the curve as
normal, while the global k-NN identifies in-curve points as
anomalous (e.g., the spaces in the spirals), and the local k-
NN introduces anomalous curves, as observed in the case of
the moons and the roll. In contrast, our method accurately
captures the thin normal curves, including the holes in them
and their continuation. Below, we define these methods.

5. Ablation study

5.1. k-NN methods

In this section we study variants of k-NN normalization
methods and compare them to our k-NNN operator.
1. Baseline (no normalization). The Euclidean distance
between feature vectors is used without normalizing the fea-
tures, as in [9,15,24,37]. The advantage of this approach is
the speed and having only a single parameter (k, the num-
ber of neighbors). However, ignoring the shape of the local
and global embedding space might harm performance. This
is evident in Figures 3 and 8(a), where normal points within
holes and in the continuation of the curve are erroneously
detected as anomalous (the red rectangles in Figure 3(a)).
2. Global Eigen-vector normalization. At training
time, all the points are used to calculate the Eigen
vectors v1, v2, . . . vn and their associated Eigen values
e1, e2, . . . en. At test time, given an image represented by
its feature vector f , we compute its k nearest neighbors
f1, f2, . . . fk from the training set and normalize (f − fi)
based on the Eigen values. The anomaly score, AS, is then

(a) K-NN (b) Global (c) Local (d) K-NNN

Figure 8. Qualitative results on synthetic datasets. Only our
method captures the curve distributions accurately. That is to say,
the only blue regions across all datasets are the thin curves, includ-
ing the holes in them and their continuation.

calculated as follows:

AS(f) =

k∑
i=1

n∑
j=1

|(f − fi) · vj | ·
1

√
ej

. (3)

As before, normalization is done using the square root of
the inverse of the Eigen value, as we observed that lower
Eigen values indicate anomalies. Unlike Eq. 1, all vectors
in the embedding space are normalized in the same manner.

The global normalization offers advantages, as it is less
affected by noise compared to considering only a subset of
points, and it takes into account the relations between fea-
tures. Figures 3 and 8(b) confirm that global normalization
improves upon the baseline k-NN. However, global normal-
ization ignores the different directions for different regions
of the embedding space. This results in misclassification, as
shown in the red square of Figure 3(b), where the continua-
tion of the curve is considered anomalous, though it should
be normal. The discrepancy arises from the global Eigen
vector direction not matching the correct local direction.
3. Local normalization. In local normalization, we calcu-
late the Eigen vectors for each test point in the embedding
space locally, based on its k nearest neighbors in the train
set. Then, as before, we calculate the difference between
the test sample f and each of its neighbors, and apply Eq. 3.

Figures 3,8(c) show that indeed all the points along the
curve are correctly detected as normal (e.g, see the green
squares in Figure 3(c)). However, artifacts are created—the
blue ”snakes” in-between the arcs of the moons (partially
visible in the red rectangle), within the roll and between the
circles. The points on these snakes should be classified as
anomalous, whereas they are considered to be normal.
Evaluation with different embeddings.

In Table 6 we compare these approaches using a variety
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Network k-NN Local Global k-NNN
Max

Dino-Vits8 [10] 0.9357 0.9357 0.9510 0.9556
Resnet50 [47] 0.7690 0.7693 0.8040 0.8095
Resnet101 [47] 0.7690 0.7693 0.8040 0.8095
ResNext50 [52] 0.7690 0.7693 0.8040 0.8095
ResNext101 [52] 0.7690 0.7693 0.8040 0.8095

Mean
Dino-Vits8 [10] 0.9194 0.9207 0.9358 0.9379
Resnet50 [47] 0.7282 0.7283 0.7205 0.7350
Resnet101 [47] 0.7256 0.7257 0.7414 0.7423
ResNext50 [52] 0.7282 0.7283 0.7222 0.7382
ResNext101 [52] 0.7284 0.7285 0.7374 0.7427

Table 6. Comparison of various k-NN methods. Our k-NNN op-
erator outperforms all other nearest neighbor variants on MVTec.
Furthermore, simply finding the embedding using Dino-Vits8 and
then running our operator detects anomalous images pretty well.

of image embeddings. Specifically, we used ResNet [47],
ResNeXt [52], and Dino-ViT-S/8 [10]). For each embed-
ding, we applied the nearest neighbor variants to detect
anomalies on MVTec. Our k-NNN outperforms all other
variants, consistently with the results in Table 5, where the
same experiment was performed on the 2D synthetic dataset
of [35]. It is interesting to note that this very simple method
already manages to detect anomalous images well.

5.2. Parameters and runtime

How many neighbors should be used? For clarity,
throughout the paper, we did not elaborate on having two
neighboring parameters: the number of neighbors of a given
test image and the number of neighbors of the train im-
ages, which are pre-computed and stored (i.e., neighbors of
neighbors). Table 7 shows typical results (15 classes from
Table 4). It is beneficial to use a small number of neigh-
bors and a large number of neighbors of neighbors. For
instance, having 3 neighbors, each having 25 neighbors, is
better than 75 direct neighbors (k-NN), improving the per-
formance from 0.616 to 0.757. Intuitively, a few nearby
neighbors and enough of their neighbors suffice to provide
good statistics of the nearby space. This justifies the key
idea of the paper: k-NN, which considers only Euclidean
distances, cannot capture the structure of the space, even if
more neighbors are added. Conversely, our k-NNN captures
the space structure and addresses the problem of an anomaly
being closer to certain clusters than normal examples from
each other. In our implementation we use 3 neighbors and
25 neighbors of neighbors across all datasets.
Sub-feature vector dimension. Another parameter that
should be set is L, the dimension of the sub-feature vector
used for the partition, which might affect the algorithm’s

#neighbors #neighbors-neighbors performance
1 75 0.753
3 20 0.753
3 25 0.757
3 75 0.755
4 20 0.754
5 15 0.753

10 5 0.686
60 0 0.616
75 0 0.616
80 0 0.634

Table 7. How many neighbors are needed? Considering a few
nearby neighbors and many of their neighbors (top) is advanta-
geous to having many neighbors (bottom). This verifies the key
idea of the paper—neighbors-of-neighbors (top) capture the struc-
ture of space much better than only neighbors do (bottom).

performance and runtime. We used L = 5, which experi-
mentally exhibited the best performance. For instance, in
Table 4 [15], when L = 4 the performance already de-
creased by 0.006 and similarly when using larger L.
Runtime. A key advantage of our method is that it requires
no training. We utilize features generated by any network
and apply our k-NNN operator. If the Eigen vectors are
computed during pre-processing, the inference runtime is
instantaneous. Specifically, computing the Eigen vectors
and the partition during pre-processing takes approximately
0.074 seconds per image. Determining anomalies in a test
image takes only 0.014 seconds. These experiments were
performed on the CPU (AMD EPYC 7763).
Limitations. The disadvantage of our k-NNN is its run-
ning time during pre-processing and the memory needed to
store the Eigen vectors. Furthermore, our operator has 3
hyper-parameters that need to be to tuned, in comparison to
a single parameter in classical k-NN.

6. Conclusion
We introduced k-NNN, a novel nearest-neighbor opera-

tor that utilizes neighbors of neighbors statistics to capture
feature space shape information. By computing and storing
Eigen vectors of the train set neighbors, k-NNN improves
anomaly score accuracy during inference through a novel
normalization scheme. To handle high-dimensional vectors
with limited and insufficient neighbors, we compute these
Eigen vectors in parts using multiple feature sets.

Our study demonstrates that replacing the k-NN compo-
nent of multiple anomaly detection networks with our K-
NNN leads to significant improvements. This enhancement
is observed in both homogeneous and diverse datasets.
Acknowledgements. We gratefully acknowledge the sup-
port of the Israel Science Foundation 2329/22.
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