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Abstract

In this paper, we present the SARFish challenge and
dataset. The challenge focuses on the use of Synthetic Aper-
ture Radar (SAR) imagery for the identification of vessels
involved in illegal, unreported and unregulated (IUU) fish-
ing which damages ecological systems and causes losses
for fishing industries and governments worldwide. The
SARFish dataset is a free and open large-scale complex-
valued SAR dataset which is based upon Sentinel-1 imagery
and built upon the xView3 labels. We expect this dataset to
help in advancing the state of the art in automated ship de-
tection from SAR imagery, contextual representation learn-
ing, and the application of deep complex-valued neural net-
works. We also hope the availability of the SARFish dataset
will stimulate developments on other topics of interest that
can naturally tackle complex-valued data such as quantum-
inspired approaches.

1. Introduction

1.1. Illegal, Unreported, and Unregulated Fishing

IUU fishing is a global problem with severe ecological,
economic, and political impacts. It primarily affects devel-
oping nations, many of which rely on regional fisheries as a
major source of food and income [33, 41]. At a local scale,
it depletes the marine environment and directly impacts the
sustainability of the ecosystem [41], at a global scale, it is a
major contributor to piracy [9, 34] and causes USD 25 bil-
lion in economic loss per year [45].

Monitoring, Control and Surveillance (MCS) of fishing
practices has been undertaken globally to enforce regula-
tion and combat IUU fishing [12]. Effective enforcement of
fishing regulation has been shown to reduce the proportion
of IUU fishing catch [1, 16].

Maritime surveillance of fishing activities is a challeng-
ing task. First, the scale of the problem is staggering; in-
dustrial fishing occurs in greater than 55% of the world’s
ocean area [25], and in 2009, the extent of IUU fishing was

estimated to constitute 20% of the world’s catch or between
11 and 26 million metric tons [1]. Recent studies have also
pointed to the difficulty in accurately assessing the extent
of IUU activities due to the patchy geographic coverage of
current IUU fishing estimates [16].

A second challenge of maritime surveillance is the pres-
ence of “dark” vessels. Automatic Identification Systems
(AIS) and Vessel Monitoring Systems (VMS) [10, 21] are
commonly used by countries to monitor fishing activities
[12]. Dark vessels engaging in IUU fishing may disable
AIS broadcasts in what is known as “disabling events” to
avoid reporting obligations and obscure their illicit activi-
ties [4, 26, 36]. A 2022 study estimated that 6% of the total
global fishing activity between 2017 and 2019 was obscured
by disabling events [45]. AIS and VMS data sources are in-
sufficient to evaluate the full extent of IUU fishing in these
cases. As a result, alternate sources of data that are capable
of capturing dark vessels must be utilised.

1.2. Synthetic Aperture Radar

One solution to the problem of tracking dark vessels is to
detect ships automatically from satellite imagery. The use
of Electro-Optical (EO) imagery for ship detection and mar-
itime surveillance has a long history in the literature [24].
Despite this, it does have characteristics that make it unsuit-
able for use in dark vessel monitoring tasks. These include
being limited to daytime operation and susceptibility to be-
ing obscured by clouds [22]. In contrast, SAR is an active
imaging system that utilises physics and signal processing
concepts to form imagery of the Earth’s surface and offers
an alternative to EO imagery providing day-night and all-
weather coverage [43].

The maritime SAR surveillance problem can be decom-
posed into two stages: 1) detection of maritime objects in
the imagery; and 2) subsequent classification of these de-
tections. The output of the detection algorithm can be asso-
ciated with fishing vessels tracked using a combination of
AIS and VMS, with the remainder revealing the activities
of dark fishing vessels [12, 26, 36, 47].

There has been an explosion in the study of SAR for
surveillance in recent years, primarily driven by two de-
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Figure 1. The collection geometry for SAR imaging. The sensor
traverses the ground scene and transmits a beam of microwave
pulses. The range direction contains information based on the

pulse time-delay, and corresponds to the vector from the sensor to
the ground as projected onto the ground plane. The azimuth or

cross-range direction is orthogonal to the range direction.
Information about the scene in cross-range is obtained by

coherently processing across multiple pulses.

velopments. The first development was the launch in 2014
of the Sentinel-1 satellite constellation [6], which was the
first constellation of the Copernicus Programme; the Euro-
pean Union’s remote sensing program delivered by the Eu-
ropean Space Agency [23,26]. The Copernicus Programme
provides open access to data collected by a suite of Earth
sensing constellations though the Copernicus Open Access
Hub 1.

The second driver for the development of SAR surveil-
lance systems began in 2016 with the application of deep
learning approaches to the ship detection and classification
tasks [39, 49]. These developments have addressed two key
challenges with MCS. Firstly, the use of remote-sensing im-
agery provides an additional source of data independent of
AIS that is unaffected by disabling events. Secondly, auto-
mated processing provides vessel detection and classifica-
tion data allowing Regional Fisheries Management Organ-
isations (RFMOs) to monitor huge fishery areas in a cost
effective manner [10].

The acquisition of SAR imagery differs significantly
from that of EO imagery and requires extensive signal pro-
cessing before an image is formed [7]. As illustrated in fig-
ure 1, a SAR sensor passes over a scene illuminating a patch
of the Earth’s surface with multiple pulses of transmitted
microwave energy. The reflectivity of scatterers in a scene
are mathematically modelled as complex-valued wave func-
tions, with the magnitude of the complex quantity represent-
ing the energy of the reflected pulse, and the phase repre-
senting the change in phase between the transmitted and re-
flected pulse. The electromagnetic reflectivity of the scene
can be reconstructed from the record of the transmitted and
reflected pulses called “phase history” and interpreted as a

1https://scihub.copernicus.eu

two-dimensional image [22].
Most modern SAR systems contain multiple antennas,

which can be used to transmit radiation in different orienta-
tions or “polarisations”. This allows separate images to be
produced depending on the various combinations of trans-
mission and reception. The Sentinel-1 sensor can collect
dual-polarisation data in either VH+VV or HH+HV config-
urations. For example VH+VV indicates collection of both
VH, which is the result of sending a vertically polarised
pulse and receiving a horizontally polarised pulse; and VV,
which is the result of sending and receiving a vertically po-
larised pulse. It has been shown that multi-polar SAR data
contains features crucial to improving the performance of
ship detection methods [46]. In addition, the appearance of
ships is more prominent in cross-polarisation (VH) images
than in co-polarisation (VV) images [38, 43].

SAR imagery products, such as Sentinel-1 products are
provided in a number of different processing levels. Single
Look Complex (SLC) products are complex-valued images
whose pixels represent the amplitude and phase information
of radar returns from a given surface area. Ground Range
Detected (GRD) products are real-valued images whose
pixel values represent the intensity of the reflected radar re-
turn. GRD products are distinguished from SLC products
by a number of processing steps including “multi-looking”,
which is a type of weighted filtering method that increases
the contrast of objects from background clutter, and “de-
tection” that projects the amplitude and phase values of its
ancestor products into intensity values [37]. The Sentinel-
1 processing pipeline generates both GRD and SLC prod-
ucts from a common ancestor, making it possible to provide
coincident complex and real-valued SAR imagery. Figure
2 summarises the relationship between the SLC and GRD
products in the Sentinel-1 processing pipeline.

Despite its positive traits, SAR imagery also poses chal-
lenges for ship detection. While SAR can be high resolu-

Figure 2. Brief summary of the Sentinel-1 processing pipeline
illustrating that the GRD and SLC products share a common

ancestor [37].
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tion, the application to surveillance tasks requires a com-
promise between resolution and ground coverage which re-
sults in relatively low-resolution imagery and small ship
extent [49]. Another challenge is SAR specific imaging
artefacts such as noise, speckle, and side-lobing, as demon-
strated in figures 5 and 6.

1.3. SARFish Challenge and Dataset

The SARFish dataset, first introduced in 2022 [5], is a
SAR imagery dataset for the purpose of training and validat-
ing deep learning models on the tasks of detection, classifi-
cation and length regression of maritime objects. SARFish
builds upon the xView3-SAR dataset [35] by providing co-
incident GRD and SLC products along with labelled ship
positions and Bounding Boxes (BBox), three hierarchical
imbalanced ship class labels, and vessel length measure-
ments. To the authors’ knowledge there is no publicly avail-
able dataset which provides a sufficient quantity of dual-
polarisation, full-sized, complex-valued SAR imagery with
sufficient ground truth ship detection, classification and
length regression labels suitable for the purpose of testing
and evaluating deep learning based models. In this paper,
we announce the public release of the data, along with the
associated SARFish challenge which seeks to promote the
use of deep learning with Complex-Valued SAR (CV-SAR)
imagery for application in maritime surveillance in the con-
text of combating IUU fishing.

The rest of this paper will be organised as follows. In
Section 2 we note that there is valuable information in the
complex SAR imagery that might be exploited to develop
deep learning models that outperform methods using real-
valued SAR imagery. We also assert that the running of
a machine learning challenge, similar to the xView3-SAR
challenge, may be an effective way of bootstrapping re-
search in this field by incentivising competition and pro-
viding a set of benchmark models. Finally, we survey the
literature and argue that the relative dearth of deep learn-
ing methods that utilise CV-SAR data for ship detection and
classification is due partly to a lack of appropriate datasets.

Section 3 will briefly describe the SARFish dataset, give
examples of the imagery and labelled maritime objects, and
describe the attributes that make the SARFish dataset the
only openly available dataset suitable for developing and
benchmarking deep learning models on full-size CV-SAR
imagery. Section 4 will describe the SARFish machine
learning challenge and detail the metrics which will be used
to measure model performance. Section 5 will summarise
the key contributions of this paper.

2. Related Work

2.1. Deep learning for CV-SAR Target Detection

Complex-valued imagery is the natural result of the SAR
image formation process. The physics model that underpins
SAR utilises complex-valued functions as a mathematically
convenient way to represent coherent radar pulses [22]. The
relationship between the amplitude and phase components
of pulses reflected from a given surface area captures valu-
able information about the electrical and physical proper-
ties of scatterers in a scene that are discarded when pro-
jected into the real domain [14, 17]. There are relatively
few studies investigating ship detection and classification
methods exploiting CV-SAR data. Despite this, deep learn-
ing methods for exploiting the information contained in CV-
SAR data such as those in [50] and [3] have demonstrated
improvements in performance on classification tasks us-
ing fully Complex-Valued Convolutional Neural Networks
(CV-CNNs) over real-valued CNNs, indicating the potential
for study in this field.

In contrast, the application of deep learning models to
the task of ship detection and classification in real-valued
SAR imagery has been studied extensively [31]. Signifi-
cant improvements in performance has been achieved [49]
since the first application of deep learning to the task in
2016 [39]. This improvement is partly due to the availabil-
ity of ready-to-use datasets. SAR datasets abstract away the
complicated pre-processing steps [43] to acquire analysis-
ready pixels so that ML researchers can focus on model de-
velopment. The lack of CV-SAR datasets suitable for both
training deep learning models and for directly comparing
methods exploiting GRD and SLC imagery has been iden-
tified as a barrier to research in this field [2, 15].

2.2. Success of Deep Learning on Real-Valued SAR
Datasets

Li et al. [31] in 2022 surveyed 177 papers on ship detec-
tion in real-valued SAR and showed a relationship between
the release of publicly available datasets and the number of
publications. This demonstrates the impact of ready-to-use
data on the pace of research. GRD datasets have evolved
from ship-chip datasets [18, 29, 30], to larger image crops
showing ships in context [44], and more recently towards
abundant full-size imagery [35, 49] suitable for developing
deep learning models intended for use on real world data.
One reason for this shift towards full-size data is that it has
been shown that the smaller the domain gap between the
training and application data, the better the model perfor-
mance [20].

The introduction of the xView3 challenge [35] in 2021
alongside the release of the xView3-SAR dataset had a sig-
nificant impact on its field. Over two thousand entrants from
around the globe competed to develop the best performing
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model on the tasks of maritime object detection, classifica-
tion and length regression, with 50 results being published
on the xView3 leaderboard. The xView3-SAR challenge
was an effective method for encouraging the study in the
field and resulted in an extensive set of publicly released
models and benchmark results which future users of the
dataset can use to demonstrate an improvement over the
state-of-the-art.

2.3. Current State of Publicly Available CV-SAR
Datasets

The number of available CV-SAR datasets is substan-
tially lower than that for real-valued SAR datasets. The
following is a review of the publicly available CV-SAR
datasets. These are summarised in table 1 with a brief expla-
nation of their short-comings which limit their applicability
for training deep learning models.

In 2014, Lang et al. [27] released a dataset comprised of
22 dual-polarisation SLC products from the RadarSat-2 and
TerraSAR X sensors [6] in Ultrafine, Standard and Wide
imaging modes. Labels were generated using an automated
AIS method and consist of position and classification la-
bels totalling 712 ground truth. Maritime objects were cat-
egorised into four imbalanced ship classes and a sea-clutter
class. This is an early example of a CV-SAR dataset and
provides high-resolution full-size imagery. However it con-
sists of less than one thousand total labelled ships making
it less suitable for training deep learning methods and does
not provide coincident GRD products for comparison.

In 2017, OpenSARShip [18] and and its updated ver-
sion: OpenSARShip-2.0 [29] were released. The latter con-
sisted of 34 528 256 × 256 pixel ship-chips taken from
87 Sentinel-1 images in Interferometric Wide (IW) Swath
Mode in a range of locations and sea states. Ships were
categorised into four imbalanced ship classes. OpenSAR-
Ship has been used by Huang et al., [19] in 2020 to de-
velop a joint spatial and time frequency analysis network
which utilised both intensity and phase information to gain
an increase in performance over GRD-only methods in clas-
sification. It was also used by Zhang et al. [48] in 2020
to develop a squeeze-and-excitation network which utilised
the complex-value representation to extract coherent ship
features between dual-polarisation channels aiding classi-

Table 1
RELATED CV-SAR DATASET SUMMARY

Name Full-scene Dual-pol SLC and GRD Labels Classes

Hierarchical True Partial False 712 5
OpenSARShip 2.0 False True True 34 528 4

CSRSDD False False False 1 958 6

SARFish True True True 143 284 GRD 3
140 721 SLC

fication performance. And Shao et al. [40] developed an
information-guided network, by utilising the complex-value
representation as one of the inputs to a polarisation channel
cross-attention framework achieving state-of-the-art classi-
fication performance. The OpenSARShip datasets remain
prominent in the field as they were the only public SAR
datasets providing coincident GRD and SLC data, and the
first CV-SAR datasets suitable for training deep learning
classification models. The lack of full-scene imagery how-
ever, means it cannot be used to evaluate real-world de-
tection tasks as it removes challenging aspects of detection
such as close-to-shore scenarios.

In 2021, Lei et al. [28] released CSRSDD, a detection
and classification dataset comprising 514 1024×1024 pixel
crops of single-polarisation Gaofen-3 [6] SLC imagery in
one metre pixel resolution taken in Spotlight mode. The
dataset labels 1 958 ships with rotated bounding box (RB-
Box) positional labels and six imbalanced ship classes.
CSRSDD was used in [51] to develop a fully CV-CNN
model which utilises a single complex channel input and
complex area max pooling for target detection and classi-
fication. This dataset is the highest resolution of the CV-
SAR datasets, but is not ideal for open-ocean surveillance
applications where the imagery is typically of lower resolu-
tion but wider ground coverage. The small number of ships
makes it less suitable for training deep learning models. The
data is also not dual-polarisation, and does not provide co-
incident GRD products.

We argue that dearth of research in this field is partly
due to a lack of CV-SAR datasets suitable for training deep
learning models. We believe that the introduction of the
SARFish dataset addresses the shortcomings of previous
datasets and is a valuable contribution to the community.
We also argue that a machine learning challenge specifi-
cally designed around the SARFish dataset may foster the
same contribution to the field of CV-SAR exploitation as the
xView3 challenge did for real-valued SAR.

3. Dataset Description
The SARFish dataset was constructed specifically to

address issues with previous public CV-SAR datasets.
SARFish provides a number of key attributes that, taken
as a whole, makes it uniquely suitable for developing
deep learning ship detection and classification models
in CV-SAR imagery. SARFish provides full-size dual-
polarisation imagery with large-scale backgrounds, mini-
mally pre-processed coincident GRD and SLC products, a
large number of maritime object ground truth, and evalua-
tion code based on the xView3 challenge metrics.

3.1. Data

The SARFish data consists of 753 pairs of full-size coin-
cident Sentinel-1 GRD and SLC products sourced from the
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Table 2
SUMMARY OF THE SENTINEL-1 DATA [6, 13].

Platform Sentinel-1 (A, B)

Operator
European Space Agency
Sentinel-1 Mission Performance
Center

Sensor C-Band SAR
Mode Interferometric Wide Swath (IW)

Polarisations VV, VH
Ground range ∼ 250coverage (km)

Product type SLC GRD
Image size ∼ 23000 × 12000 ∼ 27000 × 16000(pixels)
Data type Complex Int16 Unsigned Int16

Azimuth pixel
14.1 10spacing (m)

Range pixel
2.3 10spacing (m)

Alaska Satellite Facility (ASF) Distributed Active Archive
Center (DAAC) [32]. A summary of the Sentinel-1 data
is shown in Table 2. While the xView3-SAR dataset con-
sisted of 754 GRD products, we could only determine the
corresponding SLC product for 753. Figures 3a, 3b, and 3c
show the three “swaths” of a SARFish SLC product with
maritime object labels. The SARFish SLC data is divided
into three swaths of approximately 23000 × 12000 pixels
in VV+VH polarisation channels. Figure 3d shows the cor-
responding GRD product. GRD products consist of one im-
age of approximately 27000× 16000 pixels in VV+VH po-
larisation channels. The SAR imagery displayed through-
out the paper have been post-processed for the purpose of
visualisation. For SLC imagery, the complex amplitude and
phase data have been mapped into real intensity values. For
both GRD and SLC images, a decibel scaling is applied to
the imagery.

The xView3-SAR dataset provided GRD products with
a significant amount of pre-processing including geo-
rectification, filtering and decibel scaling, which may have
removed useful information. In contrast, the SARFish
dataset provides Sentinel-1 SLC and GRD products with
minimal pre-processing. Figure 4 illustrates the relation-
ship between the xView3-SAR and SARFish datasets. De-
scribed in detail in [5], the SLC products were debursted
[43] to generate contiguous images. Both SLC and GRD
products had no-data values set to distinguish what parts of
the image contains valid radar data, and were then flipped
to counter the mirroring of the Earth’s surface seen in the

source imagery.

(a) First swath comprising a SARFish SLC product in VH
polarisation.

(b) Second swath comprising a SARFish SLC product in VH
polarisation.

(c) Third swath comprising a SARFish SLC product in VH
polarisation.

(d) Full sized SARFish GRD product in VH polarisation

Figure 3. Example coincident SARFish SLC and GRD product
in VH polarisation showing the Westfjords of Iceland with ground
truth maritime objects. Both GRD and SLC images have been
displayed on decibel scale where the dynamic range is displayed
between 15 and 60 dB for visualisation. Note that the SLC prod-
ucts are comprised of 3 swaths shown in figures 3a, 3b, 3c with
2.3 × 14.1 m pixel spacing. The corresponding GRD product in
figure 3d has 10 × 10 m square pixel spacing.
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Figure 4. Relationship between the xView3-SAR dataset [35] and
the SARFish dataset.

(a) Fishing vessel in VH polarisation SLC product.

(b) Fishing vessel in corresponding VV polarisation SLC product

Figure 5. Example labelled fishing vessel in detected and decibel
scaled SARFish SLC product in both VH (5a) and VV (5b)

polarisations. Note the differences in the speckle and side-lobing
artefacts on the vessel between polarisations, the non-square pixel

spacing (see table 2), and that the spatial extent of these figures
and Figure 6 are the same.

3.2. Labels

The SARFish labels consist of three main types. Firstly,
positional BBox labels denote geographic and image po-
sitions of maritime objects. Secondly, hierarchical imbal-
anced classes denote maritime objects as to whether or not
they are vessels and vessels as to whether or not they are
fishing vessels. Finally, vessel length information is pro-
vided. Table 3 shows the total number of unique maritime
objects labelled in the dataset. Other ground truth attributes
include distance from shore values for evaluating close-to-
shore detection tasks (see section 4.2) and a labelling con-
fidence evaluation. Figures 5 and 6 show a close-up of a
labelled fishing vessel in a coindicent SLC and GRD prod-
uct.

The labels were generated by projecting the xView3 la-
bels into the pixel space of the SARFish products using
range doppler geocoding [8]. Due to the overlap between
the swaths of the SLC products, some ground truth appear
in multiple products. We also found that in some cases GRD
products include ground areas not found in the correspond-
ing SLC products leading to a ∼ 1% discrepancy between
the total number of unique labelled maritime objects (see
in table 3). Like in the xView3-SAR dataset, ground truth
are uniquely identified by a detection ID, allowing for a 1:1

(a) Fishing vessel in VH polarisation GRD product.

(b) Fishing vessel in corresponding VV polarisation
GRD product

Figure 6. Example labelled fishing vessel in decibel scaled
SARFish GRD product in both VH 6a and VV 6b polarisations.
Note the square pixel spacing (see table 2). The spatial extent of

this figure and 5 are the same.

Table 3
PARTITIONS OF THE SARFISH CHALLENGE DATASET

Partition Coincident Labels Unique maritime
products provided object labels

SLC GRD

train 553 True 63 071 64 054
validation 50 True 18 906 19 222

public 150 False 58 744 60 008

Total 140 721 143 284

comparison between models trained on both imagery types.
The SARFish dataset has been partitioned into training,

validation and public partitions as shown in Table 3. La-
bels are provided only for the train and validation partitions
during the SARFish challenge. In total, the three partitions
contain 140 721 and 143 284 unique maritime object labels
for the SLC and GRD product types respectively.

4. Challenge Description

The SARFish challenge is straightforward. Researchers
will compete to develop the best ship detection, classifi-
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cation and length regression models on SLC data in three
challenge tracks: maritime object detection, maritime ob-
ject classification, and vessel length regression.

The challenge will be hosted on the “SARFish Computer
Vision Challenge” competition on Kaggle 2. Participants
will train and evaluate models on the train and validation
partitions of the dataset defined in table 3. They will then
run inference on the public partition of the dataset, and sub-
mit their prediction CSV file to the Kaggle challenge for
ranking. Participants will be able to submit multiple pre-
dictions to the Kaggle competition page until the challenge
expires.

4.1. Track 1: Maritime object detection

The maritime object detection track is comprised of the
following tasks, which are directly comparable with those
from the xView3 challenge.

4.1.1 Maritime Object Detection Task

The objective of this task is to find maritime objects in the
SARFish imagery. The detection task is evaluated by as-
signing model predictions to the ground truth maritime ob-
ject locations contained in the SARFish labels. Model pre-
dictions within 200 meters of a “HIGH” or “MEDIUM”
confidence ground truth are assigned as true positive de-
tections. Successful models will have to localise maritime
objects in full-size SARFish products and distinguish them
from sea-clutter, small-islands and SAR ambiguities. Per-
formance on this task is quantified over all the relevant mar-
itime objects in the public partition using an F1-score [11]
denoted F1D.

4.1.2 Close-to-Shore Object Detection Task

The Close-to-Shore detection task is a subset of the mar-
itime detection task. This task is evaluated by assign-
ing model predictions to “HIGH” or “MEDIUM” confi-
dence ground truth within 2 000 meters of the shoreline.
The SARFish dataset provides two shorelines for evalua-
tion of the Close-to-Shore task. The challenge will utilise
the xView3 shoreline in order for the results to be directly
comparable with the xView3 challenge. Close-to-Shore de-
tection is a particularly challenging task whereby successful
models will have to distinguish maritime objects from land
objects with intense radar returns in addition to the chal-
lenges posed by standard maritime object detection. Perfor-
mance on this task is quantified by the F1-score, F1S .

4.2. Track 2: Maritime Object Classification

The maritime object classification track consists of two
hierarchical classification tasks. These have also been cho-

2https://kaggle.com/competitions/sarfish

sen to be directly comparable with those in the xView3 chal-
lenge.

4.2.1 Vessel Classification Task

The objective of this task is: given a maritime object has
been detected, distinguish whether it is a vessel or not. This
task is evaluated only on the true positive predictions from
the overall maritime detection task, and on ground truth de-
tections for which a True or False “is vessel” label is avail-
able. Successful models will have to distinguish between
non-vessel maritime objects such as oil-rigs and offshore
wind farm turbines and vessels such as oil-tankers and con-
tainer ships. Performance on this task is quantified by an
F1-score denoted F1V .

4.2.2 Fishing Classification

This task is dependent on the results of the vessel classifi-
cation task. The objective of this task is: given a maritime
object has been detected, and the maritime object has been
correctly classified as a vessel, distinguish whether or not it
is a fishing or non-fishing vessel. This task is evaluated on
the true positive classifications from the vessel classification
task, and only on the ground truth for which the “is vessel”
label is True or False. Successful models will have to distin-
guish subtle differences such as those between large fishing
vessels and small cargo vessels. Performance on this task is
quantified by the F1-score, F1F .

4.3. Track 3: Vessel Length regression

The objective of this task is to accurately predict the
length of vessels in the SARFish imagery. The task is evalu-
ated on the true positive detections from the maritime object
detection task and only on ground truth for which a vessel
length label exists. We note that the correct estimation of
the length of maritime objects is a crucial factor that may
increase the performance of classification methods, as the
length of a vessel alone is a powerful feature for the classify-
ing different types of maritime objects. Successful models
will have to overcome challenging SAR artefacts associated
with high intensity radar returns from metal-hulled ships
such as side-lobing, smearing and multi-path effects. Per-
formance on this task is quantified by the aggregate percent-
age error which penalises a prediction equally for over or
under-estimating vessel length. The percentage error used
in this task is defined as:

PEL = 1−min
(

1
N
|min(l̂n,lmax) − min(ln,lmax)|

min(l̂n,lmax)
, 1
)

Where l̂ is the predicted vessel length, l is the actual ves-
sel length, and lmax is an upper bound for vessel length
prediction corresponding approximately to the size of the
largest vessel in history.
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4.4. Reference Model and SLC Data Preparation

The SARFIsh challenge provides a baseline reference
implementation of a real-valued deep learning model for the
purpose of introducing new users to training and evaluating
models on the SARFish SLC data. The intent of the refer-
ence model is to provide a starting point for the participants
which they may use to build their own solutions. In partic-
ular, the sample code demonstrates how to extract the SLC
data for use in CNNs, and how to use the SARFish metric
framework for evaluation.

In the reference model, the SLC data is split into two
channels: a magnitude channel and a phase channel. A to-
tal of four channel are generated between the dual VV+VH
polarisations: VHmag , VHphase, VVmag , VVphase. Partic-
ipants will want to explore complex-valued detection and
classfication models to better exploit the information con-
tained in the complex data.

The reference model uses the predefined PyTorch imple-
mentation of FCOS [42]. FCOS was chosen because it uses
the concept of “centre-ness”, which we believe is applicable
to the maritime objects in this dataset. The reference model
is limited in a number of regards:

1. The reference model used version of FCOS the imple-
mentation that is limited to 3-channel data. The refer-
ence uses three of the four channels: VHmag , VHphase

and VVmag ignoring the VVphase channel. Partici-
pants interested in fully exploiting the SLC data in an
FCOS-based model may need to write an N-channel
implementation.

2. The reference model was not trained on background
examples not containing maritime objects. To properly
train the model, participants may want to include the
background examples.

3. The reference model not attempt to evaluate ves-
sel length, it does however, output the required
vessel length m column in its prediction csv file for
the metric script to evaluate.

The reference model demonstrates how to use the
SARFish metrics during training and evaluation to help in-
form the development of better performing models. The
SARFish metrics are the same as those used to evaluate the
performance of models submitted to the challenge.

4.5. How to Get Started

The SARFish dataset is hosted in two locations. The data
is hosted in the SARFish repository on huggingface.co 3 and
the labels are hosted on the xView3 website 4.

3https : / / huggingface . co / datasets /
ConnorLuckettDSTG/SARFish

4https://iuu.xview.us/download-links

The SARFish challenge provides a GitHub repo 5 which
contains tools to help get a new user working with the
SARFish dataset. The repository includes:

1. Scripts for unzipping and checking the md5sum of
downloaded SARFish data

2. A Jupyter Notebook containing a demonstration of
how to use the SARFish dataset

3. The reference model

4. The metric script used to evaluate models submitted to
the challenge

5. A visualisation script for plotting SARFish imagery,
ground truth labels and model predictions

5. Conclusions

IUU fishing is a problem of global scale and significance.
It causes immense environmental, economic and political
damage and affects some of the poorest and most vulnera-
ble societies on the planet. Maritime surveillance utilising
automated computer vision methods on real-valued SAR
has been shown to be extremely effective at detecting and
classifying dark vessels engaging in IUU fishing in cases
where other vessel tracking systems such as AIS and VMS
fail. Further, deep learning methods for target detection in
CV-SAR imagery has demonstrated higher performance on
target detection tasks than real-valued SAR, indicating a po-
tential for the development of improved tools for combating
IUU fishing.

Previous work such as the xView3 dataset and challenge
have made a significant contribution to advancing the state-
of-the-art with real-valued SAR ship detection and classi-
fication tasks. To foster research into CV-SAR, we have
released the SARFish which provides coincident SLC and
GRD products. To our knowledge, the SARFish dataset
is the only one of its kind suitable for training deep learn-
ing models on the tasks of ship detection and classification
in full-size dual-polarisation SLC and GRD SAR imagery.
We also announce the SARFish challenge which intends
to advance CV-SAR research state-of-the art by encourag-
ing competition and fostering interest in the field within the
wider computer vision community.
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