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Abstract

In this paper, we propose an improved training proto-
col of U-Net architecture for the semantic segmentation
of aerial images. We test our approach on the challeng-
ing FLAIR #2 dataset. We present an extensive ablation
study on the influence of different approach components
on the overall performance. The ablation study includes a
comparison of different model backbones, image augmenta-
tions, learning rate schedulers, loss functions, and training
procedures. We additionally propose a two-stage training
procedure and evaluate different options for the model en-
semble. Based on the results we design the final setup of the
model training protocol. This final setup decreases the rel-
ative error by approximately 18% and achieves mIoU equal
to 0.641, which is a new state-of-the-art result. Our code
is available at: https://github.com/strakaj/U-
Net-for-remote-sensing.

1. Introduction
The rapidly growing human population affects the

ecosystem and is dependent on efficient agriculture and ur-
ban development and planning. To support these develop-
ments and with the new possibilities that modern technolo-
gies offer, the data domain of aerial and satellite images be-
come more and more popular. The utilization of these data
finds application in many areas of modern society, the non-
exhaustive list of examples follows: Land-cover mapping
and classification [20] whose main goal is to determine the
use and distribution of individual surface features that can
help with monitoring and development of the natural envi-
ronments. Natural disaster detection [12, 17, 18] as, floods,
which very often happen in specific parts of the world, and
claim many victims. The use of aerial images can help with
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Figure 1. Comparison of patches of the same class taken in differ-
ent parts of the country.

faster detection of disasters, help with assessing damage,
and help with better management of the environment and in-
frastructure. Plant monitoring and disease detection [16,19]
is an integral part of modern agriculture. Diseases can de-
stroy large areas of crops, resulting in food scarcity in cer-
tain global regions. High-altitude images can help monitor
plant health and better target pesticide and fertilizer use.

Semantic segmentation of larger areas such as the whole
country brings several challenges. Most notably inter-class
similarity and intra-class dissimilarity. Some classes, espe-
cially classes that distinguish different types of crops and
trees, can be difficult to recognize from a height-altitude,
which can lead to confusion. Representatives of one class
can vary drastically depending on different geographical
and climatic conditions, which makes classifications diffi-
cult. An example of such a phenomenon is shown in Fig-
ure 1. Another factor that can alter the appearance of the
landscape is the weather and the season. All these factors
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Figure 2. Sample input data. The first line shows the aerial data and the corresponding labels. The second row shows satellite images from
several months. The red frame marks the area that corresponds to the aerial image.

make semantic segmentation of aerial images a challenging
and complex task.

The French National Institute of Geographical and For-
est Information (IGN) [1] issued FLAIR #1 [8] and FLAIR
#2 [7] challenges with the intent to monitor land-cover and
create high-resolution land-cover maps. The goal of both
challenges was semantic segmentation of the land cover of
France. FLAIR #1 was mainly focused on the use of high-
resolution data, whereas, FLAIR #2 added satellite images
from Sentinel-2 [6] and presented the challenge of fusion
of high-resolution aerial data with low-resolution satellite
data.

In this work, we propose an improved training protocol
for the U-Net-based model [22] for aerial and satellite data
segmentation. The used model is based on a baseline model
proposed within the FLAIR #2 challenge. We conducted
an extensive ablation study on hyperparameters, and differ-
ent model backbones, and introduced a two-staged train-
ing procedure. Based on the results of the ablation study
we proposed the final model ensemble, which improved
the mean Intersection-over-Union (mIoU) from the origi-
nal 0.576 to 0.641 and achieved new state-of-the-art results
on the FLAIR #2 dataset.

2. Related Work

2.1. Aerial and satellite datasets

There are many applications for satellite and aerial im-
ages, which results in a large variety of available datasets.
The datasets can differ in geographical location (urban vs.
rural areas), but also in in the resolution of the data (satel-
lite vs. aerial). High-resolution images are often obtained

using aerial surveys and more often focus on smaller ur-
ban areas. The INRIA dataset [15] focuses on the seg-
mentation of buildings in 5 dissimilar cities from RGB im-
ages with spatial resolution 0.3m. Similarly, the ISPRS
dataset1 covers 2 cities with a spatial resolution of 0.09m
and 0.05m. High resolution of data allows for the segmen-
tation of classes such as car or tree. In contrast, datasets
such as LandCoverNet [3] based on the Sentinel-2 [2] data
with spatial resolution 10m or the GID [25] dataset based
on satellite images from Gaofen-2 with spatial resolution
4m contain macro-level classes such as cultivated vegeta-
tion, water, bare ground, or farmland. The LandCoverNet
dataset is taken mainly over the rural areas from different
parts of the world. The GID dataset covers urban and rural
areas in China. The LoveDA [26] dataset with spatial reso-
lution 0.3m focuses more on covering both urban and rural
areas as each has a different class distribution.

2.2. Aerial and satellite methods

One of the most common models used for segmentation
is U-Net [22]. In the work [4], authors used U-Net with
reduced number of convolutional kernels for deforestation
monitoring. U-Net was used for the segmentation of satel-
lite images of one area over several years. Based on a com-
parison of the segmentation masks, the area of the forest
was assessed. Similarly, authors in the [27] used U-Net for
rice field segmentation and field boundary detection from
satellite images. In study [28] authors compared a vari-
ety of segmentation models for wildfire segmentation from
aerial images. Two models that achieved the best results

1https://www.isprs.org/education/benchmarks/
UrbanSemLab
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Figure 3. France sub-regions used in the FLAIR #2 dataset. Image
source: [7]

were U-Net and DeepLabV3 [5]. In work [12] the authors
addressed the problem of common floods by constructing
a system for real-time flood segmentation from aerial im-
ages. PSPNet [31], DeepLabV3, and U-Net were tested as
the segmentation method within the proposed system. All
methods were compared on the FloodNet [21] dataset where
the best results were achieved with PSPNet.

3. Data

The FLAIR #2 challenge dataset contains data from 50
sub-regions of France. Regions used in the dataset are
shown in Figure 3. Sub-regions are divided into patches
that have the same size across the dataset. The number of
patches is dependent on the sub-region size. The dataset
contains aerial and satellite images. The aerial images were
annotated with 18 land cover classes and other class that
correspond to pixels that could not be assigned to any of the
18 classes. Because some classes are represented sparsely
in the dataset, 18 land cover classes were reduced to 12 by
grouping 6 classes with the lowest representation with other
class.

The aerial images were taken by plane and have high
resolution. Each patch has a resolution of 512 × 512 pixels.
The spatial resolution of one pixel is 0.2 m. In addition
to visible RGB spectral bands, each patch also contains an
image in a near-infra-red (NIR) spectral band and a depth
map. Each patch is annotated with a segmentation mask
and metadata which contain the position of the patch, date,
and camera that was used to capture the image. The dataset
contains a total of 61712 annotated images in the training
set and 16050 images in the test set.

The satellite images were captured by Sentinel-2 and
have a much lower resolution. The resolution of each image
is 40 × 40 pixels and the spatial resolution of one pixel is 10
m. Compared to the aerial images the satellite images cover
a broader spectral range, consisting of a total of 10 spec-
tral bands spanning from the visible to the medium infrared
spectrum. Satellite images should serve as a support for
aerial images and should provide spatial context. Therefore,
the satellite images are centered at aerial image patches and
only 10 × 10 center pixels correspond to the aerial patch.
Another difference from the aerial images is that the satel-
lite images contain multiple images of the same area. The
images were taken over several years. This helped to cap-
ture changes in the area of the patch in different seasons.
The satellite images are not annotated.

Additionally, the FLAIR #2 [7] challenge has the two
following constraints: 1) Use of external data is prohibited,
2) Inference time of the proposed method should not exceed
2.5 times the inference time of the baseline method. Our
approach is designed in a way to hold these constraints.

4. Baseline method
The baseline model U-T&T (Textural and Temporal in-

formation) presented in [7] is composed of two branches.
The first and main branch is the standard U-Net. This
branch is used to process aerial images. ResNet-34 [11]
pre-trained on the ImageNet [23] dataset is used as a back-
bone. This branch processes RGB aerial images concate-
nated with a corresponding NIR image and a depth map.

The second branch is the U-TAE [10] model. This
branch processes satellite images and serves as a support
for the first branch. The model is also based on U-Net with
modifications that take into account the temporal nature of
the satellite data. The variable temporal dimension is ad-
dressed by the Temporal Attention Encoder (TAE) proposed
in [9]. The output of the second branch is fused with the fea-
ture maps on all feature levels of the main branch encoder.

The fusion module proposed in [7] is decomposed into
cropped and collapsed sub-modules. Input into the fusion
module is the output of the U-TAE branch. The cropped
sub-module aims to incorporate information embedded into
the satellite image that corresponds to the area of the aerial
image. The collapsed sub-module preserves spatial infor-
mation from the whole satellite image. Outputs of both
sub-modules are added pixel-wise together with the U-Net
feature map.

Each branch of the model is supervised separately by
cross-entropy loss. The final loss is obtained as the sum
of these two losses. The baseline method uses the SGD op-
timizer. The best baseline model uses additional procedures
to achieve better results. Satellite images that contained
clouds are excluded and satellite images for each month are
averaged to reduce the number of input images. During the
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training, geometric augmentations such as horizontal and
vertical flip together with rotation by 0, 90, 180, or 270
degrees are included. Additional procedures are described
such as randomly dropping U-TAE modality and the usage
of metadata, however, neither of them improved overall per-
formance.

5. Experiments
In this section, we will describe all experiments we con-

ducted within our ablation study. We focus on improving
the baseline method from Section 4 with a goal to not only
reach the best results possible but also to compare the ben-
efits of various hyperparameters to the overall performance
of the model.

Most of the results are reported as a mean of three runs.
Each run was initialized with a different seed. Values after
± are the standard deviation of these three runs. In some
experiments, we conducted preliminary experiments to nar-
row down the range of possibilities. In these instances, the
experiment was run only once, and as a result, standard de-
viation is not reported.

The FLAIR #2 dataset does not provide a fixed training
and validation set. The validation set is therefore randomly
selected as 20% of all regions. To make the comparison fair,
we fixed the training and validation set so that it does not de-
pend on the seed. This resulted in 47712 images in the train-
ing set and 14000 images in the validation set. Each aerial
image is loaded as an image with five channels, three chan-
nels correspond to RGB spectral bands, one to NIR band,
and one to depth data.

We started the experiments with the following settings,
which we gradually modified based on the results. Same as
in the challenge paper [7], we filtered satellite images with
clouds, averaged the satellite images from the same place
but different months, used the U-TAE branch, omitted the
usage of metadata, and used the same augmentations as in
the original paper. All models were initially trained with
a constant learning rate of 0.001, cross-entropy loss, batch
size 10, 12 epochs, and the AdamW optimizer [14]. All
models of the main branch were pre-trained on ImageNet,
whereas, the U-TAE branch was randomly initialized. If
not stated otherwise, the experiments are evaluated on the
validation set mentioned above.

Backbone. We first evaluated different backbone mod-
els for the main model branch, specifically ResNet [11],
ResNeXt [30], and MiT [29]. The first two models are
convolutional-based, and the last one is a transformer-based
model. Due to the ImageNet pretraining, all models ex-
pected the input to have 3 channels, but our input data had 5
channels (RGB+NIR+depth). We solved this issue by mod-
ification of the first layer in the case of convolution-based
models and by addition of 1 convolutional layer with ker-

nel size 1 × 1 at the start of the transformer-based model
which reduced the number of channels from 5 to 3. For
each model, we tested its smaller and larger variant.

In Table 1 are results from the initial experiments. Un-
expectedly, the smaller variants of models achieved better
results than the larger ones except for ResNeXt. Due to
the inferior performance of the larger models and inference
time constraints, we limited the further experiments to the
smaller variants. In Table 2 are the results of these models
averaged over the three runs. In the following experiments,
we continued to use ResNet-34 due to the best trade-off be-
tween performance and training speed.

Backbone Params (M) mIoU

ResNet-34 21 0.566
ResNet-50 23 0.532

ResNeXt-50-32x4d 22 0.551
ResNeXt-101-32x4d 42 0.585

MiT-B2 24 0.584
MiT-B3 44 0.543

Table 1. Initial comparison of backbones.

Backbone mIoU

ResNet-34 0.557 ± 0.030
ResNeXt-50-32x4d 0.559 ± 0.016
MiT-B2 0.566 ± 0.033

Table 2. Detailed comparison of the smaller backbones.

Augmentations. The baseline method used horizontal
and vertical flip and rotation as augmentations. We at-
tempted to improve the model’s robustness by introducing
additional augmentations. We chose shift/scale/rotate aug-
mentation with a shift limit of 0.2, scale limit of 0.15, and
rotate limit of 20. A border extrapolation method was set to
reflect.

Furthermore, we added a coarse dropout augmentation
that randomly removes parts of the image. Number of re-
moved areas was in the range ⟨2, 8⟩. The size of the re-
moved areas was set in the range ⟨16 − 48, 16 − 48⟩. The
aim was to encourage the model to rely on the surrounding
context to infer the pixel class.

Unfortunately, from results in Table 3, it can be seen
that neither of the augmentations improves the performance.
We argue this is caused by the relatively small dataset size
which results in the ineffectiveness of more complex aug-
mentation methods. Moreover, it is a well-known fact that
bigger models benefited from augmentations more than the
smaller ones due to their higher capacity. Based on these re-
sults continued using only the three original augmentations.
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flip-h flip-v rot90
shift
scale
rotate

drop mIoU

0.547± 0.009
✓ ✓ ✓ 0.557± 0.030
✓ ✓ ✓ ✓ 0.551± 0.028
✓ ✓ ✓ ✓ 0.545± 0.035
✓ ✓ ✓ ✓ ✓ 0.553± 0.014

Table 3. Comparison of effect of augmentations.

Scheduler. Learning rate is one of the most important hy-
perparameters during training. We conducted experiments
on multiple learning rate schedulers with different parame-
ters and starting values of the learning rate. To shorten the
training time, the initial experiments, reported in Table 4,
were performed only with half of the training data, and the
number of epochs was decreased to 6. The validation set
stayed the same.

In Table 5 are the results of the best three schedulers and
constant learning rate, which was our baseline. The initial
learning rate was set to 0.0001 for all schedulers. The num-
ber of epochs is also 6 this time, but we trained on the whole
training set. The best performance is achieved by the model
with a multi-step scheduler which dropped by 90% of the
learning at each drop step. Based on the results, we con-
tinued in the following experiments with an initial learning
rate of 0.0001 and a multi-step scheduler. During additional
testings, we also observed that additional epochs after the
6th epoch did not provide any benefits to the final perfor-
mance, therefore, we continue with only 6 training epochs
in the following experiments.

1 2 3 4 5 6
epochs

1e-4

1e-6
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constant
exponential
cosine - 0
cosine - 1
multi-step - 0
multi-step - 1

Figure 4. Tested learning rate schedulers.

Loss. Another crucial component of the training proce-
dure is the loss function. Except for commonly used cross-

Scheduler Learning rate mIoU

constant (baseline) 0.001 0.515
constant 0.0001 0.544
constant 0.00001 0.530

exponential 0.001 0.439
exponential 0.0001 0.552
exponential 0.00001 0.514

cosine - 0 0.001 0.487
cosine - 0 0.0001 0.573
cosine - 0 0.00001 0.423

cosine - 1 0.001 0.532
cosine - 1 0.0001 0.561
cosine - 1 0.00001 0.412

multi-step - 0 0.001 0.527
multi step - 0 0.0001 0.575
multi-step - 0 0.00001 0.449

multi-step - 1 0.001 0.542
multi-step - 1 0.0001 0.556
multi-step - 1 0.00001 0.512

Table 4. Initial scheduler experiment. Training data were limited
to half and the number of epochs to 6. The reported results are on
the full validation set.

Scheduler mIoU

constant 0.577±0.009
cosine - 0 0.586±0.007
cosine - 1 0.578±0.018
multi-step - 0 0.589±0.006

Table 5. Detailed comparison of the best schedulers. trained on
the whole training set.

entropy loss, there are many other widely used loss func-
tions in semantic segmentation such as dice loss [24], and
focal loss [13]. Another common practice is label smooth-
ing which is a regularization technique that sets the target
value for the correct class in a one-hot vector to (1-ϵ) and
the values for incorrect classes to ϵ

c−1 , where c is the num-
ber of classes and ϵ is a smoothing factor.

In our experiments, if applicable, we used ϵ = 0.2. We
used a α-balanced version of the focal loss as described
in [13]. Parameter γ was set to 2 for all experiments with
focal loss. Due to the fact that experiments in this subsec-
tion were run parallel with experiments from the previous
subsection (schedulers), we trained models with a constant
learning rate and starting learning rate equal to 0.0001. In
Table 6 are the results for different loss functions. The best
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results achieved focal loss with label smoothing2. In the
final setup, we therefore used focal loss with label smooth-
ing.

Loss α mIoU

cross-entropy - 0.577±0.009
cross-entropy - smooth - 0.580±0.002
dice - 0.581±0.011
focal 1 0.556±0.005
focal 0.25 0.594±0.016
focal - smooth 1 0.607±0.007

Table 6. Comparison of loss functions. For all experiments with
focal loss was γ set to 2 and for experiments with label smoothing
was ϵ set to 0.2

U-Net pre-training. The main part of the model is U-Net
which processes aerial images. The second part is U-TAE
which supports the main network by adding information
from satellite images. We wanted to emphasize the im-
portance of the main network by the procedure where we
first train the U-Net only and then finetune the full model
with the U-Net weights initialized from the pre-trained U-
Net and the U-TAE branch randomly initialized.

In the first part of Table 7, there are the results of U-Net
trained for 6 epochs. In the second part, there are the results
of full models trained from the U-Net weights trained in
the first part. The full model was trained by an additional
6 epochs. In the last part of the table, there are the results
of the full model trained without the proposed U-Net pre-
training. It should be noted that except for ResNeXt, all
the models benefited from the two-stage training procedure.
Based on the results we decided to employ this strategy in
the final setup.

Ensemble. A model ensemble is a common technique
used to combine the predictions of multiple models to im-
prove overall performance. We verified that this technique
helps also in our case. We trained three models with the
same backbone but each with a different seed. Models
were trained in two stages with focal loss and a multi-step
learning rate scheduler. In Table 8 are the results of the
three models evaluated on validation and test set and test re-
sults of the model ensemble created from these three mod-
els. Model ensemble achieved significantly better results
than individual models which confirmed the benefits of the
model ensemble.

2Implementation: https://github.com/Kageshimasu/
focal-loss-with-smoothing

Model Backbone
Pre-trained
U-Net

mIoU

U-Net ResNet-34 0.576±0.010
U-Net ResNeXt-50-32x4d 0.563±0.011
U-Net Mit-B2 0.602±0.010

U-T&T ResNet-34 ✓ 0.616±0.002
U-T&T ResNeXt-50-32x4d ✓ 0.605±0.007
U-T&T Mit-B2 ✓ 0.626±0.012

U-T&T ResNet-34 0.597±0.005
U-T&T ResNeXt-50-32x4d 0.611±0.013
U-T&T Mit-B2 0.608±0.003

Table 7. Comparison of models initialized with pre-trained U-Net.

Model Backbone
Validation
mIoU

Test
mIoU

U-T&T MiT-B2 0.632 0.604
U-T&T MiT-B2 0.627 0.602
U-T&T MiT-B2 0.617 0.590

Ensemble 0.640 0.612

Table 8. Comparison of individual models and ensemble models
on the test set. The ensemble was created from the models with
the MiT backbone. Each model was trained with a different seed.

6. Results

In this section, we provide the final setup of the model
and the results.

Final setup. We used all the information learned in the
previous experiments to train models while using the best
setup. All models were trained with the AdamW optimizer,
multi-step scheduler with a starting learning rate of 0.0001,
batch size equal to 10, focal loss with label smoothing, and
utilizing a two-stage training procedure.

Additionally, to maximize the use of data, instead of us-
ing 20% data for validation we used only 10% for validation
and the rest for training. We trained the final models with
three different backbones, where each backbone was trained
on three different data folds. The data folds were created by
shuffling the sub-regions of data origin and then for each
fold 10% different regions were selected for validation and
the rest were kept for training. It should be noted that values
in Tables 9 and 10 therefore can not be compared to values
in other tables and also results between different folds are
not comparable.

In Table 9 are the results of U-Net models from the first
training stage which were then used to train full models.
Results of the full models are in Table 10.
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Model Backbone Fold mIoU

U-Net ResNet-34 0 0.590
U-Net ResNet-34 1 0.572
U-Net ResNet-34 2 0.565

U-Net ResNeXt-50-32x4d 0 0.600
U-Net ResNeXt-50-32x4d 1 0.583
U-Net ResNeXt-50-32x4d 2 0.554

U-Net Mit-B2 0 0.605
U-Net Mit-B2 1 0.607
U-Net Mit-B2 2 0.588

Table 9. Results of U-Net models trained on different dataset folds.

Name Model Backbone Fold mIoU

RsN-0 U-T&T ResNet-34 0 0.559
RsN-1 U-T&T ResNet-34 1 0.595
RsN-2 U-T&T ResNet-34 2 0.601

RNX-0 U-T&T ResNeXt-50-32x4d 0 0.574
RNX-1 U-T&T ResNeXt-50-32x4d 1 0.593
RNX-2 U-T&T ResNeXt-50-32x4d 2 0.597

MiT-0 U-T&T Mit-B2 0 0.574
MiT-1 U-T&T Mit-B2 1 0.614
MiT-2 U-T&T Mit-B2 2 0.612

Table 10. Results of full models trained on different dataset folds.

Model ensemble. To further improve the final results, we
tested ensembles composed of the models from Table 10.
We abbreviated the names of the models, ResNet-34 is de-
noted as RsN, ResNeXt-50-32x4d is denoted as RNX, and
MiT-B2 as MiT. The number after the hyphen denotes the
data fold that was used for the training of the model.

The ensemble output is obtained as the simple average
of the individual model outputs. The weighted average did
not bring any improvements in our testings. We tried two
options for obtaining the final decision: 1. we averaged the
logits of individual models and then applied softmax, 2. we
averaged the results of the models after applying the soft-
max function to the output of individual models. Results
in Table 12 showed that the first option achieved slightly
better results. We believe this is caused by the known phe-
nomenon where the neural networks provide higher values
of logits for the inputs for which they have high confidence
in their prediction.

We first tested a combination of the same models trained
on the different data folds. The best results were achieved
by the MiT model. Secondly, we explore possibilities of
ensembles created by combination of different models. The
best one is reported as Ensemble-03. It is composed of mod-

els with three different backbones. It reached comparable
results with the best ensemble composed of the same mod-
els, nevertheless, its inference was slightly faster. Lastly, we
bench-marked ensembles composed of four different mod-
els while still holding the constraint of the FLAIR challenge
on the maximum inference time. The best results are re-
ported as Ensemble-04 which combined MiT and ResNeXt
models. With the Ensemble-04 we reached mIoU = 0.641
which is new state-of-the-art and also the best results in the
competition leaderboard.

To further analyze the behavior of the final ensemble, we
compare test results for individual segmentation classes, see
Figure 5. It can be seen that the ensemble improved all class
segmentations.
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Figure 5. Comparison of test results of the baseline and the final
model. The value shown over the bars is the relative improvement.

Inference time. Lastly, we measured the inference time
of the two best ensembles. In Table 11 are measurements
of the time of baseline and ensembles. Times in each row
were measured on the same machine utilizing an NVIDIA
Tesla T4 graphic card and 32GB RAM.

Name
Baseline
time [s]

Ensemble
time [s]

Relative
time

Ensemble-03 1267 ±8 2243 ±45 1.776 ±0.035
Ensemble-04 1267 ±8 3024 ±59 2.380 ±0.046

Table 11. Inference times of the final ensemble models.

Summary. In this work, we conducted a series of experi-
ments. Our main observations from the experiments are as
follows. The model generally benefited more from back-
bones with a lower number of parameters. Transformer-
based backbone model achieved better performance than
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name Model 1 Model 2 Model 3 Model 4
mIoU
logits

mIoU
softmax

Ensemble-00 RsN-0 RsN-1 RsN-2 - 0.621
Ensemble-01 RNX-0 RNX-1 RNX-2 - 0.628
Ensemble-02 MiT-0 MiT-1 MiT-2 - 0.637 0.636

Ensemble-03 RsN-2 MiT-1 RNX-2 - 0.636 0.635
Ensemble-04 MiT-0 MiT-1 RNX-1 RNX-2 0.641 0.641

Table 12. Results of model ensembles on test set.

convolution-based models with a similar number of param-
eters. Additional more sophisticated augmentations like
coarse drop and shift/scale/rotate did not improve perfor-
mance. Multi-step learning rate scheduler with two 90%
learning rate drops and the cosine scheduler without warm-
up performed notably better than the constant learning rate.
We tested multiple commonly used loss functions for se-
mantic segmentation. The change of loss function from
cross-entropy to focal loss with smoothing improved results
substantially. We introduced a two-staged training proce-
dure which also improved performance. First was trained
U-Net only then the full model was then initialized with
the pre-trained U-Net trained further. Lastly, we confirmed
that the model ensembles significantly improve results at
the cost of computational complexity.

7. Conclusion

In this work we summarized our experiments on the
dataset from the FLAIR #2 challenge. The goal of the chal-
lenge was to propose a model for semantic segmentation of
aerial images with support of other various modalities. We
adopted the baseline method proposed by the challenge or-
ganizers which is based on U-Net and U-TAE models.

We conducted a series of experiments with a goal not
only to improve the final results but also to show the impor-
tance of different approach components on the overall per-
formance. In our extensive ablation study, we compare the
influence of different model backbones, training schedulers,
augmentations, loss functions, and training setups. To reach
the best results, we created an ensemble of models trained
on different folds of the dataset. We were able to improve
the mIoU from 0.576 to 0.641, which is a new state-of-the-
art result. Moreover, our solution achieved first place in the
challenge leaderboard.

In our future research, we would like to explore possi-
bilities of metadata incorporation into the final pipeline and
also directly to the training procedure. We believe that this
information can help the segmentation models to overcome
problems with high inter-class variance by adding the final
piece of necessary information to produce a correct deci-
sion.
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