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A. Impact of Hyper-Parameters

In the training stage, two important hyper-parameters are
the decoder feature dimension C and the feature embed-
ding D1 in Eq. 7 during the computation of supervised con-
trastive loss. Next we conduct two ablation studies to inves-
tigate the impact of these two hyper-parameters.

Selection of different feature dimensions. In Sec. 5.2,
we simply use the last single-layer feature representation
for SCL. Here the impact of different feature map layers
is investigated. We evaluate our proposed framework with
modifications of feature map selection and demonstrate the
results in Table A.1. We observe that the proposed SCL is
not obviously sensitive to different feature map selections.

Feat. Dim. C 96 192 384 768 1440§

Val mIoU(%) 81.11 81.03 80.64 81.07 81.39

Table A.1. Selection of different feature dimensions. §Resizing
and concatenating all the feature maps.

Impact of different feature embeddings in supervised
contrastive loss. In SCL, the feature representations of both
positive and negative samples need to be normalized into
an embedding dimension of D1 to calculate the contrastive
loss. Previously we set D1=128 and now we experiment
with different embeddings. The results are displayed in Ta-
ble A.2 and we see that within a certain range, the results
are not sensitive to the selection of embedding dimensions
within a certain range.
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Feat. Embedding D1 64 128 256 512

Val mIoU(%) 80.96 80.64 80.70 79.52

Table A.2. Impact of different feature embeddings in the super-
vised contrastive loss.

B. Experiment Results of Detection Frame-
work on TinyWT

In the main text, we apply Transformer-based segmen-
tation methods on TinyWT. To accomplish more general-
ization of our dataset, we also provide reference detection
results in this section. The detection model we adopt here is
the recently advanced Transformer-based detection frame-
work DINO [6], which has achieved state-of-the-art and
outstanding performance for various detection tasks [3]. We
re-annotate every one-dot label to the format of a bound-
ing box of 5ˆ5 pixels, and make it compatible with the
state-of-the-art detection models. Table B.1 lists the results
of DINO on TinyWT with different backbones. The ex-
periment results of the standard detection metric Average
Precision (AP) are displayed for image patches. Similarly,
we employ the same evaluation protocol as in Sec. 5.1 and
merge the patch-level inference results back to the origi-
nal image size and calculate the overall precision, recall,
and accuracy results for the whole TinyWT. As we can see,
DINO achieves comparable precision but worse recall val-
ues compared with Transformer-based segmentation meth-
ods, resulting in lower accuracies as well. This suggests
that when the problem is treated as a conventional detection
task, tiny objects are more likely to be omitted by detectors.
This degradation in performance also justifies our endeavor
to reposition the tiny object detection problem and exploit
segmentation methods to localize and count the wind tur-
bine instances in the first place.



Method AP AP50 AP75 Precision(%) Recall(%) Accuracy(%)
(on image patches) (on whole images)

DINO w/ ResNet50 0.583 0.826 0.448 97.60 94.22 92.09
DINO w/ Swin-T 0.605 0.836 0.472 97.97 94.52 92.70

Table B.1. Detection results for TinyWT using DINO.

C. Geographic Distribution of TinyWT
Fig. C.1 depicts the overall geographic distribution of

TinyWT. We can see that TinyWT is endowed with an ex-
tensive longitude and latitude layout. Moreover, TinyWT
displays the rich distribution of land cover land use, cover-
ing rangelands, croplands, shorelines, and many other areas.
This diversity of landscape included in our dataset makes
TinyWT an exemplar of wind turbine detection on a large
scale.

D. Visualization Results
Next we exhibit visualization results on TinyWT from

three example regions, which are displayed in Fig. C.1 with
red boxes. These three regions cover the top four land
use land cover (LULC) categories of TinyWT (rangeland
(53%), crop (19%), bareground (9%), and tree (8%)).

Region 1. Fig. D.1 provides visualization results of var-
ious models in Region 1 covered by rangeland, the most
dominant land use land cover (LULC) category of TinyWT.
As shown in Fig. D.1a and D.1b, DeepLabv3 [1] and PSP-
Net [7] fail to recognize some wind turbines in rangeland,
which have slightly different blocky background textures.
On the other hand, SegFormer MiT-B2 [5] and UperNet [4]
with Swin-T [2] mistake certain background objects with
wind turbine-like features as wind turbines. However, they
can successfully spot all ground-truth samples without false
positives when incorporated with our design.

Region 2. The visualization results in Region 2 are pre-
sented in Fig. D.2. This region’s LULC category is a mix-
ture of rangeland and bareground (the 3rd top category of
LULC). As we can see, all baseline models have several
false negatives or false positives, resulting in less desirable
detection results. However, when taking advantage of the
proposed CSC and SCL modules, stronger constraints are
imposed and more robust and distinguishable patterns are
learned, thus the models become more acute and robust de-
tectors. In Fig. D.2f, all false positives in Fig. D.2e with
confusing appearance but not displayed in the regular ar-
rangements of normal wind turbines are successfully sup-
pressed. These visualization results directly demonstrate
that we can extract more discriminative features and achieve
more satisfying results for tiny object detection.

Region 3. In Fig. D.3, the visualization results of Re-
gion 3 are demonstrated, whose LULC category is a com-

bination of crop and tree. As is clearly observed, CNN-
based models (DeepLabv3 and PSPNet) have a tendency
to omit true positives, which is also the case in Region 1
and 2. We thus conclude that crucial features of tiny ob-
jects tend to degrade during deep convolution operations.
On the contrary, with the multi-head attention mechanism,
Transformer-based models do not usually omit true posi-
tives but make additional false positives. However, when
combined with our design, they can achieve more pre-
cise and accurate results, as illustrated in Fig. D.3d and
Fig. D.3f.
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Figure C.1. An overview of data distribution for TinyWT. Regions dotted in blue refer to the data collection location of TinyWT. The
diameter of each dotted point indicates the number of wind turbines in each region. The red boxes refer to three example regions for
visualization results in Sec. D.



(a) DeepLabv3 [1] (b) PSPNet [7] (c) SegFormer MiT-B2 [5]

(d) SegFormer MiT-B2 [5] + Our design (e) Swin-T [2] + UperNet [4] (f) Swin-T [2] + UperNet [4] + Our design

Figure D.1. Example visualization results of different baseline models and our proposed ones in Region 1. Green circle: True Positives;
Yellow circle: False Negatives; Red circle: False Positives. The center of a circle denotes the centroid of a detected wind turbine blob.



(a) DeepLabv3 [1] (b) PSPNet [7] (c) SegFormer MiT-B2 [5]

(d) SegFormer MiT-B2 [5] + Our design (e) Swin-T [2] + UperNet [4] (f) Swin-T [2] + UperNet [4] + Our design

Figure D.2. Example visualization results of different baseline models and our proposed ones in Region 2. Green circle: True Positives;
Yellow circle: False Negatives; Red circle: False Positives. The center of a circle denotes the centroid of a detected wind turbine blob.



(a) DeepLabv3 [1] (b) PSPNet [7] (c) SegFormer MiT-B2 [5]

(d) SegFormer MiT-B2 [5] + Our design (e) Swin-T [2] + UperNet [4] (f) Swin-T [2] + UperNet [4] + Our design

Figure D.3. Example visualization results of different baseline models and our proposed ones in Region 3. Green circle: True Positives;
Yellow circle: False Negatives; Red circle: False Positives. The center of a circle denotes the centroid of a detected wind turbine blob.


