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Abstract

Easy access to precise 3D tracking of movement could
benefit many aspects of rehabilitation. A challenge to
achieving this goal is that while there are many datasets
and pretrained algorithms for able-bodied adults, algo-
rithms trained on these datasets often fail to generalize
to clinical populations including people with disabilities,
infants, and neonates. Reliable movement analysis of in-
fants and neonates is important as spontaneous movement
behavior is an important indicator of neurological function
and neurodevelopmental disability, which can help guide
early interventions. We explored the application of dynamic
Gaussian splatting to sparse markerless motion capture
(MMC) data. Our approach leverages semantic segmenta-
tion masks to focus on the infant, significantly improving
the initialization of the scene. Our results demonstrate the
potential of this method in rendering novel views of scenes
and tracking infant movements. This work paves the way
for advanced movement analysis tools that can be applied
to diverse clinical populations, with a particular emphasis
on early detection in infants.

1. Introduction

“What I cannot create, I do not understand” -
Richard Feynman

There is a pressing need for high-quality movement anal-
ysis in rehabilitation and advances in computer vision and
human pose estimation are moving closer to filling this gap.
A common challenge in applying human pose estimation to
rehabilitation populations is that algorithms trained on able-
bodied adult populations fail to generalize to clinical pop-
ulations [4]. Tracking infants raises additional challenges,
as they have different anthropomorphic body portions and

movement dynamics than adults, and there is very limited
training data.

Spontaneous infant movement behavior, that is endoge-
nously generated, is an important indicator of neurological
function and neurodevelopmental disability [7]. Cerebral
palsy, the most common physical disability of childhood
[20], can be predicted with high accuracy from clinical as-
sessment of spontaneous movement behavior in infants [1].
This clinical assessment called the General Movement As-
sessment (GMA) [7], is used by trained clinicians who use
their gestalt perception to distinguish and identify various
movement patterns in the young infant from the preterm pe-
riod to 5 months corrected age. The high accuracy of this
assessment highlights the importance of movement behav-
ior in understanding the nervous system that generates it.
On the other hand, there is a lack of objective and quantita-
tive knowledge surrounding early movement generation in
young infancy.

As the field of neonatology has advanced, infants born
preterm are surviving at younger gestational ages, providing
a unique opportunity to study the development of joint kine-
matics prior to term age. These preterm movement kine-
matics are likely to provide an early prognostic biomarker
to identify infants at risk of neurodevelopmental disability,
which could enable early intervention programs. However,
this opportunity has not yet been realized as unobtrusive
methods to reliably measure movement during the preterm
period have not often been employed. During the preterm
period, infants have fragile skin, small limbs, and sensi-
tivity to touch which can cause autonomic dysregulation,
prohibiting traditional measurement approaches that require
sensors or markers to be placed on the body.

Therefore, human pose estimation is a potential solution
to study infant movements at younger ages. Several stud-
ies have used this approach and trained infant movements
to predict clinical assessments such as the GMA. For exam-
ple, using a small public dataset (n=12), a complexity score
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of infant limb movement was created to predict GMA rat-
ing [25], which was then tested prospectively on a larger
cohort of 47 infants with high specificity for detecting a
normal GMA finding [26]. As an alternative to the GMA,
the Computer-based Infant Movement Assessment (CIMA)
model performs a time-frequency decomposition of move-
ments estimated from video with both manual annotation
and optical flow from 3-month-old infant data to predict a
diagnosis of cerebral palsy at ≥ 2 years of age in a sample
of 377 infants with comparable sensitivity and specificity to
the GMA [14].

Acquiring high-quality training data on infant move-
ments is also challenging. The markers used for marker-
based motion capture are quite large compared to babies
and will often be knocked off. Similarly, most wearable
sensors are quite large compared to infants and neonates
and are time-consuming to place, making them difficult to
use in clinical practice, particularly for premature babies in
the neonatal intensive care unit (NICU). There are a few
existing small datasets including the MINI-RGBD dataset
[12] which contains 12 movement sequences computed
with synthetic textures on the Skinned-Multi Infant Linear
Model (SMIL) [11] model to preserve privacy. This model
was learned from data acquired with RGB and depth imag-
ing from a Kinect sensor. Clinicians assessing the GMA
from SMIL reconstructions of movement from RBG-D im-
ages showed moderate-good agreement for movement com-
plexity and substantial-good agreement for fidgety move-
ments, compared to scoring the real videos. There is also
the SyRIP dataset, which contains a small sample of syn-
thetic and real infants [13]. [10] collected a diverse dataset
of 20k frames, including in-hospital and at-home video, and
found that an EfficientHourglass architecture trained on this
dataset showed only a slightly greater error than the spread
between human annotators.

Advances in 3D scene representations allow scenes to
be learned from a variety of data and allow rendering of
novel views. This includes methods using implicit repre-
sentations of the volumes [8]. This is most often applied to
static scenes from a large number of images taken in dif-
ferent positions, with the camera calibration identified as
an initial step. Very recently, a similar visual performance
at much faster rendering rates was achieved by replacing
the implicit representation with a set of 3D Gaussians [17].
This was enabled through a high-performance differential
renderer that performs splatting of the Gaussians to cam-
era views, allowing the parameters of Gaussians to be op-
timized through gradient descent. This approach was then
extended to dynamic scenes [19] that were recorded with
27 RGB cameras and additional depth cameras, by allowing
the Gaussians to move over time. In addition, to enable syn-
thesizing novel views of the subject in the scene, the Gaus-
sians tracked meaningful body parts. Thus this approach is

promising for movement analysis, both to track movements
of all body parts and for synthesizing novel views of the
scene that could serve as training data. We note in the last
month several other works on dynamic Gaussians, including
using 4D Gaussian representation that includes a time com-
ponent [24, 29] and using an implicit function to model the
temporal deformations of the points to reconstruct scenes
from monocular views using structure from motion to ini-
tialize the scene [28]. Older work has also shown that a
similar differentiable rendering of 72 Gaussians can be cou-
pled to an anatomical model over configurations to perform
human pose estimation [21].

The goal of this work was to test whether dynamic Gaus-
sian tracking could be applied to a sparse set of RGB cam-
eras, a configuration commonly used for markerless motion
capture (MMC) [6, 15, 22]. MMC is seeing increasing use
in rehabilitation, with applications to date predominantly
focusing on gait analysis. However, achieving accurate
scene reconstruction and novel field synthesis from MMC
data could enable a wider range of applications. How-
ever, this is challenging, because the Gaussians locations
are typically initialized using either very dense image cap-
ture or additional depth imaging. With only sparse RGB
images, the initial scene reconstruction is underconstrained.
We show that using a semantic segmentation mask to only
reconstruct the infant results in substantial improvements
in the reconstruction of unseen views. With this improved
initialization, we find the dynamic Gaussians can pick up
spontaneous movements of the babies and visualize this
movement from novel views.

In short, our contributions are:

• We apply dynamic Gaussian splatting to sparse, mark-
erless motion capture data

• We optimize this reconstruction method and perform
ablations to demonstrate the importance of semantic
information and masking

• Show this allows us to track 3D movement of babies

2. Methods
2.1. Participants

This study was approved by the Northwestern Univer-
sity Institutional Review Board. Two infants born at term
age were recruited. One infant was filmed at 3 weeks of age
and again at 5 weeks of age. The second infant was filmed
at 12 weeks of age. Synchronized videos were recorded as
the infants were positioned in a calm, alert state, without a
pacifier, for short periods on the mats, to observe sponta-
neous behavior.

2.2. Video Acquisition

Multicamera data was collected with a custom system
we developed using 8 FLIR BlackFly S GigE cameras with
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F1.4/6mm lens [5, 6]. They were synchronized using the
IEEE1558 protocol and acquired data at 30 fps, with a typi-
cal spread between timestamps of less than 100µs. The im-
ages produced have a width of 2048 and a height of 1536.
The cameras were mounted on tripods which were placed
in a circle around a padded mat on the floor. The acquisi-
tion software was implemented in Python using the PySpin
interface. For each experiment, calibration videos were ac-
quired with a checkerboard (7 × 5 grid of 38mm squares).
Extrinsic and intrinsic calibration was performed using the
anipose library [16]. The intrinsic calibration included only
the first distortion parameter.

2.3. 3D Gaussian Splatting

Our method is built upon [19], which is a dynamic ex-
tension of 3D Gaussian Splatting [17]. Gaussian splatting
directly optimizes the parameters of a set of 3D Gaussian
kernels to reconstruct a scene observed from multiple cam-
eras. It is powered by a custom CUDA kernel for a fast,
differential rastering engine. Each Gaussian is described by
opacity, color, location, scale, and rotation.

The opacity, α, is a scalar value, and the color, c, is a
3-vector, both of which are between 0 and 1 after passing
through a sigmoid transformation. The location, µ, is a 3-
vector for the center of the Gaussian in Euclidean space,
where we used meters as the units. The scale is a 3-vector
describing the spatial extent of the Gaussian in each dimen-
sion and has an exponential non-linearity to ensure posi-
tivity. The rotation is a quaternion, which includes a non-
linearity to ensure it is normalized to have a unit norm.

The potential influence of each gaussian on any location
in space is computed from:

G(x) = σ(o) e−
1
2 (x−µ)TΣ−1(x−µ) (1)

Where the spatial covariance is determined by the spa-
tial scale, S ∈ R3, and the rotation, R ∈ R3×3, which is
computed from the quaternion representation, q:

Σ = RSS⊤R⊤ (2)

Combined with the opacity and color, the ensemble of
Gaussians is efficiently ray-traced with the differentiable
renderer. Specifically, the color of each pixel is computed
as:

C =
∑
i∈N

Tiαici (3)

Where the transmittance, Ti =
∏i−1

j=1 αj is computed
based on the opacities of the Gaussians traced along the ray.

This takes in the intrinsic (without any distortion co-
efficients) and extrinsic parameters of the calibrated cam-
eras. We refer to [17] for further details about the render-
ing engine, which includes many features for depth-sorting

and spatially culling Gaussians into patches to allow it to
quickly render millions of elements and also includes ex-
plicit deviations of the derivatives in the handwritten CUDA
kernels.

Following [17, 19] a loss is computed between the re-
constructed images and the observed images that includes
both an L1 term D-SSIM term, where we also use a relative
weighting of λ = 0.2.

Lim = (1− λ)L1 + λLD-SSIM (4)

[19] extended this approach to include an additional
color component for each Gaussian, which corresponds to
a segmentation map between foreground and background,
although can flexibly correspond to any secondary color in-
formation. This uses the same loss function as the regu-
lar image, Lseg. We discuss the segmentation mask further
below. [19] also replaced view-dependent spherical har-
monic representations of color for having isotropic colors
with learnable scales and means for each camera, and we
retained this feature.

Because the differentiable renderer does not account
for camera distortions, we applied the OpenCV [2]
undistort method to our raw images.

2.4. Dynamic Losses

[19] includes several additional losses for the Gaussians
between timesteps. Each of these is applied to a local region
of Gaussians identified using KNN clustering based on the
initial scene reconstruction.

Lrigid
i,j = wi,j

∥∥(µj,t−1 − µi,t−1)−R−1
i,t−1Ri,t(µj,t − µi,t)

∥∥
2

(5)

Lrigid =
1

k|S|
∑
i∈S

∑
j∈knni,k

Lrigid
i,j (6)

Lrot =
1

k|S|
∑
i∈S

∑
j∈knni,k

wi,j

∥∥q̂j,tq̂−1
j,t−1 − q̂i,tq̂i,t−1

∥∥
2

(7)

Liso =
1

k|S|
∑
i∈S

∑
j∈knni,k

wi,j

(
∥µj,0 − µi,0∥2 − ∥µj,t − µi,t∥2

)
(8)

2.5. Optimization

We followed prior work and used the Adam optimizer
with different learning rates for each of the parameters. The
learning rate for the mean Gaussian locations for 0.00016
times the scale of the scene. The colors had a learning rate
of 0.0025. The segmentation map had a learning rate of
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0.001. The unnormalized quaternion representation had a
learning rate of 0.001. The logit for the opacities had a
learning rate of 0.05. The logarithm of the scales had a
learning rate of 0.001. The camera means and scales (pre-
exponential) had a learning rate of 1e-4.

The optimization process also includes additional heuris-
tics during training that use the accumulated derivates ap-
plied to each Gaussian to determine regions that should ei-
ther be pruned or have the density increased. Points with
very low opacities are also pruned, as are points with spa-
tial scales that exceed a threshold size (typically 10% of the
scene volume). We refer to the prior work for these details.
For dynamic fits, parameters from the previous frame were
used to initialize the next frames, as in [19], with the veloc-
ity over the prior two frames used to predictive the initial
Gaussian positions before the optimization. We used 2000
iterations of optimization for subsequent frames.

We rendered the scenes at the full 2048x1536 resolu-
tion, which ran at approximately 20 iterations per second
on an A6000 (with two renderings per iteration to produce
the segmentation mask). Similarly to [17, 19] we sampled
the training views in a random order in blocks without re-
placement.

2.6. Initialization

In [17, 19], the Gaussians are initialized from a precom-
puted point cloud. In the case of [19], which performed dy-
namic reconstruction with human movement recorded with
27 cameras, this point cloud was initialized with an addi-
tional set of depth cameras. We found that with random
initialization, optimization of the first frame from a random
point cloud did not converge to an accurate reconstruction
of the scene, as reflected both by poor generalization to
camera views not used during reconstruction and by visu-
ally inspecting the optimized point cloud.

In particular, we noted a lot of background Gaussians ob-
scuring the validation view and initial experiments adjusting
the pruning and density-increasing heuristics did not seem
to resolve this. Visualizing interpolation between camera
views made it apparent how pieces of floating geometry
would align into specific places for the training views to
reconstruct the correct images with an incorrect geometry,
highlighting the challenges of reconstruction from these un-
derconstrained data.

To improve convergence to a reconstruction that matches
the underlying geometry, we explored using additional vi-
sual cues to guide the scene reconstruction.

2.7. Depth

We attempted to provide additional supervision from in-
ferred depth maps to remove the sparse, noisy, background
Gaussians. This was motivated by recent work showing
that depth was a necessary supervisory signal when us-

ing implicit representations to reconstruct dynamic scenes
from sparse RGB-D images [9]. Because our cameras only
produce RBG data, we used DistDepth [23] to infer the
depth images, which produced plausible results. The of-
ficial CUDA implementation of the differentiable renderer
does not support backpropagation through the depth image,
so we used a fork that implemented this functionality [27].
We followed [19] by including a learnable per-camera scale
and offset when comparing the rendered depth maps to the
inferred maps, using an L1 loss. However, even with this
additional supervision, we were unable to achieve an accu-
rate initial reconstruction of the underlying geometry. We
found comparing the depth images to the rendered depth
images was still a useful diagnostic tool and included these
images in our results.

2.8. Segmentation and Masking

We then tried to use semantic segmentation to provide
additional supervision. We used the Mask2Former imple-
mentation available through the Huggingfaces library [3].
Specifically, we used the large model with a Swin back-
ground, trained on the ADE20K dataset, which outputs 150
class labels [18, 30]. We mapped these 150 classes to dif-
ferent RGB colors, with a black background to produce the
segmentation target image for each view. We did include
code to map the plaything, toy class to the person
class as we saw a few instances where the infant was mis-
classified as a toy (perhaps reflecting dolls in the training
dataset).

In addition to providing an additional semantic segmen-
tation image, which was used to compute the segmentation
loss, Lseg , we also supported masking the image to only
include the infant. This was done by first identifying the
largest contiguous mask, and only including this (the legs of
experimenters and parents were sometimes visible). Then
the raw image was set to zero outside the identified mask,
and this masked image was used to compute the image loss,
Lim. When masking, we also added the ability to prune
Gaussians outside the volume where the infant was placed
(within 2 meters of the calibration center near the mat).

2.9. Sparsity pruning

Even with masking during the initial reconstruction, we
still found some Gaussian scattered through open areas that
would obscure novel views. During the densification and
pruning stages already implemented, we added an addi-
tional pruning step that would remove these points. Specif-
ically, we would remove any Gaussian that had a minimum
distance to their nearest other Gaussian that was greater than
0.1m. Like the other steps of density adjustment, this oc-
curred for every 100th iteration between 500 and 15000. In
initial experiments, we attempted to make this a differen-
tiable term in the loss function but found that computing
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the pairwise distances was very slow and still was not pro-
ducing the desired results.

2.10. Training losses

This gave us a total loss for initialization of:

Linit = λimLim + λsegLseg (9)

And for the subsequent frames of

Ldyn = λimLim+λsegLseg+λrigidLrigid+λrotLrot+λisoLiso

(10)
With parameters λim = 1.0, λseg = 3.0, λrigid = 4.0,

λrot = 4.0, and λiso = 2.0.

2.11. Metrics

To quantify the performance of the reconstruction, we
used 7 cameras to reconstruct the scene and measured the
accuracy of the reconstructed images against this validation
view. The PSNR is computed from the L2 loss and is a mea-
sure of the peak signal-to-noise ratio. In all cases, this was
only applied to the region of the image with the segmenta-
tion mask corresponding to the baby.

PSNR = 20 log10

(
1√

MSE

)
(11)

2.12. Optimizing initial scene reconstruction

We explored a range of parameters to determine their im-
pact on the initial scene reconstruction, as this was essential
to good dynamic performance. To quantify this we took a
set of frames from two sessions, one from each baby. For
each scene, we repeated the reconstruction using one of four
cameras as the validation cameras and used the remaining
7 cameras to perform the scene initial reconstruction. For
each of the 8 fits, we computed the metrics described above
for the validation frame.

2.13. Dynamics through deformation fields

We also implemented an alternative dynamic tracking
method using deformation fields, based on [28]. Instead
of iteratively updating the location of Gaussians for each
frame with a regularizer based on the prior frame location,
we trained a deformation field that models the change in lo-
cation, rotation, and scale based on the initial 3D locations
and the desired time point. This was implemented as:

(δµ, δr, δs) = Fθ(γ(x), γ(y), γ(z), γ(t)) (12)

γ(p) = (sin(2πp), cos(2πp))
L−1
k=0 (13)

where γ(p) is sinusoidal positional encoding applied to
each of space-time coordinates, with L = 10 and Fθ is an
8-layer MLP with a hidden dimension of 512.

Mask λseg Spare # Init
Points

Init
Range

Val
PSNR

Train
PSNR

True 3.0 False 10000 1.5 13.24 21.09
True 3.0 False 20000 1.5 13.31 20.94
False 3.0 False 100000 10.0 7.79 25.94
False 0.0 False 100000 10.0 7.96 34.29
True 3.0 True 10000 1.5 13.41 20.71

Table 1. Settings and results of ablation studies showing dramati
decline in validation PSNR when not including the segmentation
mask.

We performed optimization of the initial scene as above
for 9000 iterations, after which we performed iterations of
the entire sequence for another 40k iterations. When opti-
mizing the entire sequence, we only used the loss for the
image Lim. Images from the training views were randomly
sampled from different timepoints. Because this required
the entire sequence to be loaded into memory, the sequence
length is limited by system memory. As in [24], we added
Gaussian noise to the positional encoded value of time with
a standard deviation of 0.1 that linearly reduced to 0 after
20k iterations. They found this served to anneal the solu-
tion with training and improve the temporal performance.

Because the deformation field does not use an explicit
mapping to each Gaussians, but rather is parameterized by
their initial coordinates, it was possible to continue per-
forming the density adjustments while training the entire
sequence. We kept this component unaltered from above.

3. Results
3.1. Initial static reconstructions

First, we tested the impact of our additional supervision
sources on the initial scene reconstruction, showing that us-
ing the mask from the semantic segmentation was critical.

3.1.1 Novel view synthesis with masking

With masking enabled and discarding all Gaussians outside
2m from the center of the mat, we got visually compelling
results for novel views Figure 1 (second row). The PSNR
was for the validation view (computed over the region of the
baby mask, only) averaged over our 8 training conditions
was about half of the PSNR for the training views Table 1.

3.1.2 Ablations

We originally attempted to reconstruct without additional
constraints. In this case, we did not prune any Gaussians
based on their spatial location and initialized 100k points
uniformly over a 10m area (instead of 10k for the smaller
area). We found that while this was able to match the train-
ing views, the validation views were heavily obscured by
random floating Gaussians Figure 1 (fourth row). This was
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Figure 1. Example visualizations of the validation view recon-
structed with the different supervision signals. Top row) the orig-
inal image with the depth image and semantic segmentation mask
(the later two both inferred with algorithms described above). Sec-
ond row) the image, depth image, and semantic map reconstructed
when the baby mask was applied. The third and fourth rows le-
sion the masking step, with worse results. Third row) semantic
segmentation is used as a supervision signal, but is unable to re-
construct novel views other than hints of the semantic map. Fourth
row) no additional supervision.

Figure 2. The same as Figure 1, other than showing a view used
for training.

true even when reconstruction of the training images per-
formed well Figure 2 (fourth row).

We also attempted initialization with the semantic seg-
mentation loss. However, the views were still very ob-
scured Figure 1 (third row). Note however that in this case
the segmentation map was also reconstructed well for train-
ing views Figure 2 (third row), with some hints showing
through on the validation views.

Additionally, we noted the rendered depth images
showed a clear discrepancy between the depth maps esti-
mated with DistDepth, but as noted were unable to use this
as a supervision signal while the depth channel is not back-
propagated through the differential renderers CUDA kernel.

3.1.3 Hyperparameter tests

For the masked reconstruction, we also explored several
other hyperparameter values. For example, we found that
increasing the iterations from 6000 to 16000 steps did not
substantially improve the performance and by 30000 steps
showed signs of overfitting. After reducing to 2000 itera-
tions, performance degraded. For most other adjustments,
we used 6000 iterations to reduce the computation time.
Within the range of parameters we adjusted, their impact
was relatively small compared to the impact of the mask-
ing.

3.2. Dynamic reconstructions

Based on these results, we tested the performance of dy-
namic tracking with both the iterative tracking approach and
the deformation field approach. Quantitatively, we saw that
both approaches produced comparable PSNR values for the
training data (Figure 3). The iterative approach achieved
higher PSNR values on the training views. Qualitatively, it
appeared to produce sharper images in general. However,
we also saw some Gaussians drift away from the infant in
the dynamic reconstruction, which create floaters in the ren-
dered views. In a few frames, these would also create sub-
stantial visual artifacts. In contrast, the deformation field
lost some of this higher resolution detail but more reliably
captured the movements. Loading the entire sequence into
memory used 300GB of system memory for 400 frames.
The fitting was also substantially faster than the iterative
approach, with the 40k iterations taking about 40 minutes
for 400 frames, compared to nearly 12 hours for this many
frames updated iteratively with 2k steps per frame.

3.3. Tracking

We wanted to determine whether the Gaussians track
specific body parts of the infant, as was seen in [19]. We
created videos that show the location history of 2% of the
Gaussians over the last 10 frames (interpolated up to 10x
temporal resolution). We observed that as expected, in-
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Figure 3. Masked PSNR over dynamic tracking. The left column
shows the training and validation PSNR for two videos fit with the
iterative method. The right column shows the same but for the
deformation field method.

Figure 4. Frames from iterative fit. The top row shows frames re-
constructed from the validation cameras. The bottom row shows
an interpolated camera view between two of the training views,
with the middle three images not being from a training view.
Timesteps were selected to capture different body postures. Notice
the fourth interpolated frame shows substantial floaters obscuring
the view that drifted during dynamic fitting.

dividual color tracks persisted in alignment with specific
body locations using both dynamic methods. For example
Figure 5 shows consistent traces over the leg during these
movements, as well as movement over the arm, with the
markers over the head showing much less movement. We
did not quantify this consistency against any existing pre-
trained keypoint detectors.

4. Discussion
We find that dynamic Gaussian splatting to reconstruct

markerless motion capture data shows promise for render-
ing novel views of scenes and tracking movements within
the scene. However, a good initialization is critical and
challenging. With only sparse views, many unrealistic ge-
ometries can reconstruct the training views. This becomes
apparent when interpolating between views, as artifactual
floating geometries obscure the interpolated views and then
snap into place when viewed from the training image per-
spectives.

Applying a segmentation mask and only reconstructing

Figure 5. Snapshots of movement with 2% of Gaussians showing a
trajectory of their history, with each point assigned a unique color.
This shows how individual Gaussians track specific anatomic lo-
cations. The top row used the iterative dynamic tracking and the
middle row used the deformation field. The bottom traces show a
subset of displacements for Gaussians, showing groupings of co-
herent movement.

the infant in the MMC view drastically reduces this problem
and improves the realism of novel views. However, artifacts
were still visible. Some were due to imperfect segmentation
masks, causing Gaussians that capture the mat to attach to
the infant. Sparsifying the geometry to remove any Gaus-
sians that are more than 10cm from their nearest neighbor
lessened these floating artifacts and improved the valida-
tion PSNR. In dynamic scenes, some Gaussians also drifted
away from the infant. This suggests future opportunities to
improve the priors and heuristics during initialization and
on the dynamics between frames.

We expected that combining segmentation masks and
depth as additional supervision signals would allow us to
optimize realistic geometries for the entire scene. However,
even combined with additional sparsification, the result was
a cluttered reconstruction that generalized poorly to new
views. It is possible even with the per-camera scale and
offset, the depth images were not geometrically consistent,
and we saw some artifacts in the inferred depth images that
would suggest this such as offsets when the leg of a tripod
passed through a view. We suspect there are other oppor-
tunities to use structure-from-motion algorithms to obtain a
better initialization that would improve the whole-view re-
construction, and that this will also improve the reconstruc-
tion of the subject.

Iteratively updating the Gaussian locations versus using
a deformation field seems to have different strengths. The
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iterative solution often produced sharper reconstructions but
was more prone to artifacts. This perhaps could refined by
tuning the regularization losses between frames. The defor-
mation field allows directly optimizing the entire dynamic
scene, potentially allowing visual information from later in
the sequence to improve earlier Gaussian locations. For ex-
ample, the distribution of Gaussians in the initial scene over
the surface seemed better distributed when optimizing with
the deformation field. It also takes less time to train. The
memory limitations currently limit the sequence length that
can be optimized, but a more efficient pipeline or caching
to disk could remove this limitation. Because the deforma-
tion field was decoupled from the specific set of Gaussians,
it was also possible to continue adjusting the density over
the entire sequence. It also provides a natural framework
to interpolate between frames and to compute the velocity
of areas by differentiating with respect to time, which could
potentially allow accounting for motion blurred and track-
ing faster movements.

In this work, we focused on infants. Our masking ap-
proach is particularly effective in this situation, where only
a single infant is in view. However, we anticipate this
approach will be extensible to room-scale tracking of all
movements, allowing us to collect diverse training data to
generalize to a wide clinical population. We anticipate this
can be further enhanced by using a traditional approach with
many images to create an initial set of Gaussians for the
background, allowing full scene tracking.

Reconstructing the geometry underlying a scene to ren-
der novel views shows the amount of information extracted
from a scene, but is not the most clinically useful repre-
sentation of movement. This system could be further aug-
mented with keypoint detectors or other algorithms to ex-
plicitly track semantically meaningful body components. In
future work, we also anticipate using keypoint detectors to
quantify the automatic tracking accuracy, as in [19]. Addi-
tionally, we could fit the SMIL model [11] to these points to
produce a parametric representation that is comparable be-
tween participants. Ultimately, we hope to fit biomechani-
cally valid models to this movement to provide a representa-
tion comparable to the language of clinicians and biomech-
anists.

We anticipate using this approach to synthetically ren-
der novel views from MMC datasets from a larger cohort
of infants will allow us to train 2D and 3D keypoint detec-
tors that generalize well to a wide range of infants, includ-
ing those in the NICU. If this enables algorithms that can
predict clinical measurements of movement quality in in-
fants, this will create a powerful approach to early detection
and interventions for infants at risk for neurodevelopmental
problems.

5. Conclusion

Dynamic Gaussians can be used to reconstruct the under-
lying time-varying geometry of scenes from data collected
with synchronous videos from only sparse views, such as
from markerless motion capture systems. This allows for
rendering novel views and tracking the underlying geome-
tries. This is a promising approach to tracking kinematics
for individuals where there is limited training data for tra-
ditional pose estimation algorithms, such as the movements
of infants, and could also produce training data for training
these pose estimation algorithms.
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