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Abstract

Automated human action recognition, a burgeoning field
within computer vision, boasts diverse applications span-
ning surveillance, security, human-computer interaction,
tele-health, and sports analysis. Precise action recognition
in infants serves a multitude of pivotal purposes, encom-
passing safety monitoring, developmental milestone track-
ing, early intervention for developmental delays, foster-
ing parent-infant bonds, advancing computer-aided diag-
nostics, and contributing to the scientific comprehension of
child development. This paper delves into the intricacies
of infant action recognition, a domain that has remained
relatively uncharted despite the accomplishments in adult
action recognition. In this study, we introduce a ground-
breaking dataset called “InfActPrimitive”, encompassing
five significant infant milestone action categories, and we
incorporate specialized preprocessing for infant data. We
conducted an extensive comparative analysis employing
cutting-edge skeleton-based action recognition models us-
ing this dataset. Our findings reveal that, although the
PoseC3D model achieves the highest accuracy at approx-
imately 71%, the remaining models struggle to accurately
capture the dynamics of infant actions. This highlights a
substantial knowledge gap between infant and adult action
recognition domains and the urgent need for data-efficient
pipeline models†.

1. Introduction
Automated human action recognition is a rapidly evolv-

ing field within computer vision, finding wide-ranging ap-
plications in areas such as surveillance , security [23],

†These authors contributed equally to this work.
†The code and our data are publicly available at

https://github.com/ostadabbas/Video-Based-Infant-Action-Recognition.

human-computer interaction [11], tele-health [21], and
sports analysis [28]. In healthcare, especially concerning
infants and young children, the capability to automatically
detect and interpret their actions holds paramount impor-
tance. Precise action recognition in infants serves multiple
vital purposes, including ensuring their safety, tracking de-
velopmental milestones, facilitating early intervention for
developmental delays, enhancing parent-infant bonding, ad-
vancing computer-aided diagnostic technologies, and con-
tributing to the scientific understanding of child develop-
ment.

The notion of action in the research literature exhibits
significant variability and remains a subject of ongoing in-
vestigation [19]. In this paper, we focus on recognizing in-
fants’ fundamental motor primitive actions, encompassing
five posture-based actions (sitting, standing, supine, prone,
and all-fours) as defined by the Alberta infant motor scale
(AIMS) [5]. These actions correspond to significant devel-
opmental milestones achieved by infants in their first year
of life.

To facilitate the accurate recognition of these actions, we
employ skeleton-based models, which are notable for their
resilience against external factors like background or light-
ing variations. In comparison to RGB-based models, these
skeleton-based models offer superior efficiency. Given their
ability to compactly represent video data using skeletal in-
formation, these models prove to be especially useful in sit-
uations where labeled data is scarce. Therefore, their em-
ployment enables a more efficient recognition of the afore-
mentioned hierarchy of infant actions, even with “small
data” [15].

While state-of-the-art skeleton-based human action
recognition and graphical convolution network (GCN)
models [12,30] have achieved impressive performance, they
are primarily focused on the adult domain and relied heav-
ily on large, high-quality labeled datasets. However, there

This WACV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21



Figure 1. Some snapshots from the InfActPrimitive dataset are displayed on the left side. Each row corresponds to one of the five infant primitive action
classes of the dataset. On the right side, the frequency of each action class is depicted, collected from both the YouTube platform and our recruited
participants through an IRB-approved experiment.

exists a significant domain gap between the adult and infant
action data due to differences in body shape, poses, range
of actions, and motor primitives. Additionally, even for the
same action, there are discernible differences in how it is
performed between infants and adults. For example, sit-
ting for adults often involves the use of chairs or elevated
surfaces, providing stability and support, while infants typ-
ically sit on the floor, relying on their developing core
strength and balance, resulting in different skeleton repre-
sentations. Furthermore, adult action datasets like “NTU
RGB+D” [22]’ and “N-UCLA” [26] primarily include ac-
tions such as walking, drinking, and waving, which do not
involve significant changes in posture. In contrast, infant
actions like rolling, crawling, and transitioning between sit-
ting and standing require distinct postural transitions. This
domain gap poses significant challenges and hampers the
current models’ ability to accurately capture the complex
dynamics of infant actions.

This paper contributes to the field of infant action recog-
nition by highlighting the challenges specific to this do-
main, which has been largely unexplored despite the suc-
cesses in adult action recognition. The limitations in avail-
able infant data necessitate the identification of new action
categories that cannot be learned from existing datasets. To
address this issue, the paper’s focus is on adapting action
recognition models trained on adult data for use on infant
action data, considering the adult-to-infant shift, and em-
ploying data-efficient methods.

In summary, this paper introduces several significant

contributions:

• A novel dataset called infant action (InfActPrimitive)
specifically designed for studying infant action recog-
nition. Figure 1 shows some snapshots of InfActPrim-
itive. This dataset includes five motor primitive infant
milestones as basic actions.

• Baseline experiments conducted on the InfActPrimi-
tive dataset using state-of-the-art skeleton-based ac-
tion recognition models. These experiments provide
a benchmark for evaluating the performance of infant
action recognition algorithms.

• Insight into the challenges of adapting action recogni-
tion models from adult data to infant data. The paper
discusses the domain adaptation challenges and their
practical implications for infant motor developmental
monitoring, as well as general infant health and safety.

Overall, these contributions enhance our understanding
of infant action recognition and provide valuable resources
for further research in this domain.

2. Related Work
The existing literature on vision-based human action

recognition can be classified into different categories based
on the type of input data, applications, model architecture,
and techniques employed. This paper focuses on reviewing
studies conducted specifically on skeleton data (i.e. 2D or
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3D body poses) in human action recognition. Additionally,
it discusses the vision-based approaches that have been ap-
plied to the limited available infant data.

Recurrent neural network structures methods, such
as long short term memory (LSTM) and gated recurrent
unit (GRU), treat the skeleton sequences as sequential vec-
tors, focusing primarily on capturing temporal informa-
tion. However, they often overlook the spatial informa-
tion present in the skeletons [14]. Shahroody et al. [22]
introduced a part-aware LSTM model that utilizes sepa-
rate stacked LSTMs for processing different groups of body
joints, with the final output obtained through a dense layer
combination, enhancing action recognition by capturing
spatiotemporal patterns. [16] proposed the global context-
aware attention LSTM (GCA-LSTM) that incorporates a
recurrent attention mechanism that selectively emphasizes
the informative joints within each frame.

Graph convolutional network (GCN) has emerged as a
prominent method for skeleton-based action recognition. It
enables the efficient representation of spatiotemporal skele-
ton data by encapsulating the intricate nature of an action
into a sequence of interconnected graphs. Spatial tempo-
ral graph convolution network (ST-GCN) introduced inter-
inframe edges, connecting corresponding joints across con-
secutive frames. This approach enhances the modeling of
inter-frame relationships and improves the understanding of
temporal dynamics within the skeletal data. InfoGCN [2]
combines a learning objective and an encoding method us-
ing attention-based graph convolution that captures discrim-
inative information of human actions.

3D convolutional networks capture the spatio-temporal
information in skeleton sequences using image-based rep-
resentations. Wang et al. [27] encoded joint trajectories
into texture images using HSV space, but the model perfor-
mance suffered from trajectory overlapping and the loss of
past temporal information. Li et al. [13] addressed this issue
by encoding pair-wise distances of skeleton joints into tex-
ture images and representing temporal information through
color variations. However, their model encountered diffi-
culties in distinguishing actions with similar distances.

Available datasets for human action recognition are
mainly incorporate RGB videos with 2D/3D skeletal pose
annotations. The majority of the aforementioned studies
employed large labeled skeleton-based datasets, such as
NTU RGB+D [22], which consisted of over 56 thousand
sequences and 4 million frames, encompassing 60 different
action classes. The Northwestern-UCLA (N-UCLA) [26] is
another widely used skeleton based dataset consists of 1494
video clips featuring 10 volunteers, captured using 3 Kinect
cameras from multiple angles to obtain 3D skeletons with
20 joints, encompassing a total of 10 action categories.

Infant-specific computer vision studies have been rela-
tively scarce while there have been notable advancements in

computer vision within the adult domain. The majority of
these studies have been primarily focused on infant images
for tasks such as pose estimation [7, 31], facial landmarks
detection [24, 32], posture classification [8, 10], and 3D
synthetic data generation [18]. [20] finetuned VGG-16 pre-
trained with adult faces for infant facial action unit recog-
nition. They applied their methods to the CLOCK [6] and
MIAMI [1] datasets, which were specifically designed to in-
vestigate neurodevelopmental and phenotypic outcomes in
infants with craniofacial microsomia and assess the facial
actions of 4-month-old infants in response to their parents,
respectively. Zhu et al. [32] proposed a CNN-based pipeline
to detect and temporally segment the non-nutritive sucking
pattern using nighttime in-crib baby monitor footage. [3]
introduced BabyNet that uses a ResNet model followed by
an LSTM to capture the spatial and temporal connection of
annotated bounding boxes to interpret the onset and offset
of reaching and to detect a complete reaching action. How-
ever, the focus of these studies has predominantly been on
a limited set of facial actions or the detection of specific ac-
tions, thereby neglecting actions that involve diverse poses
and postures. Huang et al. [9] addressed this issue by cre-
ating a small dataset containing a diverse range of infant
actions and few samples for each action. The authors devel-
oped a posture classification model that was applied on ev-
ery frame of an input video to extract the posture probability
signal. Subsequently, a bi-directional LSTM is employed to
segment the signal and estimate posture transitions and the
action associated with that transition. Despite presenting a
challenging dataset, their action recognition pipeline is not
an end-to-end approach.

In this paper, we enhance the existing dataset initially
employed in Huang et al.’s study [9] to create a more robust
dataset. This expansion involves classifying actions into
specific simple primitive motor actions, including ”sitting,”
”standing,” ”prone,” ”supine,” and ”all-fours.” Additionally,
we collected additional video clips of infants in their natural
environment, encompassing both daytime play and night-
time rest, in various settings such as playtime and crib en-
vironments. Finally, we tackle the intricate task of infant
action recognition through a comprehensive end-to-end ap-
proach, with a specific focus on the challenges associated
with adapting action recognition models from the adult do-
main to the unique infant domain.

3. Methods
The goal of a human action recognition framework is to

assign labels to the actions present in a given video. In
the infant domain, our focus is the most common actions,
related to infant motor development milestones. This sec-
tion introduces our dataset and pipeline for modeling in-
fant skeleton sequences, aiming to create distinct represen-
tations for infant action recognition. We begin by introduc-
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Figure 2. Schematic of the overall infant action recognition pipeline, encompassing infant-specific preprocessing and the action recognition phase. The
infant is initially detected in raw frames using YOLOv7 [25] and subsequently serves as input for both 2D and 3D pose estimation facilitated by FiDIP [7]
and HW-HuP-Infant [17] algorithms, respectively. The resulting pose information can be further processed into heatmaps, serving as input for CNN-based
models, or represented as graphs or sequences for graph- and RNN-based models to predict infant actions.

ing the InfActPrimitive dataset, which serves as the founda-
tion for training and evaluating our pipeline. Subsequently,
we delve into the details of the pipeline, which encompasses
the entire process from receiving video frames as input to
predicting infant action.

3.1. InfActPrimitive Dataset

We present a new dataset called InfActPrimitive as a
benchmark to evaluate infant action recognition models.
Videos in InfActPrimitive are provided from two sources.
(1) Videos submitted by recruited participants: We col-
lected infant videos using a baby monitor from their home
and in an unscripted manner. The experiment was approved
by the Committee on the Use of Humans as Experimen-
tal Subjects of Northeastern university (IRB number:22-11-
32). Participants provided informed written consent before
the experiment and were compensated for their time. (2)
Videos gathered from public video-sharing platforms. This
portion of video clips in our dataset has been adapted from
[9], which was acquired by performing searches for public
videos on the YouTube platform. InfActPrimitive contains
814 infant action videos of five basic motor primitives rep-
resenting specific postures such as sitting, standing, prone,
supine, and all four. The start and end time of every motor
primitive is meticulously annotated in this dataset. The In-
fActPrimitive, with its motor primitives defined by the Al-
berta Infant Motor Scale (AIMS) as significant milestones,
is ideal for developing and testing models for infant action
recognition, milestone tracking, and detection of complex
actions. Figure 1 shows the screenshots from various videos

within the InfActPrimitive dataset, illustrating the diversity
of pose, posture, and action among the samples. The di-
verse range of infant ages and a wide variety of movements
and postures within the InfActPrimitive dataset pose signif-
icant challenges for action recognition tasks. The right side
of the panel in Figure 1 shows the statistical analysis of In-
fActPrimitive for each sources of data separately.

3.2. Infant Action Recognition Pipeline

Infant specific prepossessing, skeleton data prediction,
and action recognition are the key components of our
pipeline, as shown in Figure 2. To achieve this, input frames
are processed through the pipeline’s components, enabling
infant-specific skeleton data generation and alignment as in-
put to the different state-of-the-art action recognition mod-
els.

Preprocessing– Input video V is represented as se-
quence of T frames, V =

(
f1, . . . , f t, . . . , fT

)
. We

customized the YOLOv7 [25] to locate the bounding box
around the infants at every frame as a region of interest. We
then extracted either a 2D or 3D infant skeleton pose predic-
tion xt ∈ RJ×D, where J = 17 is the number of skeleton
joints (corresponding to the shoulders, elbows, wrists, hips,
knees, and ankles), and D ∈ {2, 3} is spatial dimension
of the coordinates. The underlying pose estimators—the
fine-tuned domain-adapted infant pose (FiDIP) model [7]
for 2D and the heuristic weakly supervised 3D human pose
estimation infant (HW-HuP-Infant) model [17] for 3D were
specifically adapted for the infant domain.
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Figure 3. Visualization of three distinct skeleton layouts employed in
skeleton-based action recognition datasets. The adult skeleton data ad-
heres to the NTU RGB+D layout, while the 3D version of InfActPrimitive
adopts the Human3.6M layout. Action recognition models utilize the com-
mon keypoints shared between these layouts, highlighted in red. Addition-
ally, both the 2D versions of adult and infant skeleton data conform to the
COCO layout.

Infant-adult skeleton alignment– One of the major
challenges in the domain of skeleton-based action recog-
nition lies in the significant variability of skeleton layouts
across different datasets and scenarios. The diversity in
joint definitions, proportions, scaling, and pose configura-
tions across these layouts introduces complexity that di-
rectly impacts the efficacy of action recognition algorithms
and makes transferring knowledge between two different
datasets inefficient. The challenge of reconciling these lay-
out differences and enabling robust recognition of actions
regardless of skeletal variations is a critical concern in our
studies.

As shown in Figure 3, NTU RGB+D indicates the loca-
tion of 25 joints in a 3D space. The layout of the infants 3D
skeletons in the InfActPrimitive on the other hand, is based
on the Human3.6M skeleton structure, which supports
a total of 17 joints. To match the number of keypoints
and align the skeleton data in these two datasets, We only
select a subset of joins of NTU RGB+D skeleton that are
common with the Human3.6M layout. We also reordered
these joints, so the structures became as similar as possible.
For the 2D skeletons, layouts of both NTU RGB+D and
InfActPrimitive are based on the COCO structure.

Action recognition– After preprocessing, we fed the ex-
tracted sequence of body keypoints from the input video
into various state-of-the-art skeleton-based action recogni-
tion models leveraging different aspects of infant-specific
pose representations. We categorize these skeleton-based
models into three groups: CNN-based, graph-based, and
RNN-based models to fully exploit the information encoded
in the pose data and perform a comprehensive comparative
analysis of the results.

• Recurrent neural network structures capture the
long-term temporal correlation of spatial features in
the skeleton. We applied the part-aware LSTM (P-
LSTM) [22] to segment body joints into five part

groups and used independent streams of LSTMs to
handle each part. At each timeframe t, the input xt

is broken into (xt
1, . . . , x

t
P ) parts, corresponding to P

parts of the body. These inputs are fed into P streams
of LSTM modules, where each LSTM has its own in-
dividual input, forget, and modulation gates. However,
the output gate of these streams will be concatenated
and will be shared among the body parts and their cor-
responding LSTM streams.

• Graph convolutional networks (GCNs) represent
skeletal data as a graph structure, with joints as nodes
and connections as edges. To capture temporal rela-
tionships, we applied ST-GCN, which considers inter-
frame connections between the same joints in consecu-
tive frames. Furthermore, we employed InfoGCN [2],
which integrates a spatial attention mechanism to un-
derstand context-dependent joint topology, enhancing
the existing skeleton structure. InfoGCN utilizes an
encoder with graph convolutions and attention mech-
anisms to infer class-specific characteristics. µc and
diagonal covariance matrix of a multivariate Gaussian
distribution σc. With an auxiliary independent random
noise ϵ ∼ N(0, I), Z is sampled as Z = µc + Σcϵ.
The decoder block of the model, composed of a single
linear layer and a softmax function, converts the latent
vector Z to the categorical distribution.

• 3D convolutional networks are mainly employed
in RGB-based action recognition tasks to capture
both spatial and temporal features across consecutive
frames. To utilize the capabilities of a CNN-based
framework, We first convert keypoints in each frame
into heatmaps. These heatmaps were generated by
creating Gaussian maps centered at each joint within
the frame. Subsequently, we applied the PoseC3D [4]
method, which involved stacking these heatmaps along
the temporal dimension, enabling 3D-CNNs to effec-
tively handle skeleton-based action detection. Lastly,
the representations extracted from each input sequence
using the 3D convolutional layer were fed into a classi-
fier. This classifier consists of a single linear layer fol-
lowed by a softmax function, ultimately yielding the
final class distribution.

4. Experimental Results

In this section, we assess the performance of the mod-
els presented in our pipeline. We begin by providing an
overview of our experimental setup and the datasets em-
ployed. Subsequently, we present the outcomes of various
experiments. Finally, we conduct ablation studies and delve
into potential avenues for future enhancements.
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Table 1. Results of 2D/3D skeleton-based action recognition models using our proposed pipeline on both adult (NTU RGB+D) and infant (InfActPrimitive)
dataset. FT denotes that the model was pre-trained on NTU RGB+D during the transfer learning experiments. PoseC3D achieves the best performance
on 2D data in both adult and infant datasets. PoseC3D only supports 2D data, and the results in 3D space are marked with ✗.The DeepLSTM model also
resulted in very unsatisfactory performance when applied to 3D skeleton data, which we denoted with ✗

Based on 2D Pose Based on 3D Pose

Action Model NTU RGB+D InfActPrimitive InfActPrimitive (+FT) NTU RGB+D InfActPrimitive InfActPrimitive (+FT)

DeepLSTM [22] 87.0 24.3 17.2 ✗ ✗ ✗
ST-GCN [29] 81.5 64.0 66.9 82.5 67.1 69.7
InfoGCN [2] 91.0 29.7 29.7 85.0 29.7 29.7
PoseC3D [4] 94.1 66.9 69.7 ✗ ✗ ✗

4.1. Evaluation Datasets

NTU RGB+D [22] is a large-scale action recognition
dataset with both RGB frames and 3D skeletons. This
dataset contains 56,000 samples across 60 action classes.
Video samples have been captured by three Microsoft
Kinect V2 camera sensors concurrently. 3D skeletal data
contains the 3D locations of 25 major body joints at each
frame. HRNet is used to estimate the 2D pose, which
results in the coordination of 17 joints in the 2D space.
Given that each video in this dataset features a minimum of
two subjects, our approach involves evaluating the models
within a cross-subject setting. In this particular setup, the
models are trained using samples drawn from a designated
subset of actors, while the subsequent evaluation is carried
out on samples featuring actors who were not part of
the training process. We have employed a train-test split
paradigm that mirrors the methodology outlined in [22].
Specifically, we partition the initial cohort of 40 subjects
into distinct training and testing groups, with each group
composed of 20 subjects. In the context of this evaluative
exercise, both the training and testing sets encompass
a substantial number of samples, totaling 40, 320, and
16,560, respectively. It is noteworthy to mention that the
training subjects for this particular evaluation bear the
following identification numbers: 1, 2, 4, 5, 8, 9, 13, 14,
15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35, and 38. The
remaining subjects have been thoughtfully reserved for the
purpose of conducting rigorous testing.

InfActPrimitive, as detailed in subsection 3.1, combines
video clips from two primary sources: data collected from
the YouTube platform and data acquired through our inde-
pendent data collection efforts. To evaluate our pipeline’s
performance on this dataset, the training set comprises all
videos collected from YouTube, totaling 116 (sitting), 79
(standing), 62 (supine), 74 (prone), and 69 (all-fours) ac-
tions. Similarly, the test set consists exclusively of videos
from our independently collected data, including 171 clips
for sitting, 58 clips for standing, 62 clips for supine, 185
clips for prone, and 92 clips for all fours. This partitioning
strategy enables us to assess the pipeline’s ability to general-

ize across previously unobserved data and diverse sources,
ensuring a comprehensive representation of various actions
in both the training and test sets. This approach enhances
the robustness of our evaluation by encompassing a wide
range of settings and conditions found in YouTube videos
and our collected data.

4.2. Experimental Setup

In this section, we detail the series of experiments
conducted using our infant action recognition pipeline. We
will also provide a comparative analysis, examining the
outcomes in relation to the adult skeleton data.

Baseline experiment– In our baseline experiment, we
trained various action recognition models, as detailed in
subsection 3.2, separately on both the NTU RGB+D and
InfActPrimitive datasets from scratch. With the exception
of PoseC3D, all these models established baseline perfor-
mance levels for both 2D and 3D-based action recognition
tasks across both adult and infant domains. This base-
line performance provides a starting point against which
the performance of future experiments, such as fine-tuning
or incorporating domain-specific knowledge, can be com-
pared. We set the hyperparameter for ST-GCN, InfoGCN,
deepLSTM and PoseC3D models a exactly as they were
specified in [29], [2], and [4]. In Table 1, the first pair of
columns illustrate the experimental findings with 2D skele-
ton sequences from both the NTU RGB+D and InfAct-
Primitive datasets, respectively. Simultaneously, the fourth
and fifth columns present the results in the context of 3D
data. As demonstrated, PoseC3D consistently outperforms
other models in both adult and infant action recognition do-
mains. Nevertheless, a significant performance gap persists
between infant and adult action recognition, which can be
attributed to disparities in sample size and class distribution.
The adult model benefits from a more abundant dataset, en-
abling it to effectively capture the spatiotemporal nuances
of various actions, a characteristic that the InfActPrimitive
dataset lacks.

Figure 4 displays the confusion matrices for PoseC3D,
InfoGCN, and ST-GCN methods. As illustrated, the se-
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Figure 4. The classification results of three models, along with their respective confusion matrices, are displayed. As shown, InfoGCN faces challenges
in achieving clear distinctions between classes, whereas the other models demonstrate varying degrees of proficiency in classifying different primitive
categories.

quences associated with the ”Sitting” action class exhibit
superior separability compared to other classes. However,
it is evident that the InfoGCN model miserably fails in the
infant action recognition

Transfer learning experiment– To utilize the knowl-
edge embedded in the adult action recognition, we initial-
ized the model weights using the learned parameters ob-
tained from prior training on the NTU RGB+D dataset. To
address the substantial class disparities between the two
datasets, we excluded the classifier weights, and for this ex-
periment, initialized them randomly.

Given the significant disparity in the number of classes
between the two datasets and the substantial impact of train-
ing set size on model performance, we chose to delve deeper
into the implications of this experimental parameter. No-
tably, limited data availability posed challenges to achiev-
ing high accuracy in models trained on InfActPrimitive. To
determine whether this issue extended beyond the domain
of infant action recognition, we made modifications to the
training subset of NTU RGB+D. Specifically, we curated
a subset comprising only five action classes, namely, ’sit
down,’ ’stand up,’ ’falling down,’ ’jump on,’ and ’drop,’
which closely matched those in InfActPrimitive. We then
restricted the number of samples per class in this subset to
align with the size of the InfActPrimitive training subset.
The validation samples for these selected classes remained
unchanged.

As shown in Figure 5, the latent variables demonstrate a
significantly greater degree of separability within the adult
domain compared to the infant domain. This finding high-
lights the potential limitations of models pretrained on in-
fants in capturing the underlying patterns specific to the
infant domain. The disparity can be attributed to the sub-

stantial differences between the adult and infant domains,
emphasizing the necessity for domain-specific model adap-
tations or training approaches.

Intra-class data diversity experiment– In our final ex-
periment, we investigate the impact of intra-class diversity
on action recognition model performance. We hypothesize
that the absence of structural coherence and the inherent
variations among samples from the same class can signif-
icantly reduce validation accuracy. While traditional action
recognition datasets like NTU RGB+D are known for rigid
action instructions and minimal intra-class variation, our In-
fActPrimitive dataset, derived from in-the-wild videos, ex-
hibits a higher level of variability in performed actions. To
test this hypothesis, we conducted cross-validation training,
dividing our training dataset into five subsets and training on
four while validating on the fifth. The original validation set
of InfActPrimitive was used for testing. Given the superior
results achieved with the PoseC3D model using 2D skeleton
data, we considered this model as an infant action recogni-
tion model. Our findings, presented in Table 2, shed light
on the influence of intra-class diversity on action recogni-
tion model performance.

As shown in Table 2, although each experiment yields
high training accuracy, there are substantial variations in
validation and testing accuracies across experiments. These
outcomes reveal discrepancies in the training datasets, lead-
ing to inconsistent learning, and underscore distinctions be-
tween videos collected from diverse sources.

5. Conclusion
Our work has introduced a unique dataset for infant ac-

tion recognition, which we believe will serve as an in-
valuable benchmark for the field of infant action recog-
nition and milestone tracking. Through our research,
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Figure 5. 2D latent projections generated through t-SNE for validation samples from both the NTU RGB+D and InfActPrimitive datasets. The results, pre-
sented from left to right, demonstrate the projection of the latent variables produced by PoseC3D, InfoGCN, and ST-GCN. While these methods effectively
capture patterns in adult actions within the NTU RGB+D dataset, they struggle to distinguish between infant actions in the InfActPrimitive dataset.

Table 2. Infant action recognition results with inter-class data diversity
using PoseC3D [4]. InfActPrimitive training set is partitioned into five
folds, with one fold reserved for validation while the remaining folds were
used to train the model. The last row of the table presents the mean and
variance computed across all folds.

Held-out fold Train Validation Test

Fold 1 93.7 83.7 64.3
Fold 2 87.5 91.2 61.2
Fold 3 93.7 83.0 56.3
Fold 4 93.7 78.7 60.8
Fold 5 93.7 85.0 50.6

Average 92.50± 6.2 84.3± 16.3 58.6±22.7

we applied state-of-the-art skeleton-based action recogni-
tion techniques, with Pose3D achieving reasonable perfor-
mance. However, it is important to note that most other
successful state-of-the-art action recognition methods failed
miserably when it came to categorizing infant actions. This
stark contrast underscores a significant knowledge gap be-
tween infant and adult action recognition modeling. This
divergence arises from the distinct dynamics inherent in in-
fant movements compared to those of adults, emphasizing
the need for specialized, data-efficient models tailored ex-
plicitly for infant video datasets. Addressing this challenge
is crucial to advancing the field of infant action recogni-
tion and ensuring that the developmental milestones of our
youngest subjects are accurately tracked and understood.
Our findings shed light on the unique intricacies of infant

actions and pave the way for future research to bridge the
gap in modeling techniques and foster a deeper understand-
ing of infant development.
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