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Abstract

Semantic part segmentation provides an intricate and in-
terpretable understanding of an object, thereby benefiting nu-
merous downstream tasks. However, the need for exhaustive
annotations impedes its usage across diverse object types.
This paper focuses on learning part segmentation from syn-
thetic animals, leveraging the Skinned Multi-Animal Linear
(SMAL) models to scale up existing synthetic data generated
by computer-aided design (CAD) animal models. Compared
to CAD models, SMAL models generate data with a wider
range of poses observed in real-world scenarios. As a re-
sult, our first contribution is to construct a synthetic animal
dataset of tigers and horses with more pose diversity, termed
Synthetic Animal Parts (SAP). We then benchmark Syn-to-
Real animal part segmentation from SAP to PartImageNet,
namely SynRealPart, with existing semantic segmentation
domain adaptation methods and further improve them as our
second contribution. Concretely, we examine three Syn-to-
Real adaptation methods but observe relative performance
drop due to the innate difference between the two tasks. To
address this, we propose a simple yet effective method called
Class-Balanced Fourier Data Mixing (CB-FDM). Fourier
Data Mixing aligns the spectral amplitudes of synthetic im-
ages with real images, thereby making the mixed images have
more similar frequency content to real images. We further
use Class-Balanced Pseudo-Label Re-Weighting to allevi-
ate the imbalanced class distribution. We demonstrate the
efficacy of CB-FDM on SynRealPart over previous methods
with significant performance improvements. Remarkably,
our third contribution is to reveal that the learned parts
from synthetic tiger and horse are transferable across all
quadrupeds in PartImageNet, further underscoring the util-
ity and potential applications of animal part segmentation.

1. Introduction

Semantic parts of an object provide a hierarchical rep-
resentation which enables detailed and interpretable under-

standing of the object, which can facilitate various down-
stream tasks. For instance, humans can estimate the pose
of a tiger based on the spatial configuration of its part and
hence classify whether it is about to attack or lying down
to rest. These hierarchical representations have also been
proved to be important in many computer vision tasks, e.g.,
pose estimation [1, 2], detection [3, 4], segmentation [5, 6],
fine-grained recognition [7]. However, the annotation of part
segmentation on real images is very expensive, especially
for general non-rigid objects, like animals. To the best of
our knowledge, the only two datasets that offer animal part
segmentation annotation are PASCAL-Part [8] and PartIma-
geNet [9]. While these datasets offer accurate and valuable
annotations, they are limited in number of animal samples
and time-consuming to scale up to more species.

By contrast, annotating parts on synthetic data is a much
cheaper way to achieve the goal of scalability. Prior re-
search [10,11] annotated parts on 3D computer-aided design
(CAD) models and rendered synthetic images based on the
CAD models. With automatic-generated ground truth, this
methodology offers numerous advantages, primarily in sig-
nificantly reducing annotation costs. Once annotated, it can
generate arbitrary number of synthetic images from arbitrary
viewpoints. However, this approach comes across challenges
in animal part segmentation due to the pose diversity in these
CAD models is limited and does not encompass the diverse
poses observed in the natural world.

As illustrated in Fig 1, in this paper, we propose to ex-
pand the pose space for CAD data by fitting the Skinned
Multi-Animal Linear (SMAL) models [12] with more poses
and utilizing them to generate supplementary synthetic data.
Similar with SMPL models [13], SMAL models build a para-
metric way to represent the animal shape and pose based on
strong prior and is widely used in 3D animal pose and shape
estimation. This process requires additional keypoints an-
notation and silhouette masks to reconstruct SMAL models
from images. Inspired by [14], we replace the manual label-
ing process for silhouettes with the prediction of pre-trained
object segmentation model [15]. Combining the new SMAL
data with the previous CAD data, we construct a synthetic
animal dataset with diverse pose configurations of tiger and
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Figure 1. Overview. We generate synthetic animals by fitting SMAL models and rendering with random viewpoints and textures (top-left).
We exploit Fourier Data Mixing (FDM) to align the spectral amplitudes of unlabeled real animals from PartImageNet and generated synthetic
animals to obtain mixed images (bottom-left). Along with the Class-Balanced (CB) training strategy, our model is capable of segmenting
real animals on seen categories (top-right). Moreover, the model is capable to transfer part knowledge to unseen categories (bottom-right).

horse, termed Synthetic Animal Parts (SAP). Then we set up
a new Syn-to-Real benchmark of animal part segmentation
called SynRealPart from SAP to PartImageNet [9], which
has high-quality part segmentation annotation and provides
extensive pose configurations.

To brigde the domain gap between synthetic and real, we
test 3 state-of-the-art Syn-to-Real domain adaptation meth-
ods [16–18] used for semantic segmentation on SynRealPart,
but fail to achieve decent results. Semantic animal part seg-
mentation is more challenging than semantic segmentation
tasks because semantic parts of animals often have similar
appearance and highly varying shapes.

To address this challenge, we propose a simple yet ef-
fective method called Class-Balanced Fourier Data Mixing
(CB-FDM) which consists of two parts. The first part Fourier
Data Mixing (FDM) aligns the spectral amplitudes of syn-
thetic and real images before mixing them for real domain
training, thereby making the mixed images have more similar
frequency content with real images. Specifically, we recon-
struct the synthetic image with its original spectral phase
and spectral amplitude of the real image. The reconstructed
image is then mixed with the real image for training in real
domain. Furthermore, we propose to use Class-Balanced
Pseudo-Label Re-Weighting (CB) on certain minority class
in terms of pixel frequency to alleviate the influence of the

imbalanced class distribution in SAP.
We empirically evaluate the effectiveness of our method

on the SynRealPart benchmark and achieve non-trivial im-
provement compared to various domain adaptation methods.
Specifically, we improve DAformer [16] from 48.08 to 58.04
mIoU. Notably, our experiments also reveal that the learned
parts from synthetic tiger and horse can be efficiently trans-
ferred (i.e. without using real labels) across all quadrupeds
species in PartImageNet, even for species that have large
shape variations with tiger and horse.

In summary, our main contributions are:

1. We construct a synthetic animal dataset of tigers and
horses with larger diversity in pose space, named Syn-
thetic Animal Parts (SAP), to facilitate research in ani-
mal part segmentation.

2. We set up a new Syn-to-Real benchmark of animal part
segmentation from SAP to PartImageNet and propose
a simple yet effective method CB-FDM to adapt Syn-
to-Real methods designed for semantic segmentation to
animal part segmentation.

3. We reveal that the learned parts from synthetic tigers
and horses are transferable across all quadrupeds in
PartImageNet, which supports that core set selection
for each animal category could be an effective solution
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to limited data, further underscoring the utility and
potential applications of animal part segmentation.

2. Related Work
2.1. Part Segmentation

Segmenting object parts is a long-standing problem in
computer vision and there is a rich literature on the topic.
The pioneering work Pictorial Structure [19] along with
following works [20–24] explicitly model parts and their
spatial relations to the whole object. These methods share
a common theme that the object-part models provide rich
representations of objects and help interpretability. However,
in the era of deep learning with data-driven models, research
on part-based models gets hindered due to the lack of large-
scale datasets. As a result, most recent works [25–31] mainly
concentrate on unsupervised or self-supervised co-part seg-
mentation. Both rigid [32, 33] and non-rigid objects [34–37]
have been studied in part segmentation, but for non-rigid
objects, recent works mainly focus on human part segmenta-
tion [34, 35, 38, 39] while there are still limited progress for
animals due to the severer scarce of data. In this work, we
propose a new direction to solve animal part segmentation
by utilizing synthetic data, which is much cheaper and easier
to obtain compared to the expensive real data. We further
explore how to transfer the models from synthetic to real in
an unsupervised manner and achieve promising results.

2.2. Synthetic Data

Synthetic data generated by computer graphics tech-
niques are effective for model diagnosis [40, 41] and have
boosted performance in many real-world application do-
mains [10, 11, 42–46]. For synthetic animals, Haggag et
al. [47] uses a marker-based motion-capture (MoCap) sys-
tem to manually generate the animal poses which is time-
consuming to generate more diverse poses. Mu et al. [10]
uses 3D CAD animal models with their given animation se-
quences for data generation. However, the number of poses
of CAD models is limited due to their animation sequences
and thus is hard to scale up. We propose to use SMAL mod-
els [12] to generate synthetic data with more diverse poses
as a supplementary for the CAD synthetic data.

2.3. Fourier Domain Bridging

In recent years, there has been a renewed interest in using
Fourier transform based methodologies in efforts to solve
problems like domain adaptation [48–50], domain gener-
alization [51, 52], domain gap reduction [53], etc. Few
works [48, 53] swap only low frequency component of the
amplitude spectrum in order to learn better domain bridging
features by aping target image style. Others [50, 52] employ
Fourier amplitude information to generate synthetic or noisy
adversarial images using source domain amplitude spectrum.

There also have been attempts [49, 51] to preserve the phase
information of an image to learn better domain bridging
features - by creating images with interpolated amplitude
spectrum [51] or mapping between the phase information
of the source and target domains [49]. Our Fourier Cross-
Domain Data Mixing does not employ selective spectrum
swap like [48, 53] for whole images, regularize optimiza-
tion using adversarial images [50, 52] or phase spectrum
data [49, 51] or simply interpolate between domain spec-
trum [51]. We simply utilize Fourier domain information
along with spatial data mixing to help the model learn better
cross-domain features. Our method does take inspiration
from the simple, yet effective aforementioned works regard-
ing utilisation of properties of Fourier transform.

3. Synthetic Dataset
By evaluating the results of utilizing CAD data for Syn-to-

Real animal part segmentation on PartImageNet, we identify
a few failure cases involving unusual poses (e.g. lying)
and animals with self-occlusions. One typical example is
shown in Fig 2. Adding synthetic data with more unusual
poses is the most intuitive solution. However, the anima-
tion sequences for each CAD animal model provide limited
poses and public animal motion capture data is also scarce,
which make the process difficult. Therefore, we opt to utilize
SMAL models [12], which built a parametric way to repre-
sent the animal shape and pose based on strong prior. SMAL
models are able to precisely reconstruct animal poses from
2D images by using the animal keypoints annotation and
silhouette (i.e. foreground) mask. Moreover, people only
need to annotate parts for one SMAL model as these models
share the same vertex IDs, which makes the data generation
super efficient. We present the details of our data generation
process and statistics below.

Figure 2. Failure cases when using CAD synthetic data only.
Due to the limited poses contained in CAD models, the model fails
to segment the torso out and also predicts inaccurate boundaries.

3.1. Data Generation

(1) 2D Annotation. Firstly, we select several natural animal
images depicting poses not including in animation sequences
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of CAD models from online resources. Secondly, we care-
fully annotate 26 keypoints per image based on the original
keypoints definition of SMAL model. Inspired by [14], we
replace the manual labeling process for silhouettes with the
prediction of pre-trained object segmentation model [15].
(2) SMAL Fitting. With the keypoints and silhouette masks,
we utilize SMALR [54] which recovers refined 3D models
from 2D images. For detailed fitting process, we refer to [54]
for more information.
(3) 3D Part Annotation. The annotation of 3D parts is done
by grouping the vertex IDs of each semantic part. Firstly, we
select an SMAL model of arbitrary animal in a typical pose.
Secondly, we use Blender [55] to group the vertex IDs of
each part and save them. Since all SMAL models share the
same vertex IDs, this part annotation can be directly applied
to other SMAL models.
(4) Rendering Images and Part Segmentation Masks. Fol-
lowing previous work [10, 11], we use Blender as our render
and randomize render parameters (e.g., viewpoint, lighting,
and object texture) to promote domain generalization. The
background images are randomly sampled from COCO [56].
The 2D part segmentation mask is obtained through directly
projecting the annotated parts in the third step.

3.2. Dataset Statistics

We create our SMAL data utilizing the aforementioned
pipeline. Specifically, we generate a total of 4,400 synthetic
tiger images from 11 distinct poses. Each pose encompasses
100 viewpoints and 4 transformations, notably rotations.
Similarly, we produce 2,000 synthetic horse images derived
from 10 poses, with 100 viewpoints and 2 transformations.
All animals are rendered with randomly selected textures
from real images. It is important to highlight that our SMAL
synthetic data offers a broad range of unusual poses, includ-
ing lying, climbing, and other movements beyond walking
and running, which are not included in the CAD synthetic
data introduced in [10].

We further integrate our SMAL synthetic data with the
existing CAD synthetic data [10], creating a comprehensive
dataset specifically designed for animal part segmentation,
named Synthetic Animal Parts (SAP). This combined dataset
encompasses a total of 14,400 images for tigers and 12,000
images for horses. SAP offers diverse pose configurations
for both tigers and horses, accompanied by accurate part
masks. We believe that SAP will serve as valuable resources
for advancing research in animal part segmentation.

4. Methods
In this section, we begin by presenting the formulation for

syn-to-real part segmentation. Subsequently, we introduce
the intuition and details of Fourier Data Mixing (FDM).
Finally, we illustrate the motivation behind Class-Balanced
Pseudo-Label Re-Weighting (CB).

4.1. Preliminaries

Syn-to-Real Part Segmentation Similar to semantic seg-
mentation, a part segmentation model predicts the pixel-wise
label for parts of a object where each part is a category. For
example, in our quadruped animals setup, the part classes are
head, torso, leg, tail of a quadruped animal. We denote the
source domain as Ds = {(x(i)

s , y
(i)
s )}Ns

i=1 with Ns samples
drawn from the synthetic domain, where x

(i)
s ∈ Xs is an

image, y(i)s ∈ Ys is the corresponding pixel-wise one-hot
label over K + 1 classes (including background). Note that
K is the number of part classes. Similarly, the unlabeled
target domain is denoted as Dt = {x(i)

t }Nt
i=1 with Nt sam-

ples drawn from the real domain. This work aims to learn
a part segmentation model that can effectively transfer part
knowledge from the synthetic domain to the real domain.
In addition, the part segmentation model is also assumed
to have ability to transfer parts from one object class to a
similar object class.

4.2. Fourier Data Mixing

Recent unsupervised syn-to-real translation methods
[16–18, 57, 58] use self-training (i.e. using pseudo labelled
real images for training on target domain) framework. The
quality of pseudo-labels for the target images is crucial for
achieving satisfactory convergence. As a solution, [59] pro-
posed mixing the source and target domain image patches
with binary masks obtained using various mixing algorithms
[60, 61]. On the other hand, spectral information obtained
through Fourier transform can be utilized to provide a global
description of the image [62] as well as help in learning
domain bridging features [49, 51]. Inspired by both of these
concepts, we align the global information of the mixed re-
gions to help the model learn better cross-domain features
by aligning the spectral amplitudes of the mixed images. Let
FA, FP : RH×W×3 → RH×W×3 be the amplitude and
phase components of the Fourier transform F of an RGB
image, i.e., for a single channel image x we have:

F(x)(m,n) =
∑
h,w

x(h,w)e−j2π( h
H m+ w

W n), j2 = −1 (1)

, which can be implemented efficiently use the Fast Fourier
Transform(FFT) algorithm [63]. F−1 is the inverse Fourier
transform that maps the spectral signals back to the image
space. Then in the mixed sampling stage, given two random
samples (xs, ys) ∼ Ds, xt ∼ Dt, we use FFT to get the
spectral signals(amplitude and phase) from both, then the
Fourier alignment can be formulated as:

xmixed = M⊙F−1(FA(xt),FP (xs))+(1−M)⊙xt (2)

ymixed = M⊙ ys + (1−M)⊙ ŷt (3)
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, where M denotes a binary mask generated by ClassMix
[60], indicating which pixel needs to be copied from the
augmented source domain and pasted to the target domain,
1 is a mask filled with ones, and ⊙ represents the element-
wise multiplication operation, and ŷt is the pseudo-label of
xt. In the formulation, the amplitude of the source image
FA(xs) is replaced by that of the target image xt. Then
the modified spectral representation of xs, with its phase
component unchanged, is mapped back the image domain to
get the augmented image. We hypothesize that by making
the source region of the mixed images have more similar
frequency content with the target region, it will be harder
for the model the learn the difference between the source
and target regions and force the model to learn more domain-
invariant features, thereby achieving better performance.

4.3. Class-Balanced Pseudo-Label Re-Weighting

Our synthetic dataset exhibiting a class imbalanced dis-
tribution in terms of pixel frequency 1. Although existing
methods [16–18,57] employ the Rare Class Sampling (RCS)
training strategy to sample the source images which contain
minority classes in terms of pixel frequency more often, the
supporting gradients [64] for some minority classes may still
be very limited at the early training stage. It arises due to
the fact that many images containing minority classes in
SAP marginally surpass the pre-defined threshold of pixel
number in RCS. To prevent RCS from sampling in a lim-
ited range of images, we are not able to set a high threshold
which help the sampled images to have relatively higher
pixel frequency for the minority class. Therefore, even one
image containing certain minority class is sampled by RCS,
the supporting gradients may still be limited. In the re-
search of semi-supervised learning (SSL) in the context of
class-imbalanced data for the classification task, there is an
observation that the undesired performance of existing SSL
algorithms on imbalanced data is mainly due to low recall
on minority classes in terms of number of samples, but the
precision on minority classes is surprisingly high [65]. We
observe a similar phenomenon w.r.t animal head part, which
is one of the minority classes in terms of pixel frequency in
our synthetic data. The predictions of the animal head parts
for real images hardly give false positive results but mainly
the false negative. Therefore, in order to boost pseudo-label
confidence for the head part, we give it more weight. We
name the multiplicative factor of the pseudo-label weights of
animal head as β for convenience. This technique mitigates
the issue that the model may receive very limited supporting
gradients for animal head class at the early stage of training,
leading to unsatisfactory performance.

5. Experiments
In this section, we first provide our implementation details

including how we construct train and test set on SynRealPart

Table 1. Pixel frequency of 4 classes in the Synthetic Animal
Parts (SAP) dataset. We compute the statistics of pixel frequency
in SAP which exhibits the class-imbalance distribution.

class head torso leg tail
pixel frequency 12.7% 55.6% 25.9% 5.8%

and training settings in Sec. 5.1. After setting the stage, we
introduce our main results, compared with state-of-the-art
methods in Sec. 5.2, followed by ablation studies in Sec.
5.3 to validate the key designs in our model. In the end, we
further explore the part knowledge transfer in Sec. 5.4 that
part segmentation results are transferable among species of
similar structures regardless of shape and texture difference
which points to a promising future direction. Qualitative
visualization results are presented as well.

5.1. Implementation Details

Data For synthetic data, we utilize 23520 images (11520
synthetic tiger images + 12000 synthetic horse images) in
SAP for training. For real training data, we select 5942
quadrupeds images from PartImageNet [9] which excludes
tiger images. Note that PartImageNet doesn’t have horse
images. Then we can get a UDA setting that all tiger and
horse information are learned from our synthetic data. We
select another 1213 quadrupeds images as our main test set
which includes tiger images.
Training settings. We conduct our experiments using Seg-
Former [66], DAFormer [16], HRDA [17] and SePiCo
[18]. MiT-b5 (Mix Transformer encoders) pre-trained on
ImageNet-1k is adopted as the backbone for above methods.
If not specified, we train all our models with batch size 2 on
a single GPU for 30k iterations. We set the learning rate of
the decoder head to be 6e-4 and the backbone has a learning
rate multiplier 0.1. We use AdamW [67] optimizer with
weight decay 0.01. For data augmentation, we adopt random
color jittering. The input image is cropped into 512× 512
(1024× 1024 for HRDA).

5.2. Main Results

Table 2 summaries our results on our main test set. Seg-
Former [66] supervisedly trained on SAP achieves 42.21
mIoU on the test set. We observe that naively applying
state-of-the-art semantic segmentation syn-to-real methods
sometimes can not bring significant improvement (i.e. from
42.21 to 43.87 in terms of mIoU for HRDA [17]). Notably,
after applying our proposed Class-Balanced Fourier Data
Mixing (CB-FDM), all syn-to-real methods get non-trivial
improvement. For DAFormer, the improvement gain is up
to 9.96 mIoU while we also improve HRDA by 4.47 and
SePiCo [18] by 2.27 in terms of mIoU. SePiCo [18] which
combines DAFormer [16] with contrastive learning shows
the optimal performance in direct application but not very
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Table 2. Comparison of part segmentation (mIoU) on our test set. CB-FDM brings non-traivial improvements to all the syn-to-real
methods, especially for DAFormer [16], which makes DAFormer + CB-FDM the optimal syn-to-real solution in our current benchmark in
terms of mIoU. Numbers are averaged over 3 random seeds. *: train SegFormer with synthetic data and real data successively for each
iteration (equivalent to replacing pseudo-labels with real labels in DAFormer). “bg" stands for background.

data method head torso leg tail bg mIoU
SAP 49.71 38.84 31.86 7.53 83.11 42.21

PartImageNet [9]
SegFormer [66]

85.79 72.69 60.00 58.27 96.81 74.71
DAFormer [16] 44.94 48.66 44.11 12.21 90.45 48.08

DAFormer + CB-FDM 69.40 56.81 49.17 21.42 93.39 58.04
HRDA [17] 44.91 37.16 36.51 12.75 88.00 43.87

HRDA + CB-FDM 64.21 40.69 42.03 6.54 88.21 48.34
SePiCo [18] 55.67 57.83 42.53 15.6 91.29 52.58

SAP + Unlabeled
PartImageNet

SePiCo + CB-FDM 58.72 52.71 49.37 21.17 92.27 54.85
SAP + PartImageNet SegFormer* 86.33 73.37 62.30 56.65 96.72 75.08

Table 3. CB-FDM ablation studies on our test set in terms of mIoU. FDM & CB both provide non-trivial improvement based on
DAFormer. Numbers are averaged over 3 random seeds.

method FDM CB head torso leg tail bg mIoU

DAFormer [16]

✗ ✗ 44.94 48.66 44.11 12.21 90.45 48.08
✓ ✗ 50.14 50.72 49.17 20.74 93.11 52.77
✗ ✓ 71.69 56.21 46.37 16.15 92.19 56.52
✓ ✓ 69.40 56.81 49.17 21.42 93.39 58.04

sensitive to CB-FDM. We hypothesis that it is because CB-
FDM is designed for the cross-entropy losses of the mixed
images while SePiCo additionally has one contrastive loss
for source images with their groundtruth and one contrastive
loss for real images with their pesudo-labels, which mitigate
the influence of CB-FDM. The syn-to-real results also reveal
that part knowledge can be efficiently transferred among ob-
jects with similar structures regardless of shape and texture
difference. With unlabeled real data and proper algorithms,
the part knowledge of only synthetic tiger and horse can be
much better adapted to all 46 quadrupeds in PartImageNet
(i.e. DAFormer + CB-FDM improves the performance by
15.83 mIoU compared to training on SAP). We believe this
finding can motivate the exploration in animal part segmen-
tation since people will only need to select a core set of
animals species in each animal category for training. In ad-
dtion, we supervisedly train a SegFormer on real training
data from PartImageNet [9] and achieve 74.71 mIoU. When
we supervisedly train on both synthetic and real data, there
is another 0.37 improvement in terms of mIoU.
Visualizations. We also conduct qualitative comparison as il-
lustrated in Fig. 3. We show that models trained only on SAP
usually fail to generalize to real images while naively adapt-
ing semantic segmentation syn-to-real methods yields many
incorrect part predictions. On the contrary, our CB-FDM
with DAFormer is able to predict more accurate boundary
for different parts even in the scenarios of challenging poses
(e.g. row 2&3&4) and unseen species that have large shape
difference with tiger and horse (e.g. row 5&6).

5.3. Ablation Study

Effectiveness of proposed modules. Table 3 summarizes
the effects of the key designs in our method. We note that
after applying Fourier Data Mixing (FDM), we can obtain
a general improvement on all classes which lead to an over-
all improvement of 4.69 on mIoU. Class-Balanced (CB)
sampling brings a significant improvement on head class
(i.e. 26.75 mIoU) as it pays more attention to it while also
improves the performance on all the other classes. When
combining these two parts together, we obtain our final
method Class-Balanced Fourier Data Mixing (CB-FDM)
and achieves 58.04 mIoU. We can notice slight performance
drop on head but improvements on all the other classes com-
pared to using CB only. We assume that FDM prevents
the over-fitting on head when using CB and thus is a good
combination with it.
Influence of balance strength β. Tab. 4 presents our results
on controlling the balance strength through β. As can be
observed, a reasonable strong balance weight (i.e. β > 1.5)
is required to achieve good results, while setting it too large
will also harm the performance as well. We set β to be 2 as
our default setting according to this experimental results.
Synthetic Data Source. Tab. 5 shows ablation studies on
using our SMAL synthetic data. As we can observe from
the comparisons, after introducing our SMAL synthetic data,
SegFormer(i.e. synthetic only) achieves 1.6 improvement
while DAFormer + CB-FDM achieves 2.59 improvement in
terms of mIoU. However, we notice a performance drop on
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Figure 3. Qualitative comparisons for different methods on our test set. Note that our CB-FDM with DAFormer [16] produces more
accurate part segmentation results in challenging poses (e.g., row 2&3&4) and unseen species that have large shape difference with tiger and
horse (e.g., row 5&6).

Table 4. Parameter study of the class balance weight β. We achieve the optimal performance when β = 2. Numbers are averaged over 3
random seeds.

method β head torso leg tail bg mIoU

DAFormer [16] + CB

1.5 58.97 52.89 41.87 19.54 92.17 53.09
2 71.69 56.21 46.37 16.15 92.19 56.52

2.5 71.72 57.74 45.86 13.67 92.46 56.29
3 72.68 59.86 45.79 8.32 92.04 55.74

tail after introducing SMAL data. We hypothesis that one
potential reason is the inaccurate tail shape for SMAL fitting
algorithms when tails are self-occluded for unusual poses in
real images.

5.4. Zero-Shot Part Knowledge Transfer

In Sec. 5.2, we already discussed that Table 2 implies
the part knowledge from synthetic tiger and horse can be
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Table 5. Ablation study for adding SMAL synthetic data. Introducing SMAL data lead to a non-trivial improvement. Numbers are
averaged over 3 random seeds.

Method
synthetic data source

head torso leg tail bg mIoU
CAD SMAL

SegFormer [66]
✓ ✗ 44.51 35.72 31.45 8.20 83.19 40.61
✓ ✓ 49.71 38.84 31.86 7.53 83.11 42.21

DAFormer [16]
+ CB-FDM

✓ ✗ 59.09 45.40 48.88 31.98 91.90 55.45
✓ ✓ 69.40 56.81 49.17 21.42 93.39 58.04

Table 6. Part segmentation results (mIoU) of Horse and Tiger settings. Horse setting is trained with synthetic horse and horse-like real
images, and then test on tiger-like real images. Similarly, Tiger setting is trained with synthetic tiger and tiger-like real images, and then test
on horse-like real images. Numbers are averaged over 3 random seeds.

settings method head torso leg tail bg mIoU
Tiger

DAFormer + CB-FDM
32.97 57.52 46.46 2.14 94.10 46.64

Horse 71.22 54.63 38.26 12.07 90.11 53.26

efficiently transferred to all quadrupeds in PartImageNet. To
further explore the power of this transfer ability, we design
2 more zero-shot settings for only tiger and horse respec-
tively because they have relatively large shape difference.
Since PartImageNet doesn’t have horse classes, we extend
the standard to tiger-like and horse-like animals. We select a
tiger-like (i.e. tiger, cheetah, lion) animal set which includes
630 images and a horse-like (i.e. goat, deer, buffalo, etc)
animal set which includes 1016 images from PartImageNet.
Then we have the following 2 unsupervised syn-to-real set-
tings: 1) Tiger: Train on synthetic tiger and tiger-like set,
and test on horse-like set; 2) Horse: Train on synthetic horse
and horse-like set, and test on tiger-like set. From table 5.4,
we can see both settings can transfer the torso knowledge
pretty good as that is the part which have the most simi-
lar shape. We assume the huge difference in head and tail
performance between these 2 settings is mainly caused by
the ambiguity problem of tail and horn (refer to supplemen-
tary for its visualization). Horn is an unseen parts for our
synthetic data. Our real groundtruth regard it as a part of
head while the model trained on synthetic often predicts it
as tail. Horse-like set mainly consists of animals with horns,
which leads to a huge performance drop on head and tail
for Tiger setting. Without the ambiguity issue, we can see
the Horse setting has achieved 53.26 mIoU even with a tiny
amount of unlabeled real data and this zero-shot setup. We
believe these findings point to a promising future direction
in solving limited data problems in animal part segmentation
and constructing training data more efficiently (i.e. core set
selection for each animal category).

6. Conclusion

In this paper, we propose to use SMAL models for effi-
ciently generating synthetic data with diverse pose config-
urations and further construct a synthetic animal dataset of
tigers and horses with part segmentation groundtruth termed

as Synthetic Animal Parts (SAP). Then we set up a new
Syn-to-Real benchmark of animal part segmentation from
SAP to PartImageNet called SynRealPart, and we propose a
simple yet effective method called Class-Balanced Fourier
Data Mixing (CB-FDM) consisting of Fourier Data Mix-
ing (FDM) and Class-Balanced Pseudo-label Re-weighting
(CB) to improve the performance of existing unsupervised
syn-to-real adaptation methods designed for semantic seg-
mentation on it. Our experiments also reveal that the learned
parts from synthetic tiger and horse are transferable across
all quadrupeds in PartImageNet, which supports that core
set selection for each animal category could be an effective
solution to limited data, further underscoring the utility and
potential applications of animal part segmentation.
Limitations. At present, our SAP dataset focuses exclu-
sively on two animal species: tigers and horses, which are
two representative animals for quadrupeds. For quadrupeds,
we plan to add one or two quadrupeds which have horns to
solve the ambiguity problems between horn and tail. We
also plan to expand our synthetic animal data to contain
more animal categories like bird and reptile. While SMAL
models are for quadrupeds only, we need to explore other
efficient solutions to creating diverse poses, but using anima-
tion sequences of CAD models for normal poses and using
3D models reconstructed from real images for unusual poses
may still be our core strategy. Furthermore, it is important to
note that Class-Balanced Pseudo-Label Re-Weighting fails
in "tail", resulting in satisfactory performance only for the
"head" class. One main reason is the ambiguity problem be-
tween tail and horn which may be solved by adding synthetic
animals with horns. However, tail is still the hardest part
to segment since it has the biggest shape and deformation
variance among different animals. Improving segmentation
accuracy on tail is quite challenging and remains unsolved.
Lastly, while our model demonstrates the ability to transfer
part knowledge across different animal species, it still lacks
the capability to handle unseen parts (i.e. horns).
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