
Neural Texture Puppeteer: A Framework for Neural Geometry and Texture
Rendering of Articulated Shapes, Enabling Re-Identification at Interactive Speed

Urs Waldmann Ole Johannsen

University of Konstanz, Germany
{firstname.lastname}@uni-konstanz.de

Bastian Goldluecke

Abstract

In this paper, we present a neural rendering pipeline
for textured articulated shapes that we call Neural Texture
Puppeteer. Our method separates geometry and texture en-
coding. The geometry pipeline learns to capture spatial
relationships on the surface of the articulated shape from
ground truth data that provides this geometric information.
A texture auto-encoder makes use of this information to en-
code textured images into a global latent code. This global
texture embedding can be efficiently trained separately from
the geometry, and used in a downstream task to identify
individuals. The neural texture rendering and the iden-
tification of individuals run at interactive speeds. To the
best of our knowledge, we are the first to offer a promising
alternative to CNN- or transformer-based approaches for
re-identification of articulated individuals based on neural
rendering. Realistic looking novel view and pose synthe-
sis for different synthetic cow textures further demonstrate
the quality of our method. Restricted by the availability of
ground truth data for the articulated shape’s geometry, the
quality for real-world data synthesis is reduced. We fur-
ther demonstrate the flexibility of our model for real-world
data by applying a synthetic to real-world texture domain
shift where we reconstruct the texture from a real-world 2D
RGB image. Thus, our method can be applied to endan-
gered species where data is limited. Our novel synthetic
texture dataset NePuMoo is publicly available to inspire
further development in the field of neural rendering-based
re-identification.

1. Introduction

Recent developments in neural rendering brought a big
boost to many vision applications [39, 40, 49]. One of them
is novel view and novel pose synthesis. With the success of
NeRF [26] that can render rigid objects in 3D from multi-
ple input images, many other methods for novel view syn-

thesis of static content were developed [20, 28]. Next, ap-
proaches that additionally handle articulated shapes lever-
aging the SMPL mesh model [23] were developed [30, 31].
For example, [47] generates an UV texture map that is com-
bined with a rendering tensor generated with OpenDR [24]
from the SMPL [23] model. A drawback of all methods that
leverage the SMPL model [23] is that it limits the methods
to a pre-defined class of shapes. Articulated shapes can also
be handled with methods that leverage implicit neural rep-
resentations [38] and do not rely on the SMPL model.

However, NeRF-based approaches use volumetric ren-
dering which is time and memory intensive. In contrast,
there are methods for static content [37] and articulated
shapes [8] that render in 2D. Their advantage compared to
volumetric rendering of NeRF-based approaches is that they
require only a single neural network evaluation per ray. This
results in significantly faster inference speed [8, 37].

Like neural rendering, tracking is a vast field of research
and its applications range from self-driving cars [22] to the
study of collective behaviour [15]. Therefore reliable and
accurate tracking of objects like humans [3, 5, 33, 34] and
animals [18, 32, 42–45] is required. An essential exten-
sion for many tracking applications is the re-identification
of individuals when leaving and re-entering the scene. Most
frameworks use CNNs or vision transformers to extract im-
age features for object re-identifiaction [11, 18, 21, 52].

Surprisingly, only one study that we are aware of em-
ploys neural rendering to identify objects in a tracking sce-
nario, namely [51], which tracks single rigid objects in
motion in a self-supervised manner. It however has lim-
itations in practical applications because it handles only
rigid objects and has a slow inference speed as it is NeRF-
based [26] and uses time- and memory-intensive volumetric
rendering.

In particular for the study of collective behaviour, but
also for other research in biology directed towards animals,
it is crucial to have high-performance tracking [2] and re-
identification of individuals [7]. The aim of our work is
therefore to leverage the recent advances in neural render-

This WACV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

69



ing and develop a pipeline that can handle more than one
textured articulated shape in a single model, thus enabling
re-identification in tracking scenarios.

Contributions. We present a flexible neural rendering
pipeline for textured articulated shapes that we call Neural
Texture Puppeteer (NeTePu). Our method separates geom-
etry and texture encoding. The geometry pipeline learns to
capture spatial relationships on the surface of the articulated
shape from ground truth data that provides this geometric
information. For this purpose we extend the idea in [46] to
articulated shapes, cf. Sec. 3.1. We show that our method
encodes a distinct global texture embedding (cf. Fig. 5a),
which is computed from this geometric information and 2D
color information. This global texture embedding can be
used in a downstream task to identify individuals.

Our neural rendering-based re-identification of individu-
als runs at interactive speeds (cf. Sec. 5.4) and thus offers
a promising alternative to CNN- or transformer-based ap-
proaches in tasks such as the re-identification of individuals
in tracking scenarios. To the best of our knowledge, we
are the first to provide a framework for re-identification of
articulated individuals based on neural rendering. We also
demonstrate the quality of our method with realistic look-
ing novel view and pose synthesis for different synthetic
cow textures, cf. Fig. 3. We further demonstrate the flex-
ibility of our model by applying a synthetic to real-world
texture domain shift where we reconstruct the texture from
a real-world 2D RGB image with a model trained on syn-
thetic data only. This makes our model useful for real-world
applications with endangered animal species.

Our novel synthetic texture dataset NePuMoo (cf. Sec. 4)
together with the code to reproduce the results of this paper
are publicly available at https://github.com/urs-
waldmann/NeTePu to inspire further development in the
field of neural rendering-based re-identification.

2. Related Work
We give an overview on re-identification, the texture pre-

diction for articulated objects and datasets for these tasks.
For an overview on neural rendering we refer to [39,40,49].

Texture Prediction of Articulated Objects. There ex-
ist a wide range of methods to predict the texture of artic-
ulated human shapes. Good results can be achieved with
NeRF-based [26] approaches [30, 38], approaches based
on implicit neural representations [31, 36] or approximate
differentiable rendering [47]. In contrast to our method,
all these approaches make some strong simplifications.
While [30, 31, 47] leverage the SMPL [23] model, [30, 38]
learn only one model per texture. Furthermore, [30, 36, 38]
render in 3D, while our method shifts rendering to 2D by
employing techniques from [8], which makes our method
much faster.

For animals, we are aware of four works [14, 19, 53, 54]

which learn UV maps which they project on a mesh model.
In contrast to our neural rendering approach, they all use
morphable models on which they map the predicted texture.

Only recently Wu et al. published [48]. This framework
reconstructs textured articulated objects from single images.
In contrast to this work, we extract NNOPCS maps (similar
to NOCS maps [46], cf. Sec. 3.1) instead of a prior mesh
for the object category. Further, instead of a collection of
single-view images for an object category, we leverage a
multi-view setup to assure that the individual’s texture has
been observed completely during training. This guarantees
a meaningful global texture latent code for each individual
from any viewpoint for re-identification in tracking tasks.

Re-identification of Individuals. Tracking is a vast
field under constant development. For a summary, we re-
fer to [4, 6, 50]. Re-identification of individuals is an im-
portant task in scenarios where individuals exit and re-enter
the scene. Popular pipelines for object re-identification train
CNN backbones or vision transformers to extract image fea-
tures [11,18,21,52], and often [11,21,52] need positive and
negative pairs of the object in their training phase. Notably,
[11,18,21,52] base re-indentification on selected image fea-
tures and do not make sure to encode the whole texture of
the individual. In contrast, our encoded global latent code
is used to reconstruct the complete texture from arbitrary
viewpoints within our neural texture rendering pipeline.

From a single input image, [47] generates an UV texture
map that is combined with a rendering tensor generated with
OpenDR [24] using the SMPL [23] mesh model. In the
end, they use a pre-trained person re-identification model
to extract features of the rendered and the input image on
which they calculate a re-identification loss. In contrast to
our work, the authors use a re-identification network to gen-
erate a texture, while we use the texture for re-identification,
which is a fundamental technical difference. Due to this, we
can not perform an experimental comparison with [47].

The only other work that we aware of that uses neural
rendering for tracking is [51]. While [51] reconstructs sin-
gle rigid objects in motion from multi-view RGB videos
in a self-supervised manner with a NeRF-based [26] neural
rendering method, we can reconstruct articulated objects,
which makes our method applicable to humans and ani-
mals. Furthermore our method shifts rendering from 3D
to 2D, as it is based on the neural rendering framework [8].
This fundamental difference makes our method much faster
compared to NeRF-based [26] approaches like [51].

Datasets. We aim to reconstruct textures of articulated
shapes with a keypoint-based neural rendering pipeline that
leverages our NNOPCS maps. For this task we need
datasets that contain articulated shapes like humans or an-
imals together with keypoints, segmentation masks, RGB
images and NNOPCS maps. For humans the most popu-
lar real-world dataset is H36M [13]. For animals we are

70



𝐳texture(𝐈, 𝐏)
Texture
Encoder

Decoder መ𝐈

𝐱 NePu Encoder
NePu Decoder 
& Renderer

𝐒

𝐏

𝐃𝐳

Pipeline for Geometry

Pipeline for Texture ො𝐱

Figure 1. Complete Pipeline. Our key idea is to disentangle ge-
ometry and texture information of articulated shapes. We modify
the original NePu [8] pipeline to predict a NNOPCS map P̂ (top).
We also predict the silhouette Ŝ and depth map D̂ like the original
NePu pipeline. The heart of our framework is an encoder-decoder
network for the texture of an articulated shape (bottom) that recon-
structs an image I. Details and the model’s loss are in Sec. 3.

aware of four datasets containing more than one individ-
ual [1, 10, 25, 27]. All these datasets lack ground truth
NNOPCS maps for the articulated shapes they contain. That
is why we create a novel synthetic dataset of textured articu-
lated shapes that provides NNOPCS map ground truth. For
a proof of concept, we choose cows as an example species
because their textures can be clearly distinguished.

3. Architecture
The heart of our framework is an encoder-decoder net-

work that reconstructs the texture of an articulated shape,
cf. Fig. 1. As a basis, we make use of Neural Puppeteer
(NePu) [8] for neural rendering.

NePu is a neural rendering pipeline designed specifically
for articulated shapes, which takes as input a set of K 3D
keypoints x ∈ RK×3 and a camera position, and maps
them to a RGB image of the shape (similar to Fig. 1, top:
Pipeline for Geometry). Notably, NePu renders in the 2D
domain, which makes it much faster than volumetric render-
ing: via a transformer network, local features are computed
for each keypoint (NePu Decoder in Fig. 1, top), which are
then projected onto the image plane by the camera. Another
attention-based network, the actual renderer, then generates
a complete 2D image from the projected features at the key-
point locations (NePu Renderer in Fig. 1, top).

Our key idea in this work is to disentangle the pipelines
for geometry and texture information of the shape that we
call Neural Texture Puppeteer (NeTePu). Thus NeTePu,
unlike NePu and [30, 38], can handle more than one tex-
ture in a single model. The original NePu pipeline is there-
fore modified to produce what we call a NNOPCS map
(cf. Sec. 3.1) instead of a final image, cf. Fig. 1 (top). This

NNOPCS map essentially encodes within the image plane
the complete geometric information about the shape rele-
vant for rendering this particular view. Local features f
(we refer to [8] and Sec. 3.1 for details) and global latent
code z (cf. Fig. 1, top) for the geometry are augmented with
separate local features ftexture and a latent code ztexture for
the texture map. An encoder network generates ztexture
for a texture from a view of the shape, while the decoder
is a second NePu-based renderer to generate the final im-
age (cf. Fig. 1, bottom). Putting together the encoder and
decoder for ztexture, we essentially obtain a texture auto-
encoder which, given a fixed geometry, can be efficiently
trained separately from the geometry network.

In the following subsections, we will give the details for
these different modules.

3.1. Pipeline for Geometry

In our framework, the geometry and pose of an artic-
ulated shape is defined by the K different keypoint loca-
tions and a single global latent code z ∈ Rdz for the shape,
which is decoded into a df -dimensional local feature vec-
tor f for each keypoint as input to the renderer. By vary-
ing the keypoint locations and keeping the features fixed,
one can generate renderings of arbitrary poses of the same
geometry [8]. We now use the rendering pipeline in [8],
but do not interpret the output as a rendered color image.
Instead, at each point in the image plane, the 3D output de-
fines a 3D coordinate of a point on the shape in a normalized
coordinate space (NOCS [46]), and additionally in a nor-
malized neutral pose, cf. Fig. 2a, which is why we denote
it Normalized Neutral Object Pose and Coordinate Space
(NNOPCS). Thus, the same point on the shape always has
the same encoding, no matter the pose of the object and the
camera view. The NNOPCS map can thus be viewed as a
generalization of a NOCS map [46].

NNOPCS Maps for Articulated Shapes. Similar to [8],
a coordinate on the object is defined via a 3D vector for each
pixel of the target view with width W and height H , thus
the NNOPCS map is a function of the form

PE,K : RK×3 × RK×df × Rdz → [0, 1]H×W×3. (1)

Here, E,K are the given camera extrinsics and intrinsics,
respectively. The architecture remains the same, so we re-
fer to [8] for details on how the function is implemented as
an attention-based neural network. Similar to [46], the in-
terpretation of the 3D output of the function in Eq. (1) is a
dense pixel-NNOPCS correspondence. Ground truth data to
learn the NNOPCS maps for articulated shapes end-to-end
is rendered via Blender (www.blender.org), see section 4.

3.2. Pipeline for Texture

Texture Encoder. The texture of a shape is described by
a dz-dimensional global texture latent code ztexture (same

71



dimension as z), which augments the global geometry la-
tent code z, cf. Fig. 1. An encoder network enc com-
putes ztexture from a masked input image I together with
the NNOPCS map P (cf. Sec. 3.1) for a certain camera po-
sition,

enc : RH×W×3 × RH×W×3 → Rdz ,

(I,P) 7→ ztexture
(2)

The texture encoder is implemented as a convolutional neu-
ral network with 23 convolution and two dense layers. Be-
tween the layers we use batch normalization [12] and ReLu
activations. Similar to a variational autoencoder [16], the
texture encoder outputs a mean µ ∈ Rdz and standard de-
viation σ2 ∈ Rdz from which we sample the global texture
latent code ztexture.

During training, we use the available ground truth
NNOPCS maps (cf. Sec. 3.1) and silhouette masks. Dur-
ing inference, the silhouette mask and the NNOPCS map is
estimated with the network trained above, cf. Fig. 1. Both
the images as well as the NNOPCS maps are set to zero
outside the shape’s silhouette.

Neural Texture Rendering. Similar to how we render
the NNOPCS maps (cf. Sec. 3.1), we first decode the global
texture embedding ztexture from Eq. (2) into local texture
features with a decoder network

dec : Rdz → RK×df , ztexture 7→ ftexture, (3)

where ftexture gives the df -dimensional local texture fea-
tures for each keypoint. Note that the dimension of ftexture
is the same as the local geometry features f , so the final ren-
derer for a 2D image seen from camera view c conditioned
on ztexture and keypoints x is again (compare with Eq. (1))
a function of the form

CE,K : RK×3 × RK×df × Rdz → [0, 1]H×W×3. (4)

4. Datasets and Training
NePuMoo Dataset. For this proof of concept, we choose

cows as an example shape because their textures can be
clearly distinguished. We extend [9] with its Holstein cow
texture by adding eleven additional cow textures. For each
texture we provide the same 910 poses, each captured from
the same 24 perspectives, placed in three evenly sampled
rings at different heights around the model. This results in
21840 views per texture and a total of 262080 views. Each
view consists of the ground truth 3D and 2D keypoints, the
rendered RGB image, a silhouette of the cow, a depth map
and a NNOPCS map, cf. Sec. 3.1. Each view has a resolu-
tion of 1024 × 768 px. All images were rendered using
Blender (www.blender.org) and the Cycles rendering en-
gine. We provide the same 25 keypoints distributed among
the joints of the cow as [9].

Our synthetic texture dataset also contains instances of
occlusions. We generated 50 instances captured from two
of the 24 camera views. In these samples the Holstein (tex-
ture 0) partially occludes the Limousine (texture 11) cow.
For these cases we provide the occluded and complete sil-
houettes.

H36M Dataset. This human real-world dataset contains
keypoint annotations, segmentations masks and RGB im-
ages of eleven actors in 17 scenarios, cf. [13]. We use the
first 910 frames of the “Posing” scenario from 7 subjects
(S1, S5, S6, S7, S8, S9, S11) for this study, similar to [30],
and all four camera views for training.

Training the Pipeline for Geometry. To train the
NNOPCS maps of articulated shapes, cf. Sec. 3.1, we use
the same regimen as in [8]. However, instead of color im-
ages we train end-to-end with the ground truth NNOPCS
map observations

Pm,c, m ∈ {1, . . . ,M}, c ∈ {1, . . . , C} (5)

over M distinct poses captured by C different cameras. All
model parameters are trained jointly. In the composite loss
from [8], instead of the color loss Lcol we define

LNNOPCS =

M∑
m=1

C∑
c=1

∥PEc,Kc
−Pm,c∥22, (6)

which is the squared pixel-wise difference over all three
channels. For the details of this equation and the composite
loss, we refer to [8].

Training the Pipeline for Texture. While training our
neural texture encoder, decoder and renderer (cf. Fig. 1,
bottom), we keep the weights of the pipeline for geometry
(cf. Fig. 1, top) fixed and use the ground truth NNOPCS as
the fixed geometry. We thus learn only the texture relevant
weights of the pipeline in this step.

Assuming the dataset has T textures with images It,m,c

provided for each texture and the same poses and cameras
as the NNOPCS maps, we define the color rendering loss

Lcol =

T∑
t=1

M∑
m=1

C∑
c=1

∥CEc,Kc − Im,c,t∥22 (7)

as the squared pixel-wise difference over all color channels,
where CE,K is the color rendering function from [8] defined
in Eq. (4). To regularize the texture latent space, we em-
ploy the Kullback–Leibler divergence [17] LKLD between
the predicted multi-dimensional normal distribution and the
standard normal distribution. We enforce this loss with the
same sampling scheme and reparametrization trick as in the
training of a variational autoencoder [16]. The total loss is
thus

L = λcolLcol + λKLDLKLD, (8)

where the different positive numbers λ are hyperparameters
to balance the influence of the two losses.

72



NNOPCS Maps MSE Depth MAE [mm]
Ours

1.6 · 10−4

NePu [8] Ours ∆

22.3 17.8 −4.5

Table 1. Quantitative results for the NNOPCS and depth maps
on the NePuMoo test set. We report MSE for the reconstructed
NNOPCS maps (cf. Sec. 3.1) and MAE [mm] for the reconstructed
depth maps. Comparison of the reconstructed depth map between
NePu [8] and our method. See Sec. 5.2 for a discussion of the
results.

5. Experiments
In Sec. 5.1 we provide implementation details of our

architecture from Sec. 3. We then evaluate the learned
NNOPCS maps (cf. Sec. 3.1) in Sec. 5.2. In Sec. 5.3 we
show novel pose synthesis on our novel NePuMoo and the
H36M [13] dataset and provide texture reconstructions of a
real-world example with a model trained on synthetic data
only. In Sec. 5.4 you find our kernel density estimation
(KDE) [29, 35] of the t-SNE [41] of the global texture em-
bedding that we compare to the embedding of [11].

5.1. Implementation Details

To train NeTePu, we extend the training procedure and
parameters from [8]. We do not render complete NNOPCS
(cf. Sec. 3.1) and texture maps to compute LNNOPCS and
Lcol during training, as this would be too costly. Instead,
we choose 500 points in each iteration that we sample uni-
formly within the ground truth mask. For the cow shape
we increase the number of nearest neighbours in the vector
cross-attention (VCA) module from 12 to 20 as we observe
better performance (cf. Tab. 1).

Pipeline for Geometry. While training the NNOPCS
maps, we also learn to reconstruct masks and depth, just as
in [8]. However, in contrast to [8], we choose to use the 2-
norm (vs. MSE in [8]) as depth loss during training which
leads to better results in terms of MAE, cf. Tab. 1.

Pipeline for Texture. We train the neural texture render-
ing pipeline using an initial learning rate of 5e−4, which is
decayed with a factor of 0.2 on our novel NePuMoo dataset
and 0.9 on the H36M dataset [13] every 500 epochs. We
choose final weights based on the minimum validation loss,
i.e. epoch 535 for our NePuMoo and 2080 for the H36M
dataset. We weight the training loss in Eq. (8) with λcol = 5
and λKLD = 1e−8.

5.2. NNOPCS Maps

Quantitative results for the NNOPCS map (cf. Sec. 3.1)
estimation are shown in Tab. 1. Over all cow test samples,
we achieve a mean squared error (MSE) of 1.6 ·10−4. Since
the coordinates of the NNOPCS are normalized to [0, 1] this
means that our learned NNOPCS maps have an error of 1%

(a) Neutral Pose. The color at each point on the mesh depends on its
position in x-, y-, and z-direction in the neutral pose. Thus, for other poses
the color at a specific position on the mesh remains the same, uniquely
describing this point.

(b) Novel Pose Synthesis. One example of ground truth (left) and recon-
struction (right) from our NePuMoo test set. Our reconstruction (right)
reflects the overall high quality of our quantitative results in Tab. 1.

Figure 2. NNOPCS Maps for Articulated Shapes. We show the
neutral pose of the NNOPCS (cf. Sec. 3.1) projected on two image
planes in (a) and one example for a novel pose from our NePuMoo
test set in (b).

Dataset / Metric Color PSNR [dB]

H36M [13] 15.98
NePuMoo 19.35

Table 2. Quantitative results for novel pose synthesis. We re-
port the PSNR [dB] for the reconstructed RGB images on the
real-world H36M [13] and our NePuMoo test set, cf. Sec. 4.
See Sec. 5.3 for a discussion of the results.

on average. This overall high quality is also reflected in our
qualitative example in Fig. 2b, and is a necessary step in
order to achieve accurate texture renderings.

In Tab. 1, we also compare depth map reconstructions
of NeTePu to the original NePu [8] in terms of the mean
absolute error (MAE) in mm over all cow test samples. We
achieve a lower MAE by 4.5mm, compared to the length
and height of the cow of 2.2m and 1.65m, respectively.

5.3. Neural Texture Rendering

Quantitative results for novel pose synthesis are shown
in Tab. 2. We report the PSNR [dB] over all test sam-
ples for our reconstructed RGB images on the real-world
H36M [13] and our NePuMoo test set.

73



(a) Texture 0 (b) Texture 1 (c) Texture 2 (d) Texture 3

(e) Texture 4 (f) Texture 5 (g) Texture 6 (h) Texture 7

(i) Texture 8 (j) Texture 9 (k) Texture 10 (l) Texture 11

Figure 3. Novel Pose and Novel View Synthesis. We reconstruct images for novel views and novel poses from our NePuMoo test set,
which have not been seen during training. We show two examples for each distinct texture in our dataset. Our reconstructions reflect the
overall good quality of our quantitative results in Tab. 2.

We achieve an overall PSNR of 19.35dB on our
novel NePuMoo data. This is slightly better than the PSNR
of 19.17dB reported in [8] although in contrast to [8], we
render twelve textures instead of one with a single model.

On the H36M data [13] we achieve an overall PSNR of
15.98dB. See Fig. 6 (right pair) for a qualitative example.
Please note that the H36M data does not provide NNOPCS
maps (cf. Sec. 3.1) and we thus train NeTePu without them.
In this case NeTePu can not leverage the geometric shape
information provided by the NNOPCS maps. This holds
for any data that does not provide NNOPCS maps. For a
deeper insight on the influence and the importance of the
NNOPCS maps, we refer to our ablation studies.

We reconstruct images for novel views and novel poses
from our NePuMoo test set, which have not been seen dur-
ing training. In Fig. 3 we show two examples for each dis-
tinct texture in our dataset. The reconstructions look realis-
tic and contain details like the black freckles of texture 3−6
and 8 (cf. eg. Fig. 3f) or the black legs, ears and nose tip of
texture 3 (cf. Fig. 3d). The dataset contains two challenging
texture pairs, which are difficult to distinguish by eye. We
note that even these challenging texture pairs 9, 10 and 1, 11
are reconstructed correctly (cf. Figs. 3j and 3k and Figs. 3b
and 3l respectively). We also perform a texture domain
shift from synthetic to real. For this, we use the model that
we train on our novel NePuMoo texture dataset and infer a
zero-shot synthetic to real-world example. Our reconstruc-

Color PSNR [dB]

w/o NNOPCS Maps 13.63
w/ NNOPCS Maps 19.35

Table 3. Ablation study on the influence of the NNOPCS maps.
We report the PSNR [dB] for the reconstructed RGB images on
our NePuMoo test set, cf. Sec. 4. We report results for an architec-
ture that leverages the NNOPCS maps (cf. Sec. 3.1) and one that
does not. Best result is bold.

tions are shown in Fig. 4. We reconstruct the texture of
the real-world image for three different poses (cf. Fig. 4b).
Even though only trained with synthetic data, this shows
that NeTePu can be used for real-world applications that do
not provide NNOPCS maps, cf. Sec. 3.1. This makes our
model useful for real-world applications with endangered
animal species where available real-world data is limited.

Ablation Studies. To evaluate the influence of the
NNOPCS maps (cf. Sec. 3.1) we run an experiment on our
novel NePuMoo dataset with the same parameters as spec-
ified in Sec. 5.1. The only difference is that we do not use
NNOPCS maps in our pipeline, cf. Fig. 1. We report the
color PSNR over all test samples in Tab. 3. If our model
can leverage geometric information of the shape that is pro-
vided by the NNOPCS maps, NeTePu achieves a better
color PSNR on average by 5.72dB. This quantitative dif-

74



(a) Masked Real-World Image (b) Our Reconstructions

Figure 4. Synthetic to Real-World Texture Domain Shift. We show a zero-shot synthetic to real-world example. NeTePu reconstructs
the texture from a real-world RGB image. We show the reconstructed texture in three different poses.

ference is visible in the qualitative results, cf. Fig. 6 (left
pair). This also explains the quality of our results on the
H36M dataset [13], cf. Tab. 2 and Fig. 6 (right pair).

We perform another ablation study on the influence of
the local texture features ftexture ∈ Rdf . We run an experi-
ment on our novel NePuMoo data where we do not augment
the local features for geometry f with local features for tex-
ture ftexture. We see that augmenting the local features for
geometry f with ftexture achieves a better color PSNR on av-
erage by 4.61 dB (19.35 dB in Tab. 2 vs. 14.74 dB).

5.4. Re-identification

Our proposed neural rendering pipeline learns a global
texture embedding which can be used to identify individ-
uals. This is a valuable task for applications that need re-
identification of individuals like tracking scenarios where
the tracked object leaves and re-enters the scene. For this
task, we use Eq. (2) to encode a global latent vector zm,c,t

texture

that describes the texture of individual t observed from cam-
era view c in pose m. In this way, we can generate a
global texture embedding Ztexture (capital Z) for all in-
dividuals under consideration from our learned NNOPCS
maps (cf. Sec. 3.1) P̂m,c and masked 2D color observa-
tions Ĩm,c,t,

Ztexture = {zm,c,t
texture},

m ∈ {1, . . . ,M}, c ∈ {1, . . . , C}, t ∈ {1, . . . , T}.
(9)

Baseline. For a comparison, we train TransReID [11] on
our novel NePuMoo data, cf. Sec. 4. [11] is a transformer-
based framework for object re-identification that is opti-
mized with ID [52] and triplet loss [21]. During train-
ing [11] needs positive and negative pairs of the object. We
resize the input to 128× 256 px and use a batch size of 40.
For the other parameters we use their standard. After train-
ing, we generate a global feature embedding Z with their
global features for a comparison.

Results. In Fig. 5a we show NeTePu’s kernel density
estimation (KDE) [29, 35] of the t-SNE [41] of the global
texture embedding from Eq. (9) of twelve cows from our
novel synthetic NePuMoo dataset (cf. Sec. 4). We encode

(a) NeTePu: In addition to the distribution of latent codes for known cam-
era views from the training set (contour lines), the dots show novel views
and fall into the clusters of the known ones.

(b) TransReID [11]: While the embedding is more compact, the individual
clusters overlap more often.

Figure 5. KDE of the Global Texture Embedding. We show the
KDE [29,35] of the t-SNE of the global texture codes. The contour
lines show the distribution of latent codes for camera views from
our novel NePuMoo dataset. The individual cows cluster nicely.
See Sec. 5.4 for a discussion of the results.

the global texture codes of all 910 poses, twelve textures
and 24 cameras. While the contour lines show the distribu-
tion of global texture codes for the camera views from our

75



Figure 6. Novel Pose Synthesis Without NNOPCS Maps. Color reconstruction and ground truth for a novel pose, where the pipeline
does not use NNOPCS maps (cf. Sec. 3.1). Left Pair: Holstein cow (texture 0) from our NePuMoo test set, cf. Sec. 4. Right Pair: Subject
8 from the H36M dataset [13]. See Secs. 5.3 and 6 for a discussion of the results.

dataset, the dots show the global codes for novel camera
views. In Fig. 5b we show the KDE of the global feature
embedding Z generated with [11] for a comparison.

We see that the textures cluster in such a way that they
can be distinguished by both frameworks. Both frame-
works can distinguish the challenging textures 1 and 11
(cf. Figs. 3b and 3l) and 9 and 10 (cf. Figs. 3j and 3k). While
the embedding of [11] is more compact, we observe only
one slight overlap of texture clusters for NeTePu. No clus-
ter overlap in the embedding helps in readily distinguishing
all textures in all poses from all camera views. Furthermore,
note that NeTePu’s global texture latent codes of novel cam-
era views (dots in Fig. 5a) fall into the corresponding clus-
ters of the known camera views (contour lines in Fig. 5a).

Runtime. We evaluate the runtime on our
novel NePuMoo dataset with a workstation that has a
nVidia Titan RTX, 64 GB DDR4 RAM, an Intel Xeon
E5-2620 at 2.10GHz and a 2TB Samsung SSD 850. We
encode the global texture code from an input of size
768× 1024× 6 (masked 2D color observation and learned
NNOPCS map, cf. Sec. 3.1). This calculation includes to
render our learned NNOPCS maps with a resolution of
768× 1024× 3. Since our NNOPCS maps are only defined
within the object, the calculation also includes to render
the learned mask with a resolution of 768 × 1024. We use
a batch size of 1 for all twelve textures of 100 samples
from our dataset seen from 24 camera views. In total,
we thus encode the global texture code for 28800 frames.
To calculate the runtime, we take the average over these
frames. We achieve a runtime of 0.5 fps.

All together, this is why our proposed neural render-
ing pipeline offers an alternative approach to CNN- or
transformer-based frameworks like [11] for the task of re-
identification in interactive tracking applications.

6. Limitations and Future Work
At the moment, we learn the NNOPCS maps in a super-

vised manner, cf. Sec. 3.1. This limits our method to data
that provide NNOPCS maps. If we train on data that does
not provide these NNOCPS maps, the quality of the out-
come diminishs because the model lacks information on the

geometry’s shape, cf. Fig. 6. In order to make our method
more applicable, especially to real-world applications, we
aim to learn the NNOPCS maps in the future in an unsu-
pervised manner. Also, at this point our dataset contains a
limited variety of textures. In the future we aim at extend-
ing our dataset to allow for better generalizability when it
comes to new - unseen - textures.

7. Conclusions
In this paper, we present a neural rendering pipeline for

textured articulated shapes. We show that NeTePu encodes
a distinct global texture embedding (cf. Fig. 5a), which is
computed from a learned NNOPCS map (cf. Sec. 3.1) and
2D color information. This global texture embedding can
be used in a downstream task to identify individuals. Our
neural rendering-based re-identification process runs at in-
teractive speed (cf. Sec. 5.4), and thus offers an alterna-
tive to CNN- or transformer-based approaches like [11] in
tracking applications. To the best of our knowledge, we
are the first to provide a framework for re-identification of
articulated individuals based on neural rendering. We also
demonstrate NeTePu’s quality with realistic looking novel
view and pose synthesis for different synthetic cow textures,
cf. Fig. 3. Restricted by the availability of ground truth
NNOPCS maps, the quality for real-world data synthesis
is reduced, cf. Fig. 6 (right pair). We further demonstrate
the flexibility of our model by applying a synthetic to real-
world texture domain shift where we reconstruct the texture
from a real-world 2D RGB image with a model trained on
synthetic data only. This makes our model useful for real-
world applications with endangered animal species where
available real-world data is limited and synthetic data can
be generated using Blender (www.blender.org).

We hope that this work inspires other researchers to de-
velop methods for neural rendering-based re-identification
which work for humans and animals.

Acknowledgements. We acknowledge funding by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC 2117
– 422037984, and the Federal Ministry of Education and Research
(BMBF) within the research program – KI4KMU – 01IS23046B.

76



References
[1] Praneet C. Bala, Benjamin R. Eisenreich, Seng Bum Michael

Yoo, Benjamin Y. Hayden, Hyun Soo Park, and Jan Zim-
mermann. Automated markerless pose estimation in freely
moving macaques with openmonkeystudio. Nat. Commun.,
11:4560, 2020. 3

[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and
Ben Upcroft. Simple online and realtime tracking. In ICIP,
pages 3464–3468, 2016. 1

[3] Long Chen, Haizhou Ai, Rui Chen, Zijie Zhuang, and
Shuang Liu. Cross-view tracking for multi-human 3d pose
estimation at over 100 fps. In CVPR, pages 3279–3288,
2020. 1

[4] Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik,
Luigi Troiano, Roberto Tagliaferri, and Francisco Herrera.
Deep learning in video multi-object tracking: A survey. Neu-
rocomputing, 381:61–88, 2020. 2

[5] Ying Cui, Dongyan Guo, Yanyan Shao, Zhenhua Wang,
Chunhua Shen, Liyan Zhang, and Shengyong Chen. Joint
classification and regression for visual tracking with fully
convolutional siamese networks. IJCV, pages 1–17, 2022.
1

[6] Patrick Dendorfer, Aljosa Osep, Anton Milan, Konrad
Schindler, Daniel Cremers, Ian Reid, Stefan Roth, and Laura
Leal-Taixé. Motchallenge: A benchmark for single-camera
multiple target tracking. IJCV, 129(4):845–881, 2021. 2

[7] André C Ferreira, Liliana R Silva, Francesco Renna, Hanja B
Brandl, Julien P Renoult, Damien R Farine, Rita Covas, and
Claire Doutrelant. Deep learning-based methods for indi-
vidual recognition in small birds. Methods in Ecology and
Evolution, 11(9):1072–1085, 2020. 1

[8] Simon Giebenhain, Urs Waldmann, Ole Johannsen, and Bas-
tian Goldluecke. Neural puppeteer: Keypoint-based neural
rendering of dynamic shapes. In Proceedings of the Asian
Conference on Computer Vision (ACCV), pages 2830–2847,
December 2022. 1, 2, 3, 4, 5, 6

[9] Simon Giebenhain, Urs Waldmann, Ole Johannsen, and Bas-
tian Goldlücke. Neural puppeteer: Keypoint-based neural
rendering of dynamic shapes (datset), October 2022. 4

[10] Yaning Han, Ke Chen, Yunke Wang, Wenhao Liu, Xiaojing
Wang, Jiahui Liao, Yiting Huang, Chuanliang Han, Kang
Huang, Jiajia Zhang, et al. Social behavior atlas: A com-
putational framework for tracking and mapping 3d close in-
teractions of free-moving animals. bioRxiv, pages 2023–03,
2023. 3

[11] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,
and Wei Jiang. Transreid: Transformer-based object re-
identification. In ICCV, pages 15013–15022, 2021. 1, 2,
5, 7, 8

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Francis Bach and David Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448–456, Lille, France, 07–09 Jul 2015.
PMLR. 4

[13] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE TPAMI, 36(7):1325–1339, 2014. 2, 4, 5, 6, 7, 8

[14] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In ECCV, September 2018. 2

[15] Roland Kays, Margaret C. Crofoot, Walter Jetz, and Martin
Wikelski. Terrestrial animal tracking as an eye on life and
planet. Science, 348(6240):aaa2478, 2015. 1

[16] Diederik P. Kingma and Max Welling. Auto-Encoding Vari-
ational Bayes. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, 2014. 4

[17] Solomon Kullback and Richard A Leibler. On informa-
tion and sufficiency. The annals of mathematical statistics,
22(1):79–86, 1951. 4

[18] Jessy Lauer, Mu Zhou, Shaokai Ye, William Menegas, Stef-
fen Schneider, Tanmay Nath, Mohammed Mostafizur Rah-
man, Valentina Di Santo, Daniel Soberanes, Guoping Feng,
Venkatesh N. Murthy, George Lauder, Catherine Dulac,
Mackenzie W. Mathis, and Alexander Mathis. Multi-animal
pose estimation, identification and tracking with deeplabcut.
Nat. Methods, 19:496–504, 2022. 1, 2

[19] Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello,
Varun Jampani, Ming-Hsuan Yang, and Jan Kautz. Self-
supervised single-view 3d reconstruction via semantic con-
sistency. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, editors, ECCV, pages 677–693,
Cham, 2020. Springer International Publishing. 2

[20] Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. Sdf-
srn: Learning signed distance 3d object reconstruction from
static images. NeurIPS, 33:11453–11464, 2020. 1

[21] Hao Liu, Jiashi Feng, Meibin Qi, Jianguo Jiang, and
Shuicheng Yan. End-to-end comparative attention networks
for person re-identification. IEEE Transactions on Image
Processing, 26(7):3492–3506, 2017. 1, 2, 7

[22] Ze Liu, Yingfeng Cai, Hai Wang, Long Chen, Hongbo Gao,
Yunyi Jia, and Yicheng Li. Robust target recognition and
tracking of self-driving cars with radar and camera informa-
tion fusion under severe weather conditions. IEEE Trans-
actions on Intelligent Transportation Systems, 23(7):6640–
6653, 2021. 1

[23] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. Smpl: A skinned multi-
person linear model. ACM Trans. Graph., 34(6), oct 2015.
1, 2

[24] Matthew M Loper and Michael J Black. Opendr: An ap-
proximate differentiable renderer. In ECCV, pages 154–169.
Springer, 2014. 1, 2

[25] Jesse D Marshall, Ugne Klibaite, Amanda Gellis, Diego E
Aldarondo, Bence P Ölveczky, and Timothy W Dunn.
The pair-r24m dataset for multi-animal 3d pose estimation.
bioRxiv, pages 2021–11, 2021. 3

[26] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2

77



[27] Hemal Naik, Alex Hoi Hang Chan, Junran Yang, Mathilde
Delacoux, Iain D. Couzin, Fumihiro Kano, and Máté Nagy.
3d-pop - an automated annotation approach to facilitate
markerless 2d-3d tracking of freely moving birds with
marker-based motion capture. In CVPR, pages 21274–
21284, June 2023. 3

[28] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
CVPR, pages 3504–3515, 2020. 1

[29] Emanuel Parzen. On Estimation of a Probability Density
Function and Mode. The Annals of Mathematical Statistics,
33(3):1065 – 1076, 1962. 5, 7

[30] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Ani-
matable neural radiance fields for modeling dynamic human
bodies. In ICCV, pages 14314–14323, October 2021. 1, 2,
3, 4

[31] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In CVPR,
2021. 1, 2

[32] Talmo D. Pereira, Nathaniel Tabris, Arie Matsliah, David M.
Turner, Junyu Li, Shruthi Ravindranath, Eleni S. Pa-
padoyannis, Edna Normand, David S. Deutsch, Z. Yan
Wang, Grace C. McKenzie-Smith, Catalin C. Mitelut,
Marielisa Diez Castro, John D’Uva, Mikhail Kislin, Dan H.
Sanes, Sarah D. Kocher, Samuel S.-H. Wang, Annegret L.
Falkner, Joshua W. Shaevitz, and Mala Murthy. Sleap: A
deep learning system for multi-animal pose tracking. Nat.
Methods, 19:486–495, 2022. 1

[33] Umer Rafi, Andreas Doering, Bastian Leibe, and Juergen
Gall. Self-supervised keypoint correspondences for multi-
person pose estimation and tracking in videos. In ECCV,
pages 36–52. Springer International Publishing, 2020. 1

[34] Jathushan Rajasegaran, Georgios Pavlakos, Angjoo
Kanazawa, and Jitendra Malik. Tracking people by pre-
dicting 3d appearance, location and pose. In CVPR, pages
2740–2749, 2022. 1

[35] Murray Rosenblatt. Remarks on Some Nonparametric Esti-
mates of a Density Function. The Annals of Mathematical
Statistics, 27(3):832 – 837, 1956. 5, 7

[36] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, pages 2304–2314, 2019. 2

[37] Vincent Sitzmann, Semon Rezchikov, William T. Freeman,
Joshua B. Tenenbaum, and Fredo Durand. Light field net-
works: Neural scene representations with single-evaluation
rendering. In Advances in Neural Information Processing
Systems, 2021. 1

[38] Shih-Yang Su, Frank Yu, Michael Zollhöfer, and Helge
Rhodin. A-nerf: Articulated neural radiance fields for learn-
ing human shape, appearance, and pose. In NeurIPS, 2021.
1, 2, 3

[39] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,
Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-

Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
et al. State of the art on neural rendering. In Computer
Graphics Forum, volume 39, pages 701–727. Wiley Online
Library, 2020. 1, 2

[40] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-
vasan, Edgar Tretschk, Wang Yifan, Christoph Lassner, Vin-
cent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,
et al. Advances in neural rendering. In Computer Graphics
Forum, volume 41, pages 703–735. Wiley Online Library,
2022. 1, 2

[41] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research,
9(86):2579–2605, 2008. 5, 7

[42] Urs Waldmann, Jannik Bamberger, Ole Johannsen, Oliver
Deussen, and Bastian Goldlücke. Improving unsupervised
label propagation for pose tracking and video object segmen-
tation. In DAGM German Conference on Pattern Recogni-
tion, pages 230–245. Springer, 2022. 1

[43] Urs Waldmann, Alex Hoi Hang Chan, Hemal Naik, Máté
Nagy, Iain D Couzin, Oliver Deussen, Bastian Goldluecke,
and Fumihiro Kano. 3d-muppet: 3d multi-pigeon pose es-
timation and tracking. arXiv preprint arXiv:2308.15316,
2023. 1

[44] Urs Waldmann, Hemal Naik, Nagy Máté, Fumihiro Kano,
Iain D Couzin, Oliver Deussen, and Bastian Goldlücke. I-
muppet: Interactive multi-pigeon pose estimation and track-
ing. In DAGM German Conference on Pattern Recognition,
pages 513–528. Springer, 2022. 1

[45] Tristan Walter and Iain D Couzin. Trex, a fast multi-animal
tracking system with markerless identification, and 2d esti-
mation of posture and visual fields. eLife, 10:e64000, 2021.
1

[46] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized object
coordinate space for category-level 6d object pose and size
estimation. In CVPR, pages 2642–2651, 2019. 2, 3

[47] Jian Wang, Yunshan Zhong, Yachun Li, Chi Zhang, and
Yichen Wei. Re-identification supervised texture generation.
In CVPR, pages 11846–11856, 2019. 1, 2

[48] Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rup-
precht, and Andrea Vedaldi. Magicpony: Learning articu-
lated 3d animals in the wild. In CVPR, pages 8792–8802,
2023. 2

[49] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. In Computer Graphics Forum,
volume 41, pages 641–676. Wiley Online Library, 2022. 1,
2

[50] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object track-
ing: A survey. Acm computing surveys (CSUR), 38(4):13–es,
2006. 2

[51] Wentao Yuan, Zhaoyang Lv, Tanner Schmidt, and Steven
Lovegrove. Star: Self-supervised tracking and reconstruc-
tion of rigid objects in motion with neural rendering. In
CVPR, pages 13144–13152, 2021. 1, 2

[52] Zhedong Zheng, Liang Zheng, and Yi Yang. A discrimi-
natively learned cnn embedding for person reidentification.

78



ACM transactions on multimedia computing, communica-
tions, and applications (TOMM), 14(1):1–20, 2017. 1, 2,
7

[53] Silvia Zuffi, Angjoo Kanazawa, Tanya Berger-Wolf, and
Michael J. Black. Three-d safari: Learning to estimate ze-
bra pose, shape, and texture from images ”in the wild”. In
ICCV, October 2019. 2

[54] Silvia Zuffi, Angjoo Kanazawa, and Michael J. Black. Li-
ons and tigers and bears: Capturing non-rigid, 3d, articulated
shape from images. In CVPR, 2018. 2

79


