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Abstract

Face recognition technologies, widely adopted across
various domains, have raised concerns related to demo-
graphic differentials in performance and the erosion of per-
sonal privacy. This study explores the potential of “cloak-
ing”—a privacy-preserving technique subtly altering facial
images at the pixel level in order to reduce recognition
accuracy—in addressing these concerns. Specifically, we
assess the effectiveness of the state-of-the-art Fawkes algo-
rithm across demographic groups categorized by race (i.e.,
African American and Caucasian) and gender. Our findings
reveal African American males as the most significant ben-
eficiaries of this protective measure. Moreover, in terms of
cost-effectiveness, the African American demographic, as a
collective, enjoys greater protection with fewer visual dis-
ruptions compared to Caucasians. Nevertheless, we caution
that while cloaking techniques like Fawkes bolster individ-
ual privacy, their protection may not remain absolute as
recognition algorithms advance. Thus, we underscore the
persistent need for prudent online data-sharing practices.

1. Introduction

The growing prominence, versatility, and accuracy of
face recognition technologies have become increasingly ev-
ident. At its core, face recognition relies on algorithms de-
signed to identify individuals based on their unique facial
features. The advancement of deep learning methods, a
subset of machine learning in which neural networks pro-
cess and analyze vast amounts of data, has significantly en-
hanced the capabilities of this technology. Deep learning
enables the identification of faces even in challenging situa-
tions, such as low-quality images, varied poses, or different
facial expressions [&].

Face recognition technology finds application in a wide
spectrum of domains. It plays a crucial role in crime pre-
vention, criminal investigations, and enhancing security by

identifying individuals in surveillance footage [30]. Addi-
tionally, it simplifies everyday tasks like automatic photo
tagging [32] and authentication to devices and services. Be-
yond these utilitarian uses, businesses harness face recog-
nition to create personalized user experiences and launch
targeted advertising campaigns [18, 52]. However, the in-
tegration of this technology into our daily lives raises con-
cerns. Training machines with the task of identifying and
categorizing human faces means that these algorithms not
only replicate our discerning abilities but also our inherent
shortcomings [35].

Coupled with privacy apprehensions, reports of perfor-
mance differentials within these algorithms, influenced by
factors such as race, gender, and ethnicity [49], also emerge
as a significant concern. The human inclination to more
accurately recognize faces of one’s own race seems to also
manifest within these systems [35], leading to discrepancies
in accuracy for underrepresented demographics. Addition-
ally, there are instances of false positive identifications, with
a particularly high occurrence among people of color. The
unsettling incident involving Porcha Woodruff [21], who,
while eight months pregnant, was wrongly accused, de-
tained, and arrested on carjacking charges, underscores the
severe repercussions of such errors.

Amid these concerns and the ease of web scraping [3],
particularly exemplified by companies like Clearview.ai
amassing over 30 billion images without explicit con-
sent [43], public apprehensions regarding the use and pri-
vacy implications of their personal photos have surged. This
has driven a desire among individuals to regain control over
their privacy and has led to the development of protective
techniques such as de-identification or “cloaking.” These
methods aim to distort photographs at the pixel level, ren-
dering them resistant to the recognition capabilities of ma-
chine learning models [10,45].

In this work, we explore the privacy-preserving power of
Fawkes [45], a state-of-the-art cloaking algorithm, and con-
sider its efficacy relative to demographic groups for which
differentials in performance have been characterized. More
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specifically, we measure its effectiveness in reducing the
accuracy of face recognition software across demographic
categories based on race and gender. We say that the demo-
graphic group that experienced the most protection “wore it
best.” We also quantify the extent of the visual disturbances
induced by the cloaking process, enabling us to ascertain
which demographic experienced the least visual disruption.
In addition, we introduce a protection-to-disturbance ratio
that quantifies the added privacy in exchange for image
quality in order to establish which demographic “paid less.”
To the best of our knowledge, this is the first study that ex-
plores the impact of privacy-preserving tools across demo-
graphics.

This work is structured in sections. Section 2 explores
related works in face recognition systems pertaining to race,
gender, and ethnicity, examining their societal impact and
the efforts to mitigate them. Section 3 outlines the method-
ology used to assess the effectiveness of Fawkes in preserv-
ing privacy and details the “who wore it best” and “who
paid less” objectives. Section 4 discusses the results and
implications of this study. Section 5 provides concluding
remarks and summarizes key insights. Section 6 outlines
areas of future research.

2. Background and Related Works

Despite its technological progress, face recognition sys-
tems still grapple with demographic differentials shaped by
factors such as race, gender, and age. Beyond affecting ac-
curacy, performance differentials, in certain use cases, may
introduce profound societal implications. In this chapter,
we explore the intricacies of these challenges, their societal
impact, and the efforts to counteract them.

2.1. Performance Differences in Face Recognition

The “other-race effect” (ORE) [48], wherein people rec-
ognize faces of their own race more accurately than other
races, extends to computational algorithms. As highlighted
by Cavazos et al. [9], the research over three decades un-
veils racial disparities in algorithm performance. Echoing
this, Nagpal et al. [34] found that networks trained mostly
on darker-skinned faces focus on the lips and eyebrows for
recognition, while those trained on lighter-skinned faces
center on the facial boundaries. Furthermore, research
by Atzori et al. [1] found that in low-resolution face im-
ages, where features blur, algorithms exhibit diminished
racial influences, offering consistent performance across
racial groups. However, when these algorithms process
high-resolution images, where facial details are more pro-
nounced, the familiar racial disparities re-emerge. Such pat-
terns resonate with human tendencies: darker-skinned in-
dividuals often emphasize features like lips, while lighter-
skinned counterparts focus on facial shapes and irises [I 1,

]. This parallel suggests that algorithms might inadver-

tently mirror human behavior [35], thereby encoding the
ORE.

Moreover, differentials in the performance of face recog-
nition span beyond just race. Robinson et al. [39] explored
the intersection of race-gender, discovering that subjects
most accurately identified individuals within their own race-
gender cohort, followed by those of the same race but op-
posite gender. Contrastingly, performance declined when
identifying those outside this subgroup. Buolamwini and
Gebru’s [6] work underscored differences in accuracy rela-
tive to gender and skin tone, noting that commercial classi-
fiers misgendered one in three darker-skinned females com-
pared to 0.8% of lighter-skinned males. Khalil et al. [26]
then shed light on the role of non-demographic cues, like
hairstyles, in gender identification, pointing to cultural in-
fluences on gender perceptions. Bhatta et al. [4] further
explored the role of hairstyles, suggesting hair occlusions
contribute significantly to the gender disparity.

Finally, Terhost et al.’s [47] expansive study on 47 non-
demographic attributes, such as accessories, hairstyles, and
facial expressions, revealed a decrease in accuracy for
adorned faces, specific hairstyles, or certain facial features.
Especially affected were darker-skinned female faces with
glasses, emphasizing the compounded impact of multiple
attributes. Given the complexities of face recognition, un-
derstanding how these performance differences manifest
themselves in our daily experiences and societal structures
becomes important.

2.2. Social Implications

Face recognition technology is deeply woven into mod-
ern living, spanning from smartphones and security sys-
tems to sectors like retail and finance. Yet, its roots in
imagery expose long-standing implications of demographic
under-representation in data used for technology develop-
ment [27]. Historically, photography techniques, prevalent
since the 1840s, tilted towards capturing white skin, a preju-
dice symbolized by the “Shirley card”—the industry’s color
balance standard until the 1990s [28]. Even with the ad-
vent of multi-racial cards [42], remnants of these deficien-
cies linger in modern cameras [7]. Examples include the
HP face-tracking webcam’s difficulty with darker complex-
ions and Nikon’s Coolpix S360 misinterpreting open Asian
American eyes as blinking [41]. Beyond these inaccura-
cies, systemic flaws have broader implications [3 1], such as
Amazon’s Al recruitment tools displaying a male bias [12].

In the legal domain, face recognition errors have led to
serious consequences, including the wrongful arrest of in-
dividuals like Porcha Woodruff [21] and Njeer Parks [20],
predominantly affecting people of color [33]. Johnson et
al. [25] highlight a marked racial disparity in such arrests
across many U.S. cities in 2016, noting a significant 67%
Black-White arrest gap in areas with advanced surveillance.
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2.3. Addressing Performance Differentials

Face recognition differentials in accuracy stem primarily
from data-driven and scenario-driven elements [9]. To pro-
duce equitable models, model trainers must grapple with
both dimensions.

Data-driven elements hinge on the nature of training
data, encompassing varied representation of demographics,
data collection methods, and algorithmic designs catering to
diverse facial features. Comprehensive training databases
must span a spectrum of skin tones, backgrounds, ages,
genders, facial expressions, and angles. Notably, Buo-
lamwini and Gebru [6] stressed gender and skin type bal-
ance in datasets, while Robinson et al. [40] emphasized
race and gender. Other research incorporated elements like
hairstyles [4] or broader non-demographic features [47].
But quantity isn’t quality. Khalil et al. [26] highlighted
pitfalls in using open-source image databases, like skewed
representation from celebrity dominance in certain ethnic
groups. Equally important, human limitations can infiltrate
training data labels [22], inadvertently perpetuating preju-
dices. Thus, a diverse developer team [15], bringing varied
cultural and experiential perspectives, can help preempt and
correct system inaccuracies.

Scenario-driven elements, meanwhile, deal with thresh-
old adjustments aiming for consistent False Accept Rates
(FAR) across subgroups. Proponents relate this to the
“other-race effect”—the human inclination to better recog-
nize faces from one’s race—advocating adaptive thresholds
based on attributes like race [9, 39]. Yet, concerns emerge
in situations where racial and ethnic distinctions blur, com-
plicating threshold settings for mixed-race or multicultural
individuals [5, 19].

While developers possess some tools to address algo-
rithm deficiencies, end-users are largely beholden to de-
velopers for impartial models, making them susceptible to
residual system errors. Inaccuracies therein can lead to un-
intended consequences. This reality has propelled privacy-
conscious users to seek alternative measures to shield them-
selves from unauthorized face recognition.

2.4. Fawkes Algorithm

Face recognition, while practical, raises issues of privacy
and misidentification. To address this, privacy-centered so-
lutions like Fawkes [45] have emerged, empowering users
against unsanctioned face recognition.

Fawkes targets unauthorized web scraping of user im-
ages, subtly distorting them to hinder accurate recogni-
tion. Fawkes has been allegedly engineered to be effective
against a spectrum of widely-used pre-trained face recogni-
tion models, specifically Microsoft’s Azure Face, Amazon’s
Rekognition, and the Chinese Face++.

Initially, the algorithm selects random images from pub-
lic datasets and computes face feature vectors for them.

From this collection, it identifies a vector that bears the least
resemblance to the user’s image. Using this dissimilarity as
a foundation, Fawkes crafts a “cloak” for the user’s image.
This cloak undergoes refinement, with the algorithm striv-
ing to minimize differences with the chosen target image’s
feature vector, all while operating within a defined pertur-
bation budget.

A higher perturbation budget enhances privacy but risks
visible distortions. Fawkes uses the “Structural Dissimilar-
ity Index Measure” (DSSIM) to ensure cloaked images re-
main visually close to the originals but misleading in the
feature space. By default, it aims for a DSSIM under 0.007,
balancing privacy with visual fidelity. It has been noted,
however, that using an aggressive cloaking preset might in-
troduce visible artifacts—such as bluish spots or unusual
indentations—that could deter users due to aesthetic con-
cerns [24]. We deliberately choose Fawkes over other meth-
ods such as AnonymousNet [29], FSAP [51], DeepPri-
vacy [23] or IdentityDP [50] because Fawkes does not al-
ter facial structure (e.g., jawlines, angles, ridges, etc.), fea-
tures (i.e., masculinization or feminization), hair (i.e., head,
facial hair), or pose. This ensures that individuals are not
dissuaded from using the tool due to conspicuous, and po-
tentially undesirable, changes in their appearance.

3. Methodology

This section details the methodology employed to as-
sess Fawkes’ effectiveness in preserving privacy across de-
mographic cohorts categorized by race and gender. Draw-
ing from the MORPHV3 dataset [38], which contains stan-
dardized mugshot-style photographs from the U.S., our
goal is to identify which demographic benefits the most
from a privacy standpoint—a concept we phrase as “who
wore it best.” By examining the cloaked images, we gauge
the extent of perturbation induced by the cloaking pro-
cess, enabling us to ascertain which demographic experi-
enced the least visual disruption. Additionally, we establish
a protection-to-disturbance ratio, termed “who paid less”,
which quantifies the compromise in image quality in ex-
change for enhanced privacy.

3.1. Dataset and Face Recognition Matchers

The MORPH dataset, sourced from public records, con-
sists of images captured under conditions characteristic of
frontal pose mugshots, ensuring consistent indoor light-
ing and a uniform 18% gray backdrop. Initially curated
for facial aging research, this dataset’s verified labels have
since made it popular for characterizing the performance of
face recognition technologies across demographics. For our
analysis, we rely on MORPH v3, which includes:

* Caucasian females (CF): 10,941 images spanning
2,798 unique identities
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* Caucasian males (CM): 35,276 images spanning
8,835 unique identities

* African-American females (AAF): 24,857 images
spanning 5,929 unique identities

* African-American males (AAM): 56,246 images
spanning 8,839 unique identities

We process this data using Fawkes, configuring it with
three distinct preset perturbation levels: low, mid, and high.
Within Fawkes, MTCNN handles face detection and align-
ment. Cloaking is then specifically applied to the facial re-
gion. This procedure yields three cloaked image variants for
every original from the MORPH dataset, each correspond-
ing to one of the perturbation levels. See Fig. 1 for an
example of cloaked images.

For face recognition tasks, we employ ArcFace [13].
This integrates the SCRFD [16] model for detection and
glintr100 model [46] for recognition. With this method,
each image is converted into a 512-dimensional feature vec-
tor, which is subsequently matched using cosine similarity.
Additionally, we leverage a COTS algorithm, which em-
ploys a proprietary matching technique.
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Figure 1. Cloaked Images

3.2. Who wore it best?

This first objective focuses on quantifying the degree
of protection against face recognition provided by varying
cloaking intensities (low, mid, high) within African Ameri-
can and Caucasian demographics. The aim is to determine
which demographic benefits the most.

To achieve this, we utilize the d-prime as a measure to
quantify the separation between the original, non-cloaked,
mated distribution and the mated cloaked distributions (low,
mid, high) for each demographic subgroup (CF, CM, AAF,
AAM). In addition to the d-prime, we also report the Earth
Mover’s Distance (EMD) as a supplementary metric. We
say that the demographic subgroup with the most substan-
tial decrease from the original authentic scores, based on
the metrics discussed, benefits the most from cloaking and
therefore “wore it best.”

3.3. Who paid less?

This second objective seeks to determine the cost-
effectiveness of cloaking by identifying which demographic
subgroup incurred the least visual disturbance for the af-
forded degree of protection. In other words, the ratio of how
much protection they acquired given the amount of distur-
bances introduced during cloaking. We say that the demo-
graphic subgroup with the most cost-effective protection,
given a fixed cloaking level, “paid less.”

To this end, we first utilize image quality assessment
(IQA) metrics to quantify the visual disturbances added by
Fawkes with respect to the original, non-cloaked, image.
We then calculate the protection-to-disturbance ratio em-
ploying the previously obtained d-prime and EMD metrics
as indicators of protection. We make use of three IQA met-
rics: VIF [44], PieApp [36], and DISTS [14].

¢ Visual Information Fidelity (VIF): Evaluates image
quality by contrasting distorted images with a refer-
ence, targeting detailed textures and structures to mir-
ror human perception. Scoring from 0 to 1, lower
scores denote less fidelity. To exemplify its industry
relevance, Netflix incorporates VIF into its video qual-
ity assessment processes [37].

* PieApp: Predicts perceptual image quality with a
strong correlation to human opinion. The scores range
between 0 and 1, indicating the likelihood that humans
will prefer one image over another.

e DISTS: Measures variations in structure and texture,
aligning with human ratings of image quality. The
scores range from O to 1, with higher scores indicat-
ing higher fidelity.
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4. Discussion and Results
4.1. Who wore it best?

This section focuses on quantifying the degree of pro-
tection against face recognition provided by varying cloak-
ing intensities (low, mid, high) for each demographic sub-
group (CF, CM, AAF, AAM) to determine which cohort
benefits the most. The comparisons are done between each
cloaking level’s authentic distribution and the original, non-
cloaked, authentic distribution, using the original pictures
as the gallery and the cloaked counterparts as probes. We
present the resulting matching distributions in Fig. 3. For
each plot, yellow represents a baseline comparison, green
represents a comparison between low-level cloaked images
and the original, red represents a mid-level cloak, and blue
represents a high-level cloak. Mated distributions are col-
ored, while non-mated distribution are colored and hatched.
Our focus is directed to Fawkes’ ability to reduce the accu-
racy of mated comparisons, with the impostor comparisons
included for completeness only.

The authentic distributions in Fig. 3 show a pronounced
downward shift in the recognition scores as the cloaking in-
tensifies. To measure the impact of the cloak, we employ
d-prime to quantify the separation between the cloaked dis-
tributions and the original. In all cases, the separations are
the result of the cloaked distribution shifting towards lower
scores. We use this as a proxy to measure protection, with
higher separations toward lower scores corresponding to
higher privacy-preserving power. To address potential lim-
itations of d-prime, especially as it relates to unequal vari-
ances and distribution shapes, we report the Earth Mover’s
Distance (EMD) as a complement to this analysis. The
EMD captures differences due to shifts, shape, and spread,
providing a more comprehensive measure of difference. As
with d-prime, we use EMD as a proxy to measure protec-
tion, with higher distances toward lower scores representing
higher privacy-preserving power. See Tab. | for a compi-
lation of the measures across demographic subgroups and
cloak level.

In our analysis, both matchers concur via the d-prime
and the EMD in designating African-American males
(AAM) as the cohort benefitting the most from cloaking
at all intensities, followed by African-American females
(AAF). Among the Caucasian cohorts, the results diverge
based on the matcher, with females (CF) and males (CM)
seemingly tied when considering their standing (i.e., each
achieving 6 wins) across matchers.

See Fig. 2 for a visual representation of the protection af-
forded as a cohort progresses to each cloaking level. Across
all demographics, both d-prime and EMD suggest that the
transition from the baseline to a mid cloaking level results
in the most pronounced enhancement in protection. This
can also be seen in the histograms in Fig. 3. Concern-

ArcFace COTS

ST
it g

0.0

d-Prime

T
CF CM AAFAAM CF CM AAF AAM

d': Og to Low M d": Low to Mid M d': Mid to High
EMD: Og to Low = EMD: Low to Mid M EMD: Mid to High

Figure 2. Protection as Cloaking Intensifies

ing ArcFace, there’s a proportional relationship between in-
creased cloaking and enhanced protection. However, the
shift from a medium to high cloaking level displays a more
muted increase, suggesting diminishing returns at greater
cloaking intensities. For the COTS matcher, while the low-
level cloaking provides very little protection, both medium
and high levels yield an increase in privacy. It is worth not-
ing that the COTS matcher exhibits a degree of robustness
against the Fawkes algorithm.

We say that the demographic subgroup with the most
substantial decrease from the original authentic scores ben-
efits the most from cloaking and therefore “wore it best.”
This distinction belongs to AAM, followed by AAF, CM,
and CF.

4.2. Who paid less?

This section delves into evaluating the cost-effectiveness
of cloaking by identifying the demographic subgroup that
experienced the least visual disturbances for each protec-
tion level. We begin by quantifying these disturbances using
IQA tools and subsequently assess the economics of cloak-
ing. This assessment involves calculating the ratio of pro-
tection obtained by each cohort relative to the cost incurred
through the disturbances, allowing us to determine which
cohort “paid less”.

4.2.1 Assessing Visual Disturbances via IQA

We measured the visual disturbances arising from cloaking
by contrasting the cloaked image to its original counterpart,
utilizing three IQA methods: VIF, PieApp, and DISTS.
These algorithms grade fidelity on a scale of O to 1; thus,
we determined the disturbance measure by taking the com-
plement (i.e., subtracting the fidelity score from 1).

While there are dedicated algorithms for Face Image
Quality Assessment (FIQA), general-purpose IQA meth-
ods have demonstrated greater consistency with respect to
race and gender [2]. Notably, FIQA methods tend to fa-

1164



Mog #/7 Log WM Alow ¥ Llow W Amid %94 Lmid S A high ¥ I high

Statistics

[CFA d':-8.66 WA d':-4.61 W d:-1.20 W d:-2.30 W8 d':-2.82 M d':-1.20 W d':-1.71 8 d:-0.49
.06 EE d': -0.07 FEE d' -0.02

A0y 447 Log W Alow ¥ Llow WS Amid % Lmid WS A high WA I high

Statistics
:-0.16 d':-0.47 M d:-0.67 Ml d:-0.31 M d:-0.52M d:-0.22

[CFZ d':-1.89
0.01 748 d':-0.05 7@ d'-0.07 B2 d':-0.04 PR d":-0.06M d:-0.02

WEZ d-1.82

R d-6.71 MR d':-3.96 7@ d':-0.057M d:-0.1078 d:-0.12 M d': -
6]
sl
54 74
6l
4]
E) 23]
N g
& &4
24 37
N
1]
1]
0- 0
-0.2 0.0 0.2 0.4 0.6 0.8 1o 0.0 0.2
Scores Scores
(a) African-American Females — ArcFace (b) African-American Females — COTS
Aog /77 log N Allow ##F Llow [ Amid @72 |.mid B A high U 1 high Aog /#7s l.og W Alow WZ5 |low N A mid fZ |.mid B A high @ | high
Statistics Statistics
.92 [ d':-0.201W d":-0.62 0.83 I d': -0.42 W d" .64 I d': -0.22
.71 71 d':0.00 ¥ d'-0.01 71 0.02 FE d': -0.02 P d" 02 d':-0.00
12
10
8
2
2
8 6
s
2
0.4 0.0 0.2 0.4
Scores Scores
(c) African-American Males — ArcFace (d) African-American Males — COTS
Aog #77 l.og W Allow ®#7 lLlow ™ Amid % |.md B A high 2 1 high Aog 777 l.og WEm Alow #Z% llow ™ Amid %Z I.md B A high ¥ | high
Statistics Statistics
:-4.47 d':-1.01 8 d-2.100CM d: .12 d:-1.55 0 d-0.39 [CFZ d:-2.23 W8 d:-2.24 8 d:0.02 @ d:-0.40 Tl d':-0.60 MM d'-0.47 WM d-
:-4.02 78 d:-0.03FH d':-0.10 748 d':-0. .07 ESE d': -0.11 FE d': -0.04 e d':-2.65 2.02 P d':-0.02 748 d':-0.09 7 d':-0.13 ES d" -0.07 ENM d": -
5l
5]
71
44 64
2z 257
237 2
& 8 4
24 34
21
1
1
0- 0~
—0.2 0.0 0.2 0.4 0.6 0.8 L0 0.0 0.2
Scores Scores
(e) Caucasian Females — ArcFace (f) Caucasian Females — COTS
Aog #/7 l.og W Alow #Z lLlow W Amid % l.mid B A high 228 1 high Aog 777 log WEE Alow ZZ% llow ™ Amid %2 L.mid B A high 22 I high
Statistics Statistics
¥4 d:-9.53 M@ d':-5.32 d:-0.91 1 d:-1.88 M d:-2.280 d" [CFZ d':-2.37 2.06 10 d':-0.16 1 d':-0.45 W d':-0.59 W d"-0.29 WM d:-0.430M d:-0.14
R d:-7.63 W d':-4.89 7 d: 1 -2.27 . 1.94 7 d":-0.01 748 d':-0.03 ¥ d':-0.05E¥# d'-0.02 @il d:-0.04 e d:-0.02
8l
61
z
@
g
8
4]
N
-0.2 0.0 0.4 0.6 0.8 Lo 0.0 0.2
Scores Scores

(g) Caucasian Males — ArcFace
Figure 3. Authentic and Impostor Score Distributions

(h) Caucasian Males — COTS

1165




Table 1. Privacy Protection Measures Across Demographic Subgroups

d-prime Earth Mover’s Distance
African-Americans Caucasians African-Americans Caucasians
Gallery  Probe Matcher  Females Males Females Males Females Males Females Males
Original Low Cloaking Level 1.1988 1.3703 1.0114 09145 0.1007 0.1050 0.0945  0.0792
Original Mid Cloaking Level = ArcFace  2.3048 2.5258 1.1203  1.8847  0.2305 0.2456 0.2242  0.1914
Original High Cloaking Level 2.8202 3.1284 2.1010 2.7778  0.2908 0.3071 0.2741  0.2329
Original Low Cloaking Level 0.1629 0.2042 0.0185 0.1624  0.0286 0.0353 0.0359  0.0275
Original Mid Cloaking Level COTS 0.4659 0.6153 0.3976  0.4460  0.0780 0.1022 0.0703  0.0729
Original High Cloaking Level 0.6739 0.8282 0.5998 0.5862 0.1113 0.1349 0.0928  0.0946
Table 2. Measuring Perceived Disturbances via IQA Methods
VIF PieApp DISTS

Reference Degraded AAF AAM CF CM AAF AAM CF CM AAF AAM CF CM

Original Low Cloak  0.0996 0.1145 0.0847 0.1051 0.1583 0.1813 0.1777 0.1900 0.0145 0.0216 0.0105 0.0152
Original Mid Cloak  0.1658 0.1925 0.1501 0.1872 0.2433 0.2784 0.2718 0.2842 0.0290 0.0419 0.0225 0.0315
Original High Cloak 0.2046 0.2371 0.1819 0.2265 0.2966 0.3363 0.3311 0.3440 0.0391 0.0554 0.0298 0.0415

Table 3. Protection per Disturbance Point Spent
VIF PieApp DISTS

Reference Degraded Matcher Protection ~AAF  AAM CF CM AAF  AAM CF CM AAF  AAM CF CM

Original Low Cloak 0.1205 0.1197 0.1194 0.0870 0.0757 0.0756 0.0569 0.0481 0.8254 0.6353 0.9625 0.6000
Original Mid Cloak  ArcFace  d-prime  0.1390 0.1312 0.0746 0.1007 0.0947 0.0907 0.0412 0.0663 0.7940 0.6035 0.4988 0.5982
Original High Cloak 0.1378 0.1320 0.1155 0.1226  0.0951 0.0930 0.0634 0.0807 0.7207 0.5642 0.7055 0.6688
Original Low Cloak 0.0101  0.0092 0.0111 0.0075 0.0064 0.0058 0.0053 0.0042 0.0694 0.0487 0.0899 0.0520
Original Mid Cloak  ArcFace EMD 0.0139 0.0128 0.0149 0.0102 0.0095 0.0088 0.0082 0.0067 0.0794 0.0587 0.0998 0.0608
Original High Cloak 0.0142 0.0130 0.0151 0.0102 0.0098 0.0091 0.0083 0.0068 0.0743 0.0554 0.0920 0.0561
Original Low Cloak 0.0164 0.0178 0.0022 0.0155 0.0103 0.0113 0.0010 0.0085 0.1122 0.0947 0.0176 0.1066
Original Mid Cloak COTS d-prime  0.0281 0.0320 0.0265 0.0238 0.0191 0.0221 0.0146 0.0157 0.1605 0.1470 0.1770 0.1416
Original High Cloak 0.0329 0.0349 0.0330 0.0259 0.0227 0.0246 0.0181 0.0170 0.1722 0.1494 0.2014 0.1411
Original Low Cloak 0.0029 0.0031 0.0042 0.0026 0.0018 0.0019 0.0020 0.0014 0.0197 0.0164 0.0341 0.0180
Original Mid Cloak COTS EMD 0.0047 0.0053 0.0047 0.0039 0.0032 0.0037 0.0026 0.0026 0.0269 0.0244 0.0313 0.0231
Original High Cloak 0.0054 0.0057 0.0051 0.0042 0.0038 0.0040 0.0028 0.0028 0.0284 0.0243 0.0312 0.0228

vor white individuals, primarily due to the face recognition
frameworks they utilize.

Table 2 presents the outcomes from the IQA techniques,
quantifying the perceived disturbances caused by varying
cloaking levels across different cohorts. Both VIF and
DISTS are congruent in indicating that the CF group experi-
ences the least disturbance per cloaking level, while PieApp
attributes this to the AAF cohort. It’s noteworthy that VIF
and DISTS primarily focus on analyzing structural and tex-
tural nuances. In contrast, PieApp gauges the probability of
a human observer preferring one image over another—here,
the cloaked versus the original.

4.2.2 The Economy of Cloaking

To evaluate the cost-effectiveness of cloaking, we estab-
lish a ratio that represents the balance between protection

achieved and the visual disturbances “paid” for that protec-
tion. We use the d-prime and EMD metrics from previous
sections as indicators of protection, while disturbances are
gauged based on the IQA metrics. This ratio, framed as pro-
tection divided by disturbance, illustrates the level of pro-
tection obtained per unit of disturbance.

Table 3 presents these calculations, where higher val-
ues denote superior value—meaning more protection for
each unit of disturbance. When examining results based
on the d-prime metric, African Americans stand out as
consistently achieving the best value in protection cost-
effectiveness. ArcFace favors the AAF category, whereas
the COTS matcher points to AAMs. In contrast, EMD-
based findings are more varied, contingent upon the IQA
method used. For instance, DISTS attributes that highest
value to CFs, while VIF’s oscillates between CFs or AAMs.
PieApp leans towards AA, favoring AAF with ArcFace and
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AAM with the COTS matcher. To establish a clear rank-
ing, we count how frequently each demographic subgroup
attains a specific placement (first, second, third, and fourth)
per matcher. The summary of this can be found in Tab. 4.

Noticeably, both matchers consistently chose the same
racial demographic for each placement, but differed in their
gender selection. Given the marginal differences in dis-
turbance scores across race-gender categories, we explored
the statistical significance of these variations. We found
no meaningful disparity between race-gender groups (e.g.,
AAF, AAM) in terms of disturbances. However, there were
statistical significant differences when comparing broader
racial groups (e.g., African Americans vs. Caucasians).
Consequently, for our cost-effectiveness reporting, we focus
on racial groups rather than the combined race-gender cat-
egories. Overall, African Americans “paid less” in terms of
visual disturbances for their degree of protection than Cau-
casians, suggesting that African Americans tend to get “the
most bang for their buck.”

Table 4. Tally of Cost-Effectiveness Placement Records

African-Americans Caucasians

Ranking Matcher Females Males Females Males

I 11 0 7 0
2nd 7 10 1 0
31 ArcFace 0 4 5 9
4t 0 4 5 9

I 1 10 7 0
2nd 14 2 1 1

3 COoTS 3 5 6 4
4t 0 1 4 13

5. Conclusions

Face recognition technologies offer undeniable benefits
but come with significant challenges in differential out-
comes and potential breaches of individual privacy. As we
entrust machines with the task of recognizing and catego-
rizing human faces, these algorithms inherit not only our
ability to discern but also our shortcomings and predispo-
sitions. The technology is capable of both streamlining
daily operations and perpetuating systemic disparities. For
those deeply concerned about their privacy, these technolo-
gies pose a twofold dilemma: the risk of misidentification,
and the unsettling prospect of being easily identified and
tracked. The lack of clarity surrounding the use of one’s fa-
cial data further intensifies these concerns, prompting many
to seek proactive defensive measures.

In this context, cloaking has emerged as a privacy-
preserving technique that introduces pixel-level perturba-
tions to facial images. These alterations reduce the accu-
racy of recognition software while maintaining visual fi-

delity for human viewers. This work emphasizes the rel-
evance of cloaking, particularly in light of its ability to
empower demographic groups more vulnerable to nega-
tive impacts from recognition algorithms. Our results,
when using the Fawkes algorithm, reveal that, in terms
of protection effectiveness, African American males “wore
it best” and benefited the most from the cloak, followed
by African American females. Additionally, in terms of
cost-effectiveness—balancing protection against the intro-
duction of visual disturbances—African Americans, as a
broader racial group, appeared to acquire more protection
for fewer visual disruptions when compared to their Cau-
casian counterparts, and hence “paid less.”

The use of cloaking techniques like Fawkes reinforce in-
dividual privacy and offer a degree of protection against
the unauthorized use of facial data. For those deeply con-
scious of their digital privacy, such techniques not only pro-
vide a shield against unsanctioned face recognition but also
serve as a powerful statement, highlighting the need for fair
and equitable outcomes in face recognition. Nevertheless,
it is essential to acknowledge that cloaking’s protection is
not perpetual. As face recognition algorithms evolve, they
may grow more resilient against techniques. As a result,
privacy-minded individuals should still exercise discretion
when sharing their data online.

6. Future Work

This work presented a comparative analysis of the
privacy-preserving protection provided by Fawkes across
various demographics. Other existing algorithms were not
considered due to their potential to introduce undesirable
changes in facial structure. However, it is essential to un-
dertake efforts to evaluate the privacy protection offered by
these alternative methods across diverse demographics, as
the results of those works predominantly feature individuals
with lighter skin tones. Furthermore, considering the poten-
tial for significant intraclass variations within self-reported
race categories [5, 19], and the ambiguity surrounding race
classifications, particularly for mixed-race individuals, it is
advisable to explore other factors, such as skin tone. A more
granular study on the effectiveness of cloaking algorithms
based on assessed skin tones can provide insights into the
nuances of privacy preservation in a more inclusive manner.
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