
The CHROMA-FIT Dataset:
Characterizing Human Ranges of Melanin

For Increased Tone-awareness

Gabriella Pangelinan, Xavier Merino, Samuel Langborgh, Kushal Vangara,
Joyce Annan, Audison Beaubrun, Troy Weekes, Michael C. King

Florida Institute of Technology
Melbourne, FL, USA

{gpangelinan, slangborgh2021, kvangara2015, jannan2021, abeaubrun2013}@my.fit.edu
{xmerino2012, tweekes, michaelking}@fit.edu

Abstract

The disparate performance of face analytics technol-
ogy across demographic groups is a well-documented phe-
nomenon. In particular, these systems tend toward lower
accuracy for darker-skinned individuals. Prior research ex-
ploring this asymmetry has largely relied on discrete race
categories, but such labels are increasingly deemed insuf-
ficient to describe the wide range of human phenotypical
features. Skin tone is a more objective measure, but there
is a dearth of reliable skin tone-related image data. Ex-
isting tone annotations are derived from the images alone,
either by human reviewers or automated processes. How-
ever, without ground-truth skin tone measurements from the
subjects of the images themselves, there is no way to as-
sess the consistency or accuracy of post-hoc methods. In
this work, we present CHROMA-FIT, the first publicly avail-
able dataset of face images and corresponding ground-truth
skin tone measurements. Our goal is to provide a baseline
for tone-labeling methods in assessing and improving their
accuracy. The dataset comprises approximately 2,300 still
images of 209 participants in indoor and outdoor collection
environments.

1. Introduction

Face analytics techniques like recognition and gender
classification have well-documented accuracy disparities
with regard to race [3, 11, 26, 28]. Despite myriad research
efforts, little substantial progress has been made in charac-
terizing the reasons for such challenges. As this body of
work grows, it has been noted that race labels (provided
as metadata for many datasets) may be insufficient to char-
acterize people in an increasingly interracial and intercul-

tural world. Discrete race categories like African American
/ Black and Caucasian / White have been criticized for ob-
scuring “the immense phenotypical heterogeneity that exist
within them.” [24] Additionally, such labels rely on subjec-
tive identification, which “can change over time, place, and
context.” [1]

Skin tone is a more objective point of reference, but ob-
taining reliable measurements has proven challenging. His-
torically, manual assignments have been given by trained
professionals (e.g., dermatologists) using the Fitzpatrick
Skin Type (FST) scale in face-to-face evaluations. The
datasets that include manually annotated FST values are
typically limited to close-up skin photographs intended for
clinical diagnosis. It is important to note that in-person FST-
annotated datasets are exceedingly scarce, with less than
2% of available datasets [7,22,27] reporting the rating [34],
even among those curated for cancer diagnostics.

Many of the face image datasets with FST values in-
stead used manual reviewers [3,10,13,21,33], often without
specialized training in skin tone classification. This raises
concerns about the validity of such assignments since FST
was originally conceived for application in a clinical setting.
Critics argue that using FST values outside of this context is
inappropriate, particularly because FST is not designed for
photometric assessments which can be heavily influenced
by factors like lighting and subject pose [14].

Automated methods can also be used to estimate skin
tone directly from images, though they often require spe-
cialized collection conditions and pre-processing. Individ-
ual Typology Angle (ITA) [4] is perhaps the most well-
known method [8,9,23,31,33]. ITA applies a mathematical
formula to image information in the L∗a∗b∗ colorspace. As
an inexpensive and highly-reproducible process, ITA is suit-
able for analyzing large-scale datasets. Additionally, unlike
ratings from human reviewers, ITA ratings are by nature
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consistent on the same image over multiple runs. How-
ever, labeling errors can occur [17], especially for face im-
ages taken in uncontrolled environments with poor expo-
sure. More recent methods incorporate factors like skin re-
flectance [2,5] and hue angle [31] in assessing tone, though
they are still susceptible to variations in illumination. With-
out ground-truth—the measurement of a person’s actual
skin tone—only manual inspection can catch such errors.

Regardless of method, tone annotations cannot truly be
verified without an in-person measurement, as noted in [14].
To this end, we present a dataset with the metadata neces-
sary for such a task. In Section 2, we review previous tone-
aware datasets. In Section 3, we describe the collection of
the CHROMA-FIT dataset and its included metadata. In
Section 4, we detail the mapping of collected RGB / L∗a∗b∗

measurements to relevant tone-classification scales and in-
troduce additional skin absorbance characteristics.

2. Related Datasets
Many works examining demographic disparities in face

recognition—and the datasets they analyze—rely on dis-
crete race labels. Law enforcement mugshot databases may
use self-reported race taken from driver’s licenses, as in
the well-studied MORPH dataset [29] and the self-collected
dataset used in [16]. Race labels can also be generated by
attribute classifiers [18] or crowd-sourced [12, 19].

Skin tone annotations are rarer: Table 1 lists publicly
available face image datasets with skin tone labels. Four
of the datasets provide only manually annotated skin tone
assignments, one provides only automated ITA values for
skin tone, and two provide both measures. However, all
assignments were provided post-collection, by third-party
observers viewing only the images or videos, without in-
person evaluations.

BUPT-Globalface and BUPT-Balancedface, introduced
in [33], contain 2 million images of 38k persons and 1.3
million images of 28k persons, respectively. These datasets
were specifically compiled to provide a balanced racial
and cultural representation, and their participants are di-
vided into two “skin bin” groups of four and eight tones.
However, a limitation of these datasets is the inclusion of
celebrity images, which tend to contain facial features not
representative of the general population [15].

All datasets providing FST values as metadata [3,13,21,
33] share an issue: strictly speaking, FST assignments are
given in person by a trained practitioner. This concern has
been raised by several works which opted to use their own
six-tone, light-to-dark scales [3,17,21,25]. The Monk Skin
Tone scale extends to ten tones and was specifically de-
signed “to enable practitioners to teach human annotators
and test for consistent skin tone annotations across various
environment capture conditions.” [30] Its creators note that
the accompanying dataset “should be used only as educa-

tional content ... [not] as a training dataset for a model.” [30]
In [14], Howard et al. analyze a self-collected dataset,

providing Face Area Lightness Measures (FALMs) derived
from in-person ground-truth measurements and image-
based estimation. However, their dataset has not been made
available to the research community.

3. Data Collection
The CHROMA-FIT dataset comprises indoor and out-

door images taken with a Nikon D7500 DSLR camera
equipped with an 18-140mm lens. Fig. 1 shows the setup
for both collection environments.

(a) Indoor Setup

(b) Outdoor Setup

Figure 1. Data Collection Setup
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Year Dataset # People Content Labeling Method Label Type

2015 BUPT-Globalface [33] 38k 2 million images Manual & Automated ITA, FST
2015 BUPT-Balancedface [33] 28k 1.3 million images Manual & Automated ITA, FST
2017 Pilot Parliaments Benchmark (PPB) [3] 1270 1 image / person Manual FST
2018 IARPA Janus Benchmark-C (IJB-C) [21] 3,531 ∼6 images / person Manual FST
2019 IBM Diversity in Faces (DiF) [23] n/a 1 million images Automated ITA
2022 Casual Conversations [13] 3,011 ∼15 videos / person Manual FST
2023 Monk Skin Tone Examples (MST-E) [30] 19 1515 images, 31 videos Manual MST

Table 1. Summary of Previous Tone-aware Datasets

For each participant, we collected 11 total images: six
in the controlled indoor setting, and five in the uncontrolled
outdoor setting. In both environments, five images were
captured of the participant facing different angles relative
to the camera (as seen in Fig. 2). Indoors, an additional
close-up enrollment image was captured when the partici-
pant directly faced the camera. Black rectangles are added
over the eye regions of example images shown in this paper
in an effort to protect individual anonymity and privacy.

3.1. Indoor Collection

Participants began in the indoor collection environment,
shown in Fig. 1a. During the intake stage, various physical
measurements were taken: height (in.), weight (lbs.), and
skin tone. Skin tone measurements were captured from the
forehead and forearm regions using the DSM III Skin Col-
ormeter, which provides values in the L∗a∗b∗ color space,
and the Pantone CAPSURE, which provides sRGB values.

The indoor images were captured with standard office
lighting (i.e., 600 lux). Participants stood at the red X indi-
cated in Fig. 1a, approximately 14 feet from each camera.
Each pair of cameras was stacked: on the bottom, a camera
with 0◦ pitch, and on top, a camera with 15◦ pitch. The
indoor images were taken from Camera 3, with participants
alternately facing positions 1, 2, 3, 4, and 5.

3.2. Outdoor Collection

After the indoor collection portion, participants were
taken to an outdoor setting, visualized in Fig. 1b, and the
same five-angle photo set was captured. The outdoor setup
is inspired by that of [6]. In this setting, lighting was not
controlled, and varied across the two-week collection pe-
riod. As such, the outdoor images vary in exposure level
depending on the sunlight, cloud cover, and other environ-
mental factors of the individual day or time of day.

Participants stood at the red X indicated in Fig. 1b, ap-
proximately 32 feet from each camera. As with the indoor
environment, each pair of cameras was stacked. The out-
door images were taken from Camera 3, with participants
alternately facing positions 2, 3, 4, 5, and 6.

3.3. Metadata

The metadata is composed of self-reported demographic
information and ground-truth skin tone information. Skin
tone measurements from the forehead (FH) and forearm
(FA) regions are provided in the sRGB and L∗a∗b∗ col-
orspaces.

Self-Reported Data:
(1) Age, (2) gender, (3) ethnicity

Measured Data:
(1) FH / FA sRGB, (2) FH / FA L∗a∗b∗, (3) FH / FA
erythema and melanin, (4) height, (5) weight

4. Skin Tone Measurements
We used the Pantone CAPSURE Colormeter and the

DSM III Skin Colormeter, shown in Fig. 3, to measure par-
ticipant skin tone in distinct color spaces.

When held against a surface, the Pantone CAPSURE
Colormeter captures a 9mm2 area of skin under an LED
light source with a ring-like configuration, emitting vari-
ous colors onto the skin. The device records an average
of four measurements and discerns the nearest shade from
a selection of 3000 CMYK colors, outputting a correspond-
ing tone in the sRGB color space. It should be noted that the
CAPSURE was not specifically designed for use in measur-
ing skin tone, and occasionally yielded shade matches that
made less sense in a skin tone context: e.g., a tone corre-
sponding to a paint shade with a glossy sheen.

Alternatively, the DSM III Skin Colormeter was de-
signed specifically for skin applications. It analyzes a
7mm2 section of skin under the illumination of two built-
in LEDs, and outputs values in the L∗a∗b∗ color space,
which is wider than sRGB and thus preferable for express-
ing the complexity of skin color. Additionally, the device
provides measurements for erythema (redness) and melanin
(pigmentation) based on skin absorbance characteristics.

Our collection procedure included (1) calibrating each
device against its standard white background then (2) taking
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Figure 2. Photo Capture Angles

readings from both devices on the forehead and forearm of
each participant. We did not require any skin cleansing.
Consequently, the measurements may have been influenced
by presence of makeup or sunblock.

To augment the original collection, we performed con-
versions from each device’s native color scale to both
L∗a∗b∗ and sRGB representations (e.g., L∗a∗b∗ to sRGB
and vice versa). For each participant, we provide eight
total measurements: (1) sRGB, (2) sRGB → L∗a∗b∗, (3)
L∗a∗b∗, and (4) L∗a∗b∗ → sRGB from both forehead and
forearm regions.

These ground-truth values were next classified according
to two skin tone scales. The Apparent Skin Tone (AST)
scale, as used in [17], specifies six tone bins, while Google’s
Monk Skin Tone (MST) scale, presented in [30], specifies
ten tone bins.

(a) Pantone CAPSURE (b) DSM III Skin Colormeter

Figure 3. Devices for Measuring Skin Tone

4.1. From Ground-Truth to Apparent Skin Tone

The Apparent Skin Tone (AST) scale has six values,
ranging from I (lighter) to VI (darker), in alignment with
the Fitzpatrick categories. The scale’s name reflects its abil-
ity to be retroactively assigned, using ITA calculated from
an image or from a measured L∗a∗b∗ value. By using the
ground-truth L∗a∗b∗ measurement, we avoid the challenge
of varying illumination in the typical ITA-from-image case.

Our collection procedure yielded four distinct ground-
truth L∗a∗b∗ values, which were converted to ITA values
then mapped to an AST rating, as described in [17]. Eq. (1)
shows how to obtain an ITA value from an L∗a∗b∗ measure-
ment. Fig. 4 and Tab. 2 visualize the relationship between
ITA values and mapped AST tones.

ITA =

[
arctan

(
(L∗ − 50)

b∗

)]
∗ 180

π
(1)

Table 2. ITA to AST Rating

Individual Typology Angle (ITA°) AST Rating Description

ITA° >55° I Very light
41° <ITA° <55° II Light
28° <ITA° <41° III Intermediate
10° <ITA° <28° IV Tan
-30° <ITA° <10° V Brown
ITA° <-30° VI Dark

This approach treats each AST rating as though it had
been determined by an evaluator exclusively focused on a
specific skin area. To establish a single ground-truth AST
rating, we computed the mode among all the ratings. In
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Figure 4. ITA Scale

cases where two modes were identified for a subject, we
used the median of the modes as the ground-truth rating.

4.2. From Ground-Truth to Monk Skin Tone

The Monk Skin Tone Scale (MST) is a ten-point scale, 1
(lighter) to 10 (darker), designed to express a broader spec-
trum of skin tones than the Fitzpatrick scale. The MST scale
was derived from a synthesis of scientific research in so-
cial psychology and categorization, as well as insights from
individuals of diverse ethnic backgrounds. Its purpose is
to enhance computer vision systems’ comprehension of di-
verse skin tones and to promote fairness in machine learning
evaluations. The ten tones are depicted in Fig. 5.

For each measurement collected from both the forehead
and forearm, we generated MST ratings using both sRGB
and L∗a∗b∗ color spaces, resulting in a total of 8 ratings
per subject. In the case of ratings derived from the sRGB
color space, we first converted the measurement into a lin-
ear RGB value. Then, we compared this value with three
salient colors represented in RGB, which were determined
from the MST orbs. See an example of salient color extrac-
tion in Fig. 6. These salient values were obtained through a
K-means algorithm applied to each pixel within the MST
orb. Finally, we employed the Root Mean Square Error
(RMSE) to calculate the difference between the linear RGB
value and the cluster centers. The assigned MST rating cor-
responded to the orb with the lowest RMSE.

For ratings obtained from the L∗a∗b∗ color space, we
computed the perceptual difference between the measure-

Figure 5. MST Orbs

(a) Monk Skin Tone 5

(b) Monk Skin Tone 7

Figure 6. Salient Color Extraction from MST Orbs

ment and the salient colors represented in L∗a∗b∗ for-
mat. This perceptual difference was computed using the
CIEDE2000 formula. Similar to the sRGB approach, we
assigned the MST rating that matched the orb with the low-
est cumulative CIEDE2000 value.

This approach treats each MST rating as if it were as-
sessed by an evaluator solely focusing on a specific skin
area. To establish the ground-truth MST rating, we deter-
mined the mode across all these ratings. In instances where
two modes were identified for a particular subject, we cal-
culated the median of these modes and designated it as the
ground-truth MST rating. It is important to note that we ex-
cluded the Colormeter’s readings for the purpose of MST
determination for one subject due to apparent calibration is-
sues specific to that individual.

4.3. Relating AST and MST Scales

Fig. 7 displays exemplar facial images categorized into
tone-groups for both the AST and MST scales. It is evi-
dent that the MST scale encompasses a significantly broader
range of perceptual tones, with our study participants pre-
dominantly falling within MST tones 3-8. In a general
sense, these six MST ratings appear to encompass the en-
tirety of the AST scale. In Fig. 7, where possible, we have
attempted to depict the same individuals classified under
both scales, offering insights into their interrelation. The
distribution of participants by AST and MST rating can be
seen in Fig. 8a-8b.

To further visualize the relationship between tone cat-
egorization in both scales, we have presented a heatmap
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Figure 7. Participants Mapped to AST and MST Ratings

(a) AST Distribution (b) MST Distribution (c) AST - MST Heatmap

Figure 8. Skin Tone Ratings

in Fig. 8c. This visualization reveals that the AST scale
seem to be encompassed by just six MST tones. This align-
ment becomes more apparent when referring to the color
swatches featured in Fig. 7, as these specific tones exhibit
relative similarities.

Interestingly, some people with different AST tones were
grouped into a single MST tone: e.g., the exemplar individ-
uals for AST tones II and III were both classified as MST
tone 5. While this may seem counterintuitive, an examina-
tion of the tonal spectrum displayed in Fig. 6a for MST tone
5 sheds light on how each MST rating captures a relatively
wide range of tones.

A Pearson’s product-moment correlation analysis was
conducted to investigate the association between AST and
MST ratings within the dataset. There was a robust and sta-
tistically significant positive correlation between AST and
MST ratings, with a correlation coefficient of r(209) =
0.8422, p < 0.0005. This strong positive correlation sug-
gests that as AST ratings increase, MST ratings tend to in-

crease as well, with an AST rating explaining about 70% of
the variation in MST ratings.

4.4. Erythema and Melanin

Finally, we consider the erythema (E) and melanin (M)
indices given by the DSM III Skin Colormeter. Both values
relate to the absorbance characteristics of the skin. Ery-
thema denotes skin redness, while melanin represents skin
pigmentation.

The boxplots in Fig. 9a-9b give the distribution of fore-
arm E and M values by AST value respectively. We have
chosen to only show forearm values since the distributions
for forehead are similar, and we remove the potentially con-
founding factor of facial cosmetics or sunscreen, which
could skew the measurements. The MST data exhibited
similar distributions, and as such, they were omitted for
clarity.

The scatterplot in Fig. 9c plots melanin vs. erythema
values, with each data point colored to indicate the corre-
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(a) Forearm Erythema by AST (b) Forearm Melanin by AST (c) Forearm Erythema vs. Melanin by AST

Figure 9. Erythema and Melanin

sponding AST value.
Among the participants in our dataset, erythema and

melanin values generally seem to increase in tandem with
the AST ratings, indicating that individuals with darker skin
tones exhibit greater levels of both erythema and melanin.
This association aligns with findings from histological ex-
aminations that measure eumelanin content in vivo [20],
providing a biological basis for the correlation observed in
our data.

The bulk of existing research surrounding these charac-
teristics is predominantly focused on dermatological disor-
ders, such as rashes and inflammation, rather than on quan-
tifying the “redness value” of the skin for facial recognition
purposes. It is noteworthy that, in the absence of direct
melanin and erythema measurements, the L∗ component
is a valid measure of constitutive pigmentation, while the
a∗ value has a strong correlation with erythema levels [32].
Thus, these colorspace components can be a proxy for skin
tone analysis where the data is not available.

5. Conclusions and Future Work

The CHROMA-FIT dataset aims to provide a valuable
resource for the research community in refining the accu-
racy of both automated and manual skin tone classification
techniques. By incorporating ground-truth skin tone data,
our dataset facilitates a more nuanced evaluation of prevail-
ing methodologies, enhancing the precision of their assess-
ment.

Looking ahead, we are committed to diversifying our
dataset with an increased participant pool that encapsulates
a more comprehensive spectrum of skin tones. The present
iteration predominantly catalogues mid-range skin tones,
specifically those classified as II-III on the Apparent Skin
Tone (AST) scale and as type 5 on the Monk Skin Tone
(MST) scale. Our goal is to broaden this range, expressly
including underrepresented skin tones at both ends of the
spectrum—namely, the very light (types 1-2) and the very
dark (types 9-10) on the Monk scale—to offer a complete

representation of skin tone diversity.
Moreover, our study extends beyond data compilation to

include initial experiments that translate physical skin tone
measurements into equivalent AST and MST values. We es-
tablished a correspondence between the two scales, provid-
ing a reference for their interrelation. In our future works,
we aim to delve deeper into the nuances of the Monk scale,
which has not been as extensively explored in skin tone
studies. Despite its relative obscurity, we support the orig-
inal developers’ view that the Monk scale holds significant
promise for representing a broader spectrum of skin colors
more equitably.

In conclusion, our dedication to curating and sharing the
CHROMA-FIT dataset is driven by the aspiration to foster
equality in technological representation. We hope that our
contributions will support and amplify inclusivity, ensuring
that individuals of all skin tones are fairly represented in
datasets and, by extension, in the technologies that permeate
our everyday lives.
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[19] Kimmo Kärkkäinen and Jungseock Joo. Fairface: Face at-
tribute dataset for balanced race, gender, and age for bias
measurement and mitigation. In 2021 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages
1547–1557, 2021. 2

[20] P.J. Matts, P.J. Dykes, and R. Marks. The distribution of
melanin in skin determined in vivo. British Journal of Der-
matology, 156(4):620–628, Apr. 2007. 7

[21] Brianna Maze, Jocelyn Adams, James A Duncan, Nathan
Kalka, Tim Miller, Charles Otto, Anil K Jain, W Tyler
Niggel, Janet Anderson, Jordan Cheney, et al. Iarpa janus
benchmark-c: Face dataset and protocol. In 2018 inter-
national conference on biometrics (ICB), pages 158–165.
IEEE, 2018. 1, 2, 3

[22] Teresa Mendonca, Pedro M. Ferreira, Jorge S. Marques, An-
dre R. S. Marcal, and Jorge Rozeira. PH² - a dermoscopic
image database for research and benchmarking. Annu Int
Conf IEEE Eng Med Biol Soc, 2013:5437–5440, 2013. 1

[23] Michele Merler, Nalini Ratha, Rogerio S Feris, and John R
Smith. Diversity in faces. arXiv preprint arXiv:1901.10436,
2019. 1, 3

1177



[24] Jr. Monk, Ellis P. The Unceasing Significance of Colorism:
Skin Tone Stratification in the United States. Daedalus,
150(2):76–90, 01 2021. 1

[25] Vidya Muthukumar. Color-theoretic experiments to under-
stand unequal gender classification accuracy from face im-
ages. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2019. 2

[26] Vidya Muthukumar, Tejaswini Pedapati, Nalini Ratha,
Prasanna Sattigeri, Chai-Wah Wu, Brian Kingsbury, Ab-
hishek Kumar, Samuel Thomas, Aleksandra Mojsilovic,
and Kush R. Varshney. Understanding unequal gen-
der classification accuracy from face images. In
https://arxiv.org/abs/1812.00099, 2018. 1

[27] Andre G. C. Pacheco, Gustavo R. Lima, Amanda S. Sa-
lomão, Breno Krohling, Igor P. Biral, Gabriel G. de Angelo,
Fábio C. R. Alves Jr, José G. M. Esgario, Alana C. Simora,
Pedro B. C. Castro, Felipe B. Rodrigues, Patricia H. L. Fras-
son, Renato A. Krohling, Helder Knidel, Maria C. S. Santos,
Rachel B. do Espı́rito Santo, Telma L. S. G. Macedo, Tania
R. P. Canuto, and Luı́z F. S. de Barros. PAD-UFES-20: A
skin lesion dataset composed of patient data and clinical im-
ages collected from smartphones. Data in Brief, 32:106221,
Oct. 2020. 1

[28] Gabriella Pangelinan, K. S. Krishnapriya, Vitor Albiero,
Grace Bezold, Kai Zhang, Kushal Vangara, Michael C. King,
and Kevin W. Bowyer. Exploring causes of demographic
variations in face recognition accuracy, 2023. 1

[29] K. Ricanek and T. Tesafaye. Morph: a longitudinal image
database of normal adult age-progression. In 7th Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion (FGR06), pages 341–345, 2006. 2

[30] Candice Schumann, Gbolahan O Olanubi, Auriel Wright, El-
lis Monk Jr, Courtney Heldreth, and Susanna Ricco. Consen-
sus and subjectivity of skin tone annotation for ml fairness.
arXiv preprint arXiv:2305.09073, 2023. 2, 3, 4

[31] William Thong, Przemyslaw Joniak, and Alice Xiang. Be-
yond skin tone: A multidimensional measure of apparent
skin color. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4903–4913, 2023. 1,
2

[32] Jennifer K. Wagner, Celina Jovel, Heather L. Nor-
ton, Esteban J. Parra, and Mark D. Shriver. Com-
paring Quantitative Measures of Erythema, Pigmen-
tation and Skin Response using Reflectometry. Pig-
ment Cell Research, 15(5):379–384, 2002. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1600-
0749.2002.02042.x. 7

[33] Mei Wang, Yaobin Zhang, and Weihong Deng. Meta bal-
anced network for fair face recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1–1,
2021. 1, 2, 3

[34] David Wen, Saad M Khan, Antonio Ji Xu, Hussein
Ibrahim, Luke Smith, Jose Caballero, Luis Zepeda, Carlos
De Blas Perez, Alastair K Denniston, Xiaoxuan Liu, and Ru-
beta N Matin. Characteristics of publicly available skin can-
cer image datasets: a systematic review. The Lancet Digital
Health, 4(1):e64–e74, Jan. 2022. 1

1178


