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Abstract

The features learned by deep-learning based face recognition
networks pose privacy risks as they encode sensitive informa-
tion that could be used to infer demographic attributes. In this
paper, we propose an image-based solution that enhances the
soft biometric privacy of the templates generated by face recog-
nition networks. The method uses a reliable mutual information
estimation and simulates a minimization step of the mutual in-
formation between the features and the target variable. We
comprehensively assess the effectiveness of our approach on the
gender classification task by formulating two distinct evaluation
settings: one for evaluating the performance of the approach’s
ability to fool a given gender classifier and another for evalu-
ating its ability to hinder the separability of the gender distri-
butions. We conduct an extensive analysis, considering varying
levels of perturbation. We show the potential of our method
as a privacy-enhancing method that preserves the verification
performance as well as a strong single-step adversarial attack.

1. Introduction

Prior research has highlighted the discriminative nature of the
features extracted from face recognition networks. These fea-
tures have proven to be useful for tasks beyond face recognition,
such as gender, age, or ethnicity classification, as demonstrated
by previous studies [1,15]. This intertwining of identity infor-
mation with additional soft biometric attributes within facial
templates raises legal and ethical concerns regarding privacy
that could lead to profiling and unfairness. To address these con-
cerns, several approaches to enhance the privacy at the template
level emerged. Most of these approaches rely on finetuning the
parameters of the face recognition network or perform feature
suppression and shuffling directly on the templates [10,19,20].

We propose an approach, illustrated in Figure 1 that
constitutes an adversarial attack on the templates to enhance
soft biometric privacy, by perturbing solely the images without
any modification of the face recognition network’s parameters

or any suppression of features from the templates.
While adversarial attacks are typically used to fool

classification models, in this paper we show that they can be
leveraged to counter the bias in the features of face recognition
networks. In particular, we show that our method can help
obfuscate gender-related information by manipulating these
feature representations using an adversarial attack on images.
We propose a new single-step adversarial attack based on
minimizing the mutual information between features and
the gender attribute that can be executed in a black-box or
white-box manner. We demonstrate that injecting controlled
imperceptible noise into images with our method can improve
feature-level privacy in face recognition systems.

The main contributions of this work are the following:

1. We propose a novel privacy-enhancing mutual information-
based adversarial attack with a black-box and a white-box
versions that targets the information at the template level
of face recognition systems.

2. We provide extensive results using two evaluation settings:
The first setting (evaluation setting “A”) evaluates the
attack ability to fool a gender classifier while the second
(evaluation setting “B”) assesses the attack ability to align
the gender distributions.

3. The attack is applied to enhance gender privacy on the
template level of a face recognition network and we show
competitive results to state-of-the-art methods in terms
of the trade-off between privacy and face verification
performance.

2. Related Work

Several adversarial attacks have been developed to study
the vulnerabilities of deep learning-based and other machine
learning classification models. The main categories of such
attacks depend on the amount of knowledge about the classi-
fication model that an attacker is assumed to have. In the first
category, the attacker performs a white-box attack, where all of
the parameters of the classification model are exposed [6,8,9].
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Figure 1. Overview of the proposed method. Î(f(X);YG) designates the estimated mutual information between the features obtained from a
face recognition network’s embedding layer f(X) and the target gender label YG.

Such attacks are typically very successful in inducing
misclassifications of the adversarial images. In the second
category, while the attacks are typically not as effective as the
white-box attacks, they have realistically more chances to occur
as the attacker can corrupt the classification outcome with no
knowledge of the model’s architecture and parameters [2,16].
The most effective white-box attacks use the gradient informa-
tion to simulate in one-step [6] or iteratively [8, 9] a gradient
ascent behaviour on the targeted model’s loss. Meanwhile,
several black-box attacks attempt to approximate the targeted
model’s gradient then apply the gradient-based attacks from
the white-box category [2,16].

In [18], the authors propose to use adversarial attacks as a
privacy preserving approach by showing that attacking a gender
classification network using two white-box attacks has little
effect on the verification performance of a face recognition net-
work with a similar backbone architecture. Other works rely on
editing images so that they contain more visual characteristics
of a different category from the sensitive attribute while simul-
taneously preserving the face recognition performance using
generative adversarial networks [11,12] or face morphing [21].

However, these works only boost privacy of the images
against image classification models, do not delve into the
privacy aspect on the template level. Templates generated by
deep-learning based face recognition networks are considered
sensitive as they encode features that can be used to train soft
biometric classifiers such as gender classifiers [15]. A few meth-
ods focus on the soft biometric privacy of templates generated
by face recognition systems. These are based on the suppression
or the shuffling of the features in the templates [10, 19, 20]
or rely on training and fine-tuning a face recognition network
to remove the sensitive information [5, 13]. Our approach
stands out as it employs images to enhance the privacy of soft
biometrics at the face recognition network template level.

3. Attacks

3.1. Our mutual information-based attacks

We propose a one-step adversarial attack that we refer
to as Mutual Information based Fast Gradient Sign Method
(MI-FGSM). It perturbs images X such that Î(f(X);YG), the
estimated mutual information between the feature distribution

obtained by a face recognition network f(X) and the ground-
truth gender variable Yg is minimized. The attack is a blackbox
attack because it does not require knowledge of any gender
classifier’s parameters. It protects the templates generated
by the face recognition network from unknown classifiers by
limiting the amount of information that the templates can reveal
about the gender variable. The gradient used in the attack is
that of the mutual information estimator with regards to the
input image and not the gradient of the classifier’s loss as in the
Fast Gradient Sign Method (FGSM) [6]. The attack simulates
the behaviour of a one step of gradient descent on the mutual
information. The attack is performed on a clean sample x using
a controlled level of perturbation that we denote as ϵ.

An MI-FGSM adversarial image denoted as x∗ is generated
as follows:

x∗=x−ϵ·sign(∇Î(f(X);YG)) (1)

Given that not all of the features employed in this attack are
anticipated to have significant relevance to gender, we explore
the potential benefits of learning a separate set of gender-specific
features derived from the initial features and employing them
in the attack instead. Consequently, we introduce an alternative
white-box version of the attack, that we refer to as MI-FGSM-
MLP. In this attack, the mutual information is estimated between
the gender labels YG and gender-specific features denoted as
fMLP (X) obtained via a multi-layer perceptron (MLP) gender
classifier that we train on the original face recognition features
and their respective gender labels. The reliance on the gender-
specific features from the MLP classifier characterizes this attack
as a white-box attack. The MLP classifier used is composed
of two fully connected layers of 512 and 1 units respectively,
separated by a LeakyReLU activation function, the logits layer
of 1 unit is followed by a sigmoid function and is trained by
minimizing the binary cross entropy between the ground truth
labels and the probabilities resulting from the sigmoid.

An MI-FGSM-MLP adversarial image is obtained as
follows:

x∗=x−ϵ·sign(∇Î(fMLP(X);YG)) (2)
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3.2. Reference attacks

As reference attacks, we consider two methods, the first is the
original Fast Gradient Sign Method attack [6] as it is a one-step
attack with a controlled perturbation, similar to our attacks. This
attack is a white-box attack as it requires the knowledge of the
parameters of the attribute classifier. It simulates a gradient as-
cent step to maximize the loss of a targeted classifier. To perform
the attack, we use the sign of the gradient of the MLP classifier’s
cross-entropy loss H(p,p̂) with p and p̂ denoting the class labels
and estimated class probability distribution respectively.

Using FGSM, the adversarial image is generated according
to the following equation:

x∗=x+ϵ·sign(∇H(p,p̂)) (3)

We also consider a random attack, referred to as RNDATK,
where the sign tensor that is multiplied by the perturbation level
ϵ is randomly generated, the resulting image is obtained via the
following equation:

x∗=x+ϵ·sign·M (4)

where M is a Bernoulli matrix with parameter p=0.5.

4. Experiment settings
4.1. Mutual Information Estimator

To estimate the mutual information between high dimen-
sional feature vectors f(X) and the ground-truth gender
distribution Yg, given the conditional probability distribution
p(yg|f(x)), we consider a Contrastive Log-ratio Upper Bound
to mutual information (CLUB) defined in [3] as follows:

ICLUB(f(X);YG):=Ep(f(x),yg)[ logp(yg|f(x))]−
Ep(f(x))Ep(yg)[ logp(yg|f(x))]

(5)

However, in our case, p(yg|f(x)) is unknown therefore we
use a Variational Contrastive Log-ratio Upper Bound estimator
vCLUB defined in [3]. The variational upper bound to the
mutual information between the features and the gender variable
is given by the following equation:

IvCLUB(f(X);YG):=Ep(f(x),yg)[ logqθ(yg|f(x))]−
Ep(f(x))Ep(yg)[ logqθ(yg|f(x))]

(6)

The variational distribution qθ(yg|f(x)), an approximation of
the conditional distribution p(yg|f(x)) is obtained by a neural
network with parameters θ. The unbiased estimator of the
variational upper bound in Equation 6 is the following:

ÎvCLUB(f(X);YG)=
1

N

N∑
i=1

[ logqθ(ygi|f(xi))−

1

N

N∑
j=1

logqθ(ygj |f(xi))]

(7)

If the neural network has sufficient capacity and is parameterized
properly, it can result in a reliable variational distribution qθ
which in return, allows us to have a reliable upper bound of the
mutual information as defined in Equation 5.

The architecture used in our experiments consists of two
fully connected layers with 256 and 2 units respectively,
separated by a Rectified Linear Unit (ReLU) activation function.
For further details about the theoretical derivation of the upper
bound, please refer to the work in [3].

4.2. Face Recognition Model and Datasets

We use a IResNet50 ArcFace [4] model trained on the
VGGFace2 dataset as the targeted face feature extractor. We use
three datasets to perform and evaluate the attack: The Labeled
Faces in the Wild (LFW) dataset [7] consists of 13,233 images
in unconstrained conditions of 5,749 identities. AgeDB [14]
contains 16,516 images of 570 identities with a large variation
in age. ColorFeret [17] contains 11,338 images of 994 identities
collected under controlled conditions.

In a first step, we analyze the effectiveness of the attack with
different perturbation levels using a gender-balanced subset of
5,000 samples for each dataset. In a second step, to evaluate
the privacy utility trade-off we use the totality of the datasets
for both the gender classification and the face verification tasks.

4.3. Workflow

To ensure a reliable estimation of mutual information, we
initially train mutual information estimators between the feature
vectors and the target variable for each dataset separately. As
a first step to evaluate the attacks, we chose a range of pertur-
bation levels of [0.05, 0.3], with an incremental step of 0.05,
applied to a small subset of each dataset consisting of 5,000
gender-balanced images. This allows us to observe variations
in gender classification as the perturbation levels increase.

Based on these observations we investigate a sensitive range
of perturbation levels inside the initial range to further analyze
the attacks. In a final step, we select the most effective pertur-
bation level denoted as ϵ∗, and use it to generate adversarial
images for the totality of the datasets. These larger datasets
are then used to evaluate the overall gender classification
performance and the face verification performance.

5. Evaluation settings

We describe in Table 1, the two evaluation settings we use to
evaluate our approach as an adversarial attack and as a privacy-
enhancing method. The first setting, referred to as “A”, concerns
the evaluation of the approach as an adversarial attack. In this
setting, the classification model used to evaluate the attack is the
same MLP classifier defined in Section 3.1. This classifier is
trained on features generated from clean images only. In the first
setting, the decision boundary is fixed because it is estimated by
the MLP on clean features. In this case, we do not expect the
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Evaluation
Setting Evaluation Model Training data

A:Attack MLP Clean

B:Privacy

3-Fold Cross Validation
- Logistic regression

- Linear SVM
- RBF kernel SVM

Adversarial

Table 1. Description of the evaluation settings used to evaluate the
effectiveness of the attacks both as adversarial attacks and privacy
preserving approaches.

method to achieve necessarily a closer accuracy to 50% because
the method does not target a specific fixed decision boundary. It
aims to move the gender distributions closer to each other which
would not necessarily land on the decision boundary estimated
from the clean features. The goal of this setting is to evaluate
our attack’s ability to fool the MLP classifier as an adversarial
attack and a higher rate of false predictions is preferable.

In the second setting, referred to as “B”, we are more
concerned with evaluating the separability of the features
computed for the adversarial images. In this context, we assume
that a person interested in inferring the gender, can retrain
gender classifiers using features from the adversarial images.
In this setting, the decision boundary is updated and therefore
correctly assesses the separability of the two distributions.
Therefore, this evaluation setting is more useful for privacy
evaluation and similar settings have been used previously to
evaluate privacy [10,20]. We evaluate the gender classification
performance by calculating the average accuracy of three differ-
ent classifiers: a logistic regression classifier, a linear SVM as
well as an RBF-kernel SVM. We cross-validate these classifiers
on the features generated from adversarial images and the closer
the accuracy will be to 50%, the more private the templates will
be as the templates would lay closer to the decision boundary
and therefore are harder to separate by gender.

6. Results
6.1. Impact of Mutual Information Estimator

Training on the Attack

In our experiments, the mutual information estimator is
parameterized by a neural network that requires training. We
train this estimator on the features of each dataset separately.
We compare the performance of the attack in both attack and
privacy evaluation setting using different training iterations of
the mutual information estimator. This is a useful experiment
to determine when the estimator is performant depending on
how many iterations it was trained for.

We notice that for the evaluation setting “A”, the attack seems
to reduce considerably the accuracy of the MLP classifier, par-
ticularly at a perturbation magnitude lower than 0.05. For the
LFW and the ColorFeret dataset, there is not any apparent differ-

ence between the estimators at different training steps. However,
for the AgeDB dataset, the MLP classification performance is
lowest at 5,000 training iterations and highest at 23,700 training
iterations for the MI estimator. Interestingly, in the privacy eval-
uation setting “B”, the accuracy is highest for the 5,000 training
iterations but lowest for the 15,000 training iterations for AgeDB.
For the LFW and the ColorFeret datasets, a similar behaviour
is apparent especially for epsilons neighbouring 0.30. However,
the difference between estimators is not as apparent. A better
performance on the privacy evaluation setting “B” is more de-
sirable. The results in this setting suggest that a MI estimator
trained for a number of iterations larger than 15,000 could po-
tentially hinder the performance of the attack. This could be due
to an overfitting on certain batches of the data after 15,000 itera-
tions. Therefore we consider 15,000 to be a sufficient number of
iterations to train the MI estimators for each dataset before using
them in the attacks. Nevertheless, the results in both settings
highlight the stability of the estimator as it consistently yields
similar results regardless of variations in training iterations.

6.2. Attack Comparison

6.2.1 Default perturbation range

The first observation we can make from Figures 2 and 3 is that
the results in the attack evaluation setting “A” differ from the
privacy evaluation setting “B” in a visible manner, not only
when we are evaluating our MI based FGSM attacks but also for
the reference attacks. In fact, in the attack evaluation setting “A”,
we see that all the attacks except for the random attack signif-
icantly reduce the accuracy of the MLP classifier, in particular
for a very low range of perturbation levels that are lower than
0.05. We note also that while our MI-based attacks result in
a lower accuracy of the MLP than the original FGSM for two
of the subsets LFW and ColorFeret, the opposite behaviour is
observed for the AgeDB subset. We also notice that our black-
box attack using solely the face recognition features to mini-
mize the mutual information is better than the white-box attack
with the gender-specific features. Overall, our black box attack
achieves competitive results compared to the white box FGSM
and MI-FGSM-MLP attacks in most datasets. As for the privacy
evaluation setting “B”, we notice that past a very low level of
perturbation, all of the attacks except the random attack result
in a higher average accuracy of the independent classifiers than
the average clean accuracy. This could be due to the classifiers
detecting and learning a noise in the feature vectors that is result-
ing from the attack that make them more discriminative for the
gender classification task. For this reason, we are interested in
the low perturbation level where the accuracy is reduced. There-
fore we performed the attack on a lower perturbation range that
consists of 50 uniform steps until the maximum level of 0.03.
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Figure 2. Evolution of the performance of the gender classification from the features of the MI-FGSM adversarial attack with increasing levels
of perturbation and varying training iterations of the MI estimator. The first row corresponds to the attack evaluation setting “A” and the second
row corresponds to the privacy evaluation setting “B”.

6.2.2 Sensitive perturbation range

We observe in Figure 4, that for the attack evaluation setting
“A”, a perturbation level as low as 0.015 is sufficient for our
MI-based FGSM attacks and the original FGSM attack to reach
their lowest respective accuracies. However, in the privacy
evaluation setting “B”, the most randomized accuracies are all
associated with MI-based attacks regardless of the dataset. It
is important to highlight that while the gap between MI-based
attacks and the FGSM attack performance is small for the
AgeDB dataset, it is more considerable for the LFW and
ColorFeret dataset where the difference in the lowest accuracies
achieved between the MI-FGSM method and the FGSM
method is as high as 7 points on LFW with MI-FGSM reaching
75% accuracy compared to 82% with FGSM and 4 points on
the ColorFeret dataset where MI-FGSM achieves 75% accuracy
and FGSM reaches 79% accuracy. Overall, the results show
that the MI-based attacks are more promising in the privacy
evaluation setting “B” than the FGSM attack.

6.2.3 Impact of mixing clean and adversarial templates
on privacy

We observe from Figure 5 that for the AgeDB dataset, including
clean images in the privacy evaluation setting “B” does indeed
help achieve more privacy when the adversarial images are
perturbed with the maximum perturbation ϵ = 0.3 for both

MI-based attacks. Indeed, storing a combination of the
templates from clean and adversarial images results in more
confusion in the classifiers, despite the significant degradation
in the adversarial images. The most randomized gender
classification performance (highest privacy) is achieved with the
MI-FGSM-MLP attack when the percentage of clean images in
the set is 37.5% , this results in an accuracy of 80.57% instead
of 85.29% with no clean images in the set. For the MI-FGSM
attack, the percentage of clean images in the set of 50% achieves
an accuracy of 83.31% compared to 89.03% with no clean
images in the set and 93.32% on a completely clean set. When it
comes to LFW and ColorFeret datasets, while we observe more
privacy similar to AgeDB as we include progressively clean
images in the set of adversarial images, both MI-based attacks
with the optimal perturbations and with an only adversarial im-
age set still achieve the best privacy with an accuracy of ∼75%
for both datasets, reducing the clean accuracy by ∼12 points for
LFW and ∼20 points for ColorFeret. Meanwhile, mixing clean
images with adversarial images attacked with the maximum per-
turbation achieves a lowest accuracy of 77.43% for LFW when
using MI-FGSM-MLP and 78.93% when using MI-FGSM.
Similarly for ColorFeret, this combination of clean and adver-
sarial images only reduce the accuracy by at most 15 points
using both MI-based attacks with the maximum perturbation.

For all datasets, we notice that the optimal perturbation is as-
sociated with the best privacy outcome when no clean images are
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Figure 3. Comparison of different attacks using the default range of levels of perturbation in both attack and privacy evaluation settings. The
first row corresponds to the attack evaluation setting “A” and the second row corresponds to the privacy evaluation setting “B”.
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Figure 4. Comparison of different attacks using the sensitive range of levels of perturbation in both attack and privacy evaluation settings. The
first row corresponds to the attack evaluation setting “A” and the second row corresponds to the privacy evaluation setting “B”.

included in the set. This finding confirms that the optimal pertur-
bation is effective to reduce the mutual information between the

templates and the gender attribute while remaining undetectable
by classifiers at the template level. This prevents the classifiers
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Method
Dataset

LFW AgeDB ColorFeret
Gender

Accuracy
(%)

EER
(%)

Gender
Accuracy

(%)

EER
(%)

Gender
Accuracy

(%)

EER
(%)

Reference (No Privacy) 84.96 0.483 93.36 5.076 94.60 0.822
Ours (MI-FGSM) 75.93 0.616 87.02 6.003 76.46 1.173

IVE (2019) [19] 75.32 1.56 89.92 10.88 85.14 1.67
Multi-IVE (2023) [10] 75.62 2.92 87.42 10.91 75.22 3.07

Table 2. Comparison of our MI-FGSM attack as a privacy-enhancing
approach to state-of-the-art privacy methods.

in the privacy evaluation setting “B” from overfitting due to
excessive noise introduced at the template level through image
perturbation as is the case with the maximum perturbation.

6.3. Privacy-Face Verification Trade-Off

To evaluate the privacy-utility trade-off, we compare our
approach with two privacy enhancing methods based on feature
elimination. Incremental Variable Elimination (IVE) method
[19] estimates feature importance for targeted attribute classifi-
cation by iteratively eliminating features based on their contribu-
tion. However, despite being an intuitive and effective privacy
approach, it suffers from significant information loss, as it
reduces template dimensionality. Multi-IVE [10] is an improved
version of IVE. It projects features onto PCA or ICA-generated
domains, preserving dimensionality, and then performs feature
suppression on this transformed domain while locking a number
of the first principal components. We reproduce IVE and Multi-
IVE methods according to the best parameters described in the
papers, using several elimination steps. We make sure that for
each dataset, we perform the training of the feature importance
estimators using a different dataset than the evaluation set and
we select the best closest performance in terms of privacy to our
results. For the Multi-IVE method, we used the PCA generated
domain with 5 locked principal components as advised in [10].

We evaluate using the privacy evaluation setting “B”, the MI-
FGSM attack on the totality of the images from every dataset to
quantify the trade-off between privacy and face verification per-
formance. We use the average balanced accuracy, instead of the
plain accuracy of the gender classifiers across the 3-folds to eval-
uate the gender classification performance as the totality of the
datasets are not all gender balanced. In order to have results that
describe reliably the impact of privacy enhancing techniques on
verification, all verification evaluations on LFW and ColorFeret
are performed following the standard protocol 1 for benchmark
on the LFW dataset in [7] where 6,000 pairs (3,000 mated and
3,000 non-mated) are compared using the Euclidian distance. As
for AgeDB, we make sure that the pairs selected for comparison
have an age gap of 30 years to reproduce the most challenging
protocol “AgeDB-30” defined by the dataset’s authors in [14].

We notice that the MI-FGSM method significantly enhances
privacy with very minimal deterioration in verification
performance. The efficiency of the attack is the highest on the
ColorFeret dataset with close to 18 points of difference between

the balanced accuracy before and after the attack. It is followed
by LFW with around 9 points and AgeDB with around 6 points.
On the verification part, AgeDB’s EER increases the most with
close to 1 point from before to after the attack. In comparison
to the state-of-the-art methods, we notice from Table 2 that for
similar levels of privacy, our method is better at minimizing
the impact on the verification performance. For instance, in the
case of AgeDB where gender and identity are highly entangled,
we notice that the EER after applying the Multi-IVE method
doubles from 5.076% to 10.88% for a comparable gender
accuracy to our method at ∼ 87 %.

In Figure 6, we plotted the t-SNE visualization of the
features from clean and adversarial images generated with the
optimal perturbation ϵ∗ as well as the maximum perturbation
we used in our experiments ϵ = 0.3. We also show, for the
assessment of the attack perceptability, a sample from the
LFW dataset with different levels of perturbation. Based on
a qualitative assessment of the images, we cannot see any
discernible deterioration for the image when using the optimal
perturbation, as opposed to the maximum perturbation, where
the noise is quite visible. However, when it comes to the t-SNE
visualization, we notice that the gender distribution of the
features changes considerably from the clean to the attacked
samples. Using the clean samples, the t-SNE graph shows a
clear separability of the feature vectors associated to different
gender categories. Meanwhile, using adversarial samples, the
features appear to be more overlapping. However, the T-SNE
visualization of the feature vectors generated with the maximum
perturbation ϵ= 0.3 fails to capture the high separability we
observed in the privacy evaluation in Section 6.2.2.

7. Conclusion
In this paper, we proposed a privacy-enhancing mutual

information-based adversarial attack, that is performed in a
single step and targets the gender information contained in
templates of face recognition systems to enhance their privacy.
We defined two distinct evaluation protocols for both the attack
and the privacy aspects and we thoroughly analyzed the attack
performance using varying levels of perturbation. We showed
that this attack is effective both as an adversarial attack and
as a privacy-preserving method. We identified the optimal
perturbation level yielding the greatest reduction in the gender
classification performance and ensured that the perturbation is
extremely small and therefore, imperceptible to the human eye.
We further demonstrated that for certain data distributions, it
may be beneficial from a privacy standpoint, to store MI-FGSM
adversarial templates with higher perturbation levels alongside
clean templates rather than only using MI-FGSM adversarial
templates as this can result in more randomized gender
distributions. Furthermore, we provided both a black-box and a
white-box version of our attack and demonstrated that using the
black-box version is sufficient to outperform the FGSM attack,
and yields better verification performances for comparable
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Figure 5. Impact of combining clean image templates with adversarial image templates on the gender classification performance in the
privacy evaluation setting “B”. The maximum perturbation ϵ=0.3 and optimal perturbation ϵ∗ per dataset are compared using MI-FGSM and
MI-FGSM-MLP attacks.

Figure 6. Visualization of a sample from the LFW dataset with different perturbations (top row) and T-SNE visualizations of features generated
from LFW dataset images with different perturbations using the MI-FGSM attack (bottom row). ϵ=0 indicates clean image features. The “feminine”
(“f”) category probabilities shown are the averages of classifier probabilities in evaluation set “B”.

levels of privacy of state-of-the-art privacy-enhancing methods.
Future research could combine our attack with model-based
privacy enhancing methods to improve privacy without
compromising verification performance.
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