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Abstract

The rapid evolution of modern smartphone techniques
has made biometric authentication applications feasible us-
ing smartphone cameras. FingerPhoto verification offers
the benefits of scalability, reliability, and user convenience.
Similar to traditional contact-based fingerprint verification
methods, the widespread deployment of fingerphoto authen-
tication applications has raised concerns regarding the sys-
tem being attacked (or spoofed). In this work, we not only
study and discuss the generalizability of eight different pre-
trained deep learning models against unseen attacks but
also present an analysis of how the background of the cap-
tured fingerphoto and attack samples will affect the Pre-
sentation Attack Detection (PAD) performance. To exper-
imentally benchmark the PAD performance with different
types of background extractors, we present three different
studies: full background, segmenting only the background,
and extracting the Region Of Interest (ROI) that pertains to
the fingerphoto region. We present an extensive evaluation
of three different types of background extraction methods
using eight different pre-trained deep learning techniques.
The obtained results on the publicly available fingerphoto
datasets indicate that by removing the background noise or
extracting the ROI regions, the deep learning models will
become more reliable for fingerphoto presentation attack
detection.

1. Introduction

Contactless biometrics on smartphones are becoming in-
creasingly popular because of their usability and are highly
recommended owing to the pandemic. Contactless biomet-
rics can be captured using smartphones with built-in high-
resolution cameras that capture sufficient information to
perform reliable user authentication. Among several bio-
metrics, the contactless capture of fingerprints is well ad-
dressed, which results in reliable and robust verification per-
formance. Because the fingerprint image is captured and
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Figure 1. Illustration of fingerphoto captured using smartphone
with different types of finger region segmentation.

processed using built-in camera software before processing
and feature extraction for authentication, it is commonly re-
ferred to as a fingerphoto in the literature. The popular-
ity of fingerphoto authentication has resulted in several al-
gorithms and commercial solutions that can be employed
in access-control applications. However, the success and
popularity of fingerphoto authentication applications has at-
tracted the attention of attackers. Presentation attacks are
proven to be vulnerable to verification systems using differ-
ent Presentation Attack Instruments (PAIs). Common PAIs
include replay attacks, 2D/3D printed paper or fingerprint
replicas using various materials.

Fingerphoto presentation attack detection techniques
have been widely studied in the literature and can be broadly
classified as [] hand-crafted features, deep learning, and hy-
brid methods. Early handcrafted methods include features
such as micro-textures, gradients, and light reflections. The
commonly used handcrafted feature extraction techniques
include LBP [3], BSIF [9] and [14] which are further classi-
fied as machine-learning algorithms, particularly SVM [5]
as a classifier. Deep learning methods include the use of
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Authors Finger region seg-
mentation

Type of finger region segmentation Database

Taneja et al. [20] Yes ROI Public
Zhang et.al [22] No Entire image Private
Fujio et.al [2] No Entire image Private

Wasnik et.al [21] Yes ROI Private
Marasco et.al [15] Yes ROI Public
Marasco et.al [16] Yes Image crop Public

Purnapatra et. al [17] No Entire image Public
Li et. al [12] Yes ROI Public
This Work Yes Different types of finger segmentation Public

Table 1. Existing smartphone based fingerphoto PAD methods that are based on using different types of finger region segmentation.

pre-trained networks that are either trained end-to-end [17]
or fine-tuned [15] to detect the fingerphoto PAD. Almost
all popular pre-trained CNNs and visual transformers are
fine-tuned to reliably detect finger photo PAD. An extensive
evaluation of different pre-trained deep learning networks,
including visual transformers, is presented in [12], which
indicates the improved performance of deep learning in de-
tecting finger photo PAD. Hybrid methods [22] include the
combination of deep learning and handcrafted features that
are combined at either the feature or the score level. For
a detailed study on different fingerphoto PAD, readers can
refer to the survey paper [13].

Although fingerphoto PAD techniques have been widely
studied, there is no uniformity in how fingerphoto images
are used to train the detection system. Table 1 lists the dif-
ferent ways in which fingerprint image segmentation is used
in detection systems. As noted in the literature, fingerphoto
images are represented in three ways: (a) using the whole
image as it is captured with background, (b) segmenting
only the finger region in the image while the background
is masked to have black pixels, and (c) the Region of Inter-
est (ROI) that is tightly cropped to have only the finger re-
gion. Figure 1 shows an example of three different types of
fingerphoto sample representations used in existing studies,
which can directly affect the performance of the detection
systems. Furthermore, with the presentation attack samples,
fingerprint replicas can only cover a partial region in the
fingerprint, which can directly influence the performance of
the detection system. Therefore, in this work, we investi-
gate the role of the ROI that can influence the performance
of fingerphoto PAD techniques. To effectively benchmark
the influence of finger region extraction techniques, we em-
ployed eight different pre-trained deep learning-based fin-
gerphoto PAD techniques by considering the higher perfor-
mance of handcrafted PAD techniques [12]. The following
research questions are proposed in this work:

• RQ1: Does the fingerphoto background influence the de-

tection performance using pre-trained deep features based
fingerphoto PAD?

• RQ2: Does the background influence the detection per-
formance of pre-trained deep features based fingerphoto
PAD on individual PAI?

• RQ3: What type of region segmentation indication the
best performance on the pre-trained deep features based
fingerphoto PAD?
The contributions of this work are summarized below in

the course of addressing these research questions:
• To the best of our knowledge, this is the first work that

presents a comprehensive study of different types of fin-
gerphoto region segmentation methods adapted in the lit-
erature.

• Benchmark the quantitative performance of the eight pre-
trained fingerphoto PAD networks on three different types
of fingerphoto segmentation methods.

• Extensive experiments were conducted on a publicly
available dataset using four different evaluation protocols.

The rest of the paper is organized as follows: Section 2 de-
scribes the fingerphoto presentation attack detection frame-
work. Section 3 discusses the evaluation protocol and the
obtained results. Finally, we discuss the conclusion in Sec-
tion 4.

2. Fingerphoto Presentation Attack Detection
The generic representation of the Fingerphoto presenta-

tion attack detection module is as shown in the Figure 1 that
has three different functional blocks namely (a) fingerphoto
sample post-processing (b) feature extraction and (c) classi-
fication that are discussed as follows:

2.1. Post-processing

The goal of post-processing is to process the captured
fingerphoto image to best present the captured image be-
fore performing feature extraction. Commonly performed
post-processing tasks include the extraction of interest by
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Figure 2. Block diagram of the deep features based contactless fingerprint PAD illustrating different types of finger segmentation techniques
as the post-processing that are evaluate in this work.

segmenting out the unwanted background and enhancing
the interest region of interest. In this study, we employed
and evaluated three different cases of post-processing that
are widely employed in existing works.

• With background image: In this case, fingerphoto
images are not post-processed to extract the interest re-
gion. Therefore, the fingerphoto images are exhibited
to have background information that is used to perform
feature extraction and classification.

• Background removal: In order to remove the back-
ground and potential intersection region between the
fingertip and covered material of the attack samples.
It is difficult to batch-crop the images. However, the
proposed Segment Anything Model (SAM) [10] tool
can produce high-quality object masks for all objects
in an image. In our work, we utilized the SAM to
generate the mask of only the presentation attack re-
gion. Based on the generated masks, the presentation
attack region was extracted from the original images,
and background noise was removed.

• ROI extraction: Through the observation of the
dataset, the central region is of the samples is the crit-
ical area. Hence, we obtained the Region Of Interest
(ROI) by locating the center point of the image and
then cropping the region of 128 × 256 pixels around
the center point.

2.2. Deep feature extraction

In the next step, we employ eight different pre-trained
deep neural networks to extract features from the finger-
photo image. The models are all pre-trained on ImageNet
data set. We selected these eight techniques based on their
good detection performance as reported in [12].

• AlexNet [11]: is a powerful model capable of achiev-
ing high accuracy on very challenging datasets which
won the LSVRC competition in 2012. AlexNet com-
prises five convolutional layers, followed by three fully
connected layers. In our experiment, we took the fea-
ture map after the first fully connected layer(fc6) and
obtained a feature vector of size 4096.

• GoogLeNet [18]: is another classic deep nerual net-
work with 22 layers deep. GoogLeNet introduced the
idea of multi-branch convolutions, termed inception
modules, which are designed to deal with the over-
parameterization problem. We utilize the network to
obtain the feature vector from the global average pool-
ing layer.

• ResNet50 [4]: stands for the Residual Network that
consists of 50 layers. The core idea of ResNet is to
tackle the gradient vanishing problem, which makes
it possible to train an ultra-deep neural network and
still achieve excellent performance. We utilized the
ResNet50 architecture to extract features from the
global average pooling layer with a size of 2048.

• DenseNet201 [7]: is a network that connects each
layer to every other layer in a feed-forward fash-
ion with fewer parameters and high accuracy com-
pared to ResNet. The core idea of DenseNet is that
convolutional networks can be optimized when they
have shorter connections between layers close to the
input and those close to the output. We utilized
DenseNet201 to extract features with a size of 1920
from the global average pooling layer.

• MobileNetV2 [6]: is a lightweight network which
is originally designed to perform well on mobile de-
vices. Depthwise Separable Convolutions, Linear
Bottlenecks and Inverted residuals are introduced to
achieve the efficient CNN. We obtain a size of 1280
feature vector from the global average pooling layer.

• EffiecientNetb0 [19]: introduced the idea of com-
pound coefficient that uniformly scales three essential
dimensions depth/width/resolution. We utilize the b0
network of the EffiecientNet network and obtain the
feature vector from the global average pooling layer of
size 1280.

• NasNet [23]: frames the problem of finding the best
CNN architecture as a Reinforcement Learning prob-
lem. The model searches for the best combination of
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Data tpye No.Samples
IPhone7 IPhoneX Samsung Total

Bonafide 858 691 4336 5886
PAI: Ecoflex 832 0 416 1248

PAI: Photo paper 832 272 0 1104
PAI: Playdoh 0 0 1623 1623

PAI: Woodglue 0 272 0 272

Table 2. The statistics of the Presentation Attack Instruments
(PAIs) regarding the number of samples and capture devices.

parameters in the given search space. A new regu-
larization technique called ScheduledDropPath is also
proposed, which significantly improves the generaliza-
tion of NASNet models. We utilized the pretrained
NasNet weight using the matlab deep learning toolbox.
The feature vector was extracted from the global aver-
age pooling layer with a size of 1056.

• Vision Transformer(ViT) [1]: is a transformer model
designed for computer vision task which split the input
image into a sequence of fixed-size non-overlapping
patches. Then, tokenization is applied before apply-
ing the tokens to a standard transformer architecture.
We utilize the Hugging Face version of ViT pre-trained
model with a patch resolution of 32 × 32 pre-trained
in ImageNet.

2.3. Feature classification

Finally, the features extracted from the pretrained deep
learning networks are classified using a linear Support Vec-
tor Machine (SVM) model. A training set corresponding to
the bona fide and attack samples was used to train the clas-
sifier. Given the test sample, the trained SVM model can
output a prediction score.

3. Experiments and Results
In this section, we present the quantitative results of

three different background segmentations that are widely
used in the existing literature on fingerphoto PAD. The ex-
perimental results are presented using a publicly available
dataset with four different PAIs [17], including coflex, play-
doh, photo paper, and woodglue, which are captured using
iPhone7, iPhone X and Samsung Galaxy S20. Table 2 lists
the statistics of the fingerphoto presentation attack dataset
employed in this study. The public dataset employed in this
work has 5886 bona fide and 4247 attack samples that were
collected using three different smartphones.

3.1. Performance evaluation protocol

In this work, we employed the evaluation protocol pro-
posed in [12], which follows the leave-one-out PAI to
benchmark the PAD technique performance to the unseen

Case Training set Testing set
Bona fide Attack Bona fide Attack

Case-1 2999 2999 2887 1248
Case-2 3143 3143 2743 1104
Case-3 2624 2624 3262 1623
Case-4 3975 3975 1911 272

Table 3. The statistics of the training samples and testing samples
corresponding to the different performance evaluation protocols.

PAI. Therefore, the performance evaluation protocol will
benchmark the genralisabality of the PAD techniques to the
un-seen attacks together with the role of different types of
background extraction methods. Table 3 shows the statis-
tics of the training and testing samples corresponding to the
four different Cases resulting from the leave-one-out PAI
evaluation considered in this study. The Case-1: photo pa-
per, playdoh, and woodglue are used for training; Ecoflex is
used for testing. Case-2: Ecoflex, playdoh, and woodglue
are used for training; photo paper is used for testing. Case-
3: Ecoflex, photo paper, and woodglue are used for training;
playdoh is used for testing. Case-4: ecoflex, photo paper,
and playdoh are used for training; and woodglue is used for
testing. It should be noted that for each individual case, the
bona fide samples used for training remained the same as
the attack samples.

The experimental results were obtained using ISO/IEC
30107- 3 [8]. The Attack Presentation Classification Error
Rate (APCER) indicates the percentage ratio at which the
presentation attack examples are misidentified as bona fide
examples. The bona fide Presentation Classification Error
Rate (BPCER) indicates the percentage ratio at which bona
fide examples were misidentified as presentation attack ex-
amples. Furthermore, we included the Detection Equal Er-
ror Rate to measure the effectiveness of the detection sys-
tem. A lower D-EER indicates better generalization of the
deep feature algorithm towards unseen PAI.

3.2. Results and inference

Table 4, 5 and 6 shows the quantitative results with no
finger region segmentation, finger region segmentation with
black background and ROI corresponding to finger region
respectively. In the following, we discuss the quantitative
results corresponding to individual PAD techniques and dif-
ferent finger region segmentation methods.

• AlexNet [11]: The segmented experiment achieves the
best EER performance than the others on Case-1 and
Case-4 with EER = 6.00% and 3.96% respectively.
The ROI experiment yielded the best result for Case 2.
However, none of the approaches improved the results
in Case-3, indicating the limitations of generalizabil-
ity.
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BPCER @ APCER = BPCER @ APCER =PAD Algorithms D-EER 5% 10% PAD Algorithms D-EER 5% 10%
AlexNet 7.37 9.32 5.44 AlexNet 39.93 88.22 78.89

GoogleNet 12.11 28.09 15.48 GoogleNet 50.00 98.76 98.76
DenseNet201 5.37 5.85 1.97 DenseNet201 42.84 93.95 88.74

ResNet50 7.45 12.43 5.02 ResNet50 40.40 95.81 89.02
EfficientNet-B0 6.24 8.90 3.29 EfficientNet-B0 38.50 87.60 78.82

NasNet 8.58 14.93 7.48 NasNet 50.0 71.09 58.22
MobileNet-V2 4.33 4.05 1.73 MobileNet-V2 28.28 68.50 54.47

Case-1

ViT 4.50 3.81 1.56

Case-2

ViT 32.34 81.04 68.32

AlexNet 50.00 100.00 99.72 AlexNet 6.16 6.33 3.40
GoogleNet 50.00 100.00 99.88 GoogleNet 3.70 2.56 1.62

DenseNet201 40.41 94.02 87.43 DenseNet201 4.35 2.20 0.58
ResNet50 15.40 36.48 24.13 ResNet50 0.71 0.10 0.05

EfficientNet-B0 50.00 97.62 94.91 EfficientNet-B0 0.37 0 0
NasNet 6.84 9.93 3.92 NasNet 11.32 17.74 12.09

MobileNet-V2 38.26 74.65 67.69 MobileNet-V2 2.12 0.58 0.31

Case-3

ViT 8.44 13.03 3.62

Case-4

ViT 1.18 0.37 0.16

Table 4. Quantitative performance of the deep features for contactless fingerprint PAD using With background image.

BPCER @ APCER = BPCER @ APCER =PAD Algorithms D-EER 5% 10% PAD Algorithms D-EER 5% 10%
AlexNet 6.00 7.24 2.94 AlexNet 42.76 93.26 85.24

GoogleNet 13.06 29.86 16.04 GoogleNet 42.86 92.45 84.18
DenseNet201 4.64 4.43 1.70 DenseNet201 40.21 94.86 89.83

ResNet50 10.66 23.21 11.43 ResNet50 32.70 81.70 70.43
EfficientNet-B0 2.64 1.39 0.62 EfficientNet-B0 22.10 56.95 40.54

NasNet 16.01 40.84 25.25 NasNet 35.53 83.30 70.51
MobileNet-V2 11.78 20.30 13.54 MobileNet-V2 36.78 91.14 80.53

Case-1

ViT 7.45 10.60 5.61

Case-2

ViT 32.60 78.38 67.92

AlexNet 50.00 100 100 AlexNet 3.96 1.57 0.05
GoogleNet 50.00 100 100 GoogleNet 6.97 9.58 2.72

DenseNet201 18.43 57.30 34.43 DenseNet201 3.67 1.83 0.21
ResNet50 28.27 83.26 68.91 ResNet50 3.67 0.99 0.10

EfficientNet-B0 7.78 11.28 5.70 EfficientNet-B0 2.57 0.26 0.10
NasNet 8.74 17.08 7.30 NasNet 14.39 52.54 31.97

MobileNet-V2 29.27 75.02 59.29 MobileNet-V2 5.87 6.23 1.83

Case-3

ViT 9.30 14.29 8.95

Case-4

ViT 3.67 0.05 0.58

Table 5. Quantitative performance of the deep features for contactless fingerprint PAD using background removal images.

• GoogLeNet [18]: The GoogleNet features obtained
the best detection performance in the ROI experiment
at Case-1 and Case-2 with EER = 11.54% and 23.63%.

• DenseNet201 [7]: The DenseNet201 features exper-
iments have consistent result on Case-1, Case-3 and
Case-4. The segmented experiment indicated the best
EER value compared with the other experiments. Es-
pecially in case 3, the segmented experiment obtained
EER= 18.43% compared to 40.41% and 23.19 % of
the original samples and ROI samples.

• ResNet50 [4]: The ROI features achieve the best per-
formance at EER = 6.65%, 14.58% and 7.58% on

Case-1, Case-2 and Case-3 respectively. This also in-
dicates a promising result in case 4 with EER = 2.94%,
which is slightly worse than that of the original exper-
iments.

• EffiecientNetb0 [19]: In the segmented experiment,
efficientNetb0 indicates the best performance in Case-
1, Case-2, Case-3 and also achieves EER =2.57%
which is slightly worse than ROI experiments.

• NasNet [23]: The ROI experiment achieves the best
EER performance than the others on Case-2, Case-3
and Case-4 with EER= 30.16%, 4.81% and 8.55 %
compared to others.
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BPCER @ APCER = BPCER @ APCER =PAD Algorithms D-EER 5% 10% PAD Algorithms D-EER 5% 10%
AlexNet 6.91 11.67 3.78 AlexNet 25.43 61.94 47.98

GoogleNet 11.54 22.24 13.47 GoogleNet 23.63 59.28 43.86
DenseNet201 6.97 10.22 4.43 DenseNet201 23.19 63.18 50.20

ResNet50 6.65 8.28 3.50 ResNet50 14.58 30.22 20.85
EfficientNet-B0 7.21 11.15 4.47 EfficientNet-B0 14.58 34.05 21.47

NasNet 13.30 29.62 17.73 NasNet 30.16 83.59 69.01
MobileNet-V2 12.00 29.10 15.14 MobileNet-V2 16.22 49.40 28.00

Case-1

ViT 6.71 8.17 3.74

Case-2

ViT 50.00 100.00 100.00

AlexNet 50.00 97.03 93.99 AlexNet 10.30 18.84 10.31
GoogleNet 50.00 96.93 93.01 GoogleNet 4.43 4.29 1.88

DenseNet201 48.42 96.01 91.94 DenseNet201 4.40 3.98 1.47
ResNet50 7.58 11.56 5.49 ResNet50 2.94 0.26 0.05

EfficientNet-B0 25.58 72.78 55.06 EfficientNet-B0 3.30 1.10 2.51
NasNet 4.81 4.66 1.75 NasNet 8.55 13.24 6.54

MobileNet-V2 50.00 98.80 96.51 MobileNet-V2 6.6 7.85 4.08

Case-3

ViT 23.65 100.00 100.00

Case-4

ViT 2.57 0.99 0.31

Table 6. Quantitative performance of the deep features for contactless fingerprint PAD using ROI images as presented in the state-of-the-
art [12]. Quantitative values presented in this table are taken from [12].

• MobileNetV2 [6]: The original features extracted by
MobileNetV2 obtained the best result on Case-1 and
Case-4 with EER = 4.33% and 2.12%. The ROI exper-
iment indicated the best results for Case-2, and the seg-
mented experiment indicated the best results for Case-
3.

• Vision Transformer(ViT) [1]: Vision transformer
model improves the detection rate in the original ex-
periment compared to others in all four cases with EER
= 4.50%, 32.34%, 8.44% and 1.18%.

To better visualize the comparison among different deep
learning models or schemes. We performed an analy-
sis using T-distributed Stochastic Neighbor Embedding (T-
SNE) as a nonlinear dimensionality reduction technique to
embed high-dimensional data for visualization in a low-
dimensional space. Specifically, similar objects are mod-
eled using nearby points, and dissimilar objects are modeled
using distant points with a high probability. We utilized
T-SNE to project the high-dimensional features extracted
from the deep learning models into a two-dimensional map
to compare three different preprocessing strategies. As
shown in Figure 3, the features are extracted from the last
pooling layer of ResNet50; the red dots refer to the attack
features, and the blue dots indicate the bona fide. In the T-
SNE plot of the ROI experiment, the two classes of objects
are more likely to be distant, while the projection of sim-
ilar objects is assigned a higher probability and dissimilar
points are assigned a lower probability. In the middle figure,
the few blue dots fall into the red area, demonstrating less
similarity between the project-of-attack and bona fide seg-
mented samples. The result corresponds to the EER value,

in which the ROI experiment of ResNet50 achieves 6.65%
in Case-1, the original experiment obtains 7.45%, and the
segment experiment achieves 10.66%.

Furthermore, we have included the box charts illustrated
in Figure 4 and 5. From these two figures, we can ob-
serve that in both experiments, AlexNet and GoogleNet per-
formed satisfactorily. In both experiments, the average EER
was greater than 20. Additionally, in the original sample
evaluation, the vision transformer model achieved the best
detection performance compared to the other models. Ef-
ficientNetb0 is considered to perform better than the other
models in the segmented sample evaluation.

The following observations were made regarding all the
experimental results demonstrated above:

• The fingerphoto presentation attack detection algo-
rithm performance will be affected by the background
of the captured fingerphoto samples.

• Different deep learning models perform differently
with different processing schemes.

• The original experiments had the worst overall detec-
tion result compared to ROI and segmented results.
However, the vision transformer performed best on the
original samples with the background.

• As an unseen attack, the replica made with ecoflex and
woodgule are easier to detect then photopaper or play-
doh among all the models and processing techniques.

• On average, utilizing efficientNetb0 can obtain EER =
8.77% indicates the best performance within the seg-
mented samples experiment, which is slightly worse
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Figure 3. TSNE plot of the ResNet50 features, the red dots refer to the attack features and the blue dots indicates the bona fide. From left
to right, the figure demonstrates the TSNE plot of original, background removal and ROI samples.

than EER = 8.26% achieved by ResNet50 using ROI
scheme.

3.3. Discussion

Based on the observations from the above experiments
and the results obtained, the research questions formulated
in Section 1 are answered below.
• Q1. Does the fingerphoto background influence the de-

tection performance using pre-trained deep features based
fingerphoto PAD?
– According to Table 4, 5 and 6, the obtained results indi-

cate the different detection performance using original
or background removal images. Meanwhile, the fin-
gerphoto background is a factor that can influence the

detection performance.
• Q2. Does the background influence the detection per-

formance of pre-trained deep features based fingerphoto
PAD on individual PAI?
– By averaging the D-EER value of eight different mod-

els regarding each case. The original samples were ob-
served to exhibit the best detection performance against
Ecoflex and woodglue. The ROI samples obtained the
best detection performance against the photo paper and
playdoh.

• Q3: What type of region segmentation indicates the best
performance on the pre-trained deep features based fin-
gerphoto PAD?
– Among all segmentation strategies consider all cases
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Figure 4. Box plot distribution indicating the average detection
performance of with background images.

Figure 5. Box plot distribution indicating the average detection
performance of with background removal images.

and deep feature extraction methods. The ROI extrac-
tion approach obtained the best detection performance
with an average EER = 17.88%, the background re-
moval approach achieved an average EER = 18.89%,
and the original samples without any segmentation
methods obtained an average EER = 20.86%.

4. Conclusion
Smartphone biometrics have become increasingly popu-

lar because of their high usability and reliable user verifi-
cation. FingerPhoto verification has already been deployed
in many smartphone authentication applications. Consider-
ing the increase in the number of attackers, fingerphoto pre-
sentation attack detection has become a new research topic.
In this work, we continue to explore the generalization of
fingerphoto attack detection models toward unseen attacks
using the latest publicly available fingerphoto presentation
attack dataset. We benchmarked eight different pretrained

Figure 6. Box plot distribution indicating the average detection
performance of ROI images.

deep learning models using the leave-one-out evaluation
protocol. In addition, we indicated that the fingerphoto
background significantly affects the detection performance
to a large extent. By comparing the obtained APCER,
BPCER, and D-EER using three different fingerphoto pro-
cessing procedures, the obtained results indicate that the
best average EER of 8.26% was achieved by the ROI ex-
periment using ResNet50. An average EER of 8.77% was
achieved by a segment experiment utilizing EfficientNetb0.
Finally, the vision transformer obtains the best result in the
original image with an EER of 11.61%.
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