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Abstract

With the advent and popularity of generative models
such as GANs, synthetic image generation and manipu-
lation has become commonplace. This has promoted ac-
tive research in the development of effective deepfake de-
tection technology. While existing detection techniques
have demonstrated promise, their performance suffers when
tested on data generated using a different faking technology,
on which the model has not been sufficiently trained. This
challenge of detecting new types of deepfakes, without los-
ing its prior knowledge about deepfakes (catastrophic for-
getting), is of utmost importance in today’s world. In this
paper, we propose a novel deep domain adaptation frame-
work to address this important problem in deepfake detec-
tion research. Our framework can leverage a large amount
of labeled data (fake / genuine) generated using a particu-
lar faking technique (source domain) and a small amount
of labeled data generated using a different faking technique
(target domain) to induce a deep neural network with good
generalization capability on both the source and the target
domains. Further, deep neural networks are data-hungry
and require a large amount of labeled training data, which
may not always be available in the context of deepfake de-
tection; our framework can also efficiently utilize unlabeled
data in the target domain, which is more readily available
than labeled data. We design a novel loss function and use
the stochastic gradient descent (SGD) method to optimize
the loss and train the deep network. Our extensive empiri-
cal studies on the benchmark FaceForensics++ dataset, us-
ing three types of deepfakes, corroborate the promise and
potential of our framework against competing baselines.

1. Introduction

Due to the unprecedented progress of generative Al tech-
niques, synthetic multimedia has become extremely com-
mon in social media and the Internet [10,25]. Their popular-
ity is mainly driven by easily accessible, sophisticated tools
for artificially generating realistic multimedia data [3, 19].
Such a technology can be judiciously used in a variety of
applications, such as photorealistic scenery generation [52],

film making [I 1] and human face generation [26]. How-
ever, the strong capability of generative Al to produce re-
alistic multimedia has also threatened the authenticity and
integrity of digital images, and has allowed people to mis-
use it for malicious purposes [, 4—6]. In particular, deep-
fake, which is arbitrarily defined as fake multimedia created
by training generative neural network architectures such as
autoencoders or generative adversarial networks (GANs),
has emerged as one of the most popular multimedia tam-
pering techniques [47] '. Among the most popular deep-
fake forgeries are human facial manipulations. For instance,
FaceSwap (FS) is a type of deepfake that replaces a face in
a target video sequence with a face from a different video
or image collection; Face2Face (F2F) is another type of
deepfake that transfers the expressions of a source video
to a target video while preserving the target person’s iden-
tity [55, 63]. These techniques can be easily used for cre-
ating child sexual abuse materials, celebrity pornographic
videos and fake propaganda videos for gaining unlawful po-
litical influence [17,53,67].

With the line between real and fake media becoming
increasingly blurred, deep fake detection has gained in-
creasing popularity in the computer vision research commu-
nity [46]. This is usually framed as a binary classification
task of predicting whether a given image / video is gen-
uine or fake. Existing detection techniques primarily use
traditional hand-crafted features [29,34], biological features
that exploit unique biometric information of the human face
[38,69] and most popularly, hierarchical feature representa-
tions learned automatically using deep Convolutional Neu-
ral Networks (CNNs) [7,9,12,13,37,56,69,74,75].

While these methods have depicted promising perfor-
mance, they suffer from poor generalization; that is, their
performance is adversely affected when new types of ma-
nipulations are presented, even though they are semantically
similar [62, 73]. The deep neural networks (DNNs) tend to
overfit to the manipulation-specific artifacts and learn fea-
tures that are informative for the given task, but cannot be
transferred to detect forgeries generated using a different
technology [16,31]. To overcome this challenge, a large

Iwe use the terms manipulation technique, faking technique, forgery

and deepfake interchangeably in this paper
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amount of labeled training data from the new domain is
necessary to fine-tune the DNN (as deep neural networks
are data-hungry). Due to the rapid progress in the field of
digital content creation, obtaining abundant labeled data for
every single manipulation technique is not feasible. Ide-
ally, we would like to detect a forgery even if only a few
(or none) labeled samples, and some unlabeled samples are
available from the new manipulation technique (since unla-
beled data is more readily available than labeled data; for in-
stance, we may have access to several images which may or
may not be forged using the new faking technique, and that
information is not available to us, that is, the labels of these
images are unknown). Further, once the DNN is trained to
detect the new types of deepfakes, it should still be able to
furnish high accuracy in the original detection task, so as to
mitigate the catastrophic forgetting (knowledge forgetting)
problem [27,33,64,68].

We thus pose the research task as follows: we are given
abundant data generated using a particular type of deep-
fake (source domain data). The data in the source domain
are all labeled (genuine / fake). We are also given a small
amount (or none) of labeled data and a moderate amount
of unlabeled data from a different faking technology (target
domain data). Our objective is to train a deep CNN to ef-
fectively identify fake and genuine images in both the source
and target domains.

In this paper, we propose a novel semi-supervised do-
main adaptation technique to address this challenging and
practical problem. Domain Adaptation (DA) or Transfer
Learning (TL) algorithms are instrumental in utilizing abun-
dant labeled data in one domain to develop a model for a
related domain of interest, where there is a paucity of la-
beled data [50]. The domain of interest is referred to as
the target domain and the other domain is called the source
domain. The probability distributions generating the data
in the two domains are different, which implies that a deep
model trained on the source domain data may not directly
generalize to the target domain. We propose a novel loss
function to train the deep CNN, and leverage adversarial DA
techniques to address the disparity between the source and
target domains. We validate our framework on challeng-
ing low resolution data and with varied number of labeled
images from the target domain. Our framework depicts im-
pressive performance even when the target domain contains
only unlabeled samples, and no labeled data is available in
the target domain.

The rest of the paper is organized as follows: we present
a survey of related techniques on deepfake detection in Sec-
tion 2; our proposed framework is detailed in Section 3; we
present the results of our empirical studies in Section 4 and
conclude with discussions in Section 5.

2. Related Work

Deepfake Detection: With the advent of several open-
source implementations of deepfakes, such as FakeApp [2],
DeepFaceLab [41], FaceApp [3] etc., deepfake detection
has garnered sufficient research attention in the vision com-
munity. Most of the current detection techniques rely on

deep neural networks (DNNs) [7,37,54,55,58,62]. These
methods include splice detection [12, 13,21,56,74,75], ab-
normal eye blinking [38], signal level artifacts [39,45], ir-

regular head poses [69], peculiar behavior patterns [8, 9],
and many other data-driven methods that do not rely on par-
ticular artifacts in the deepfake videos [22-24,28,35,36,

]. As mentioned before, these methods suffer from poor
generalization, when tested on deepfakes of a different type
than those in the training data.

Domain Adaptation: Domain Adaptation (DA) or
Transfer Learning is a well-researched problem in machine
vision. Please refer to [50] for a comprehensive survey.
DA techniques based on deep learning have outperformed
their non-deep counterparts, which used hand-crafted fea-
tures [49,51]. The Maximum Mean Discrepancy (MMD)
has been extensively used as a metric to quantify the dis-
parity between the source and target domains and learn do-
main invariant features using a DNN [43, 44,65, 66]. Tech-
niques based on Generative Adversarial Networks (GANs)
have depicted particularly commendable performance for
DA. Algorithms in this category include the Domain Ad-
versarial Neural Network (DANN) which incorporates a
domain classifier, whose gradient is reversed when learn-
ing the feature extractor weights [20], the Coupled Gener-
ative Adversarial Network (CoGAN) model, which shares
weights at different layers of the GAN to train a coupled
network, and the combination of CoOGAN with Variational
Autoencoder (VAE) [32] to develop an image translation
network [42] among others. Concepts from Wasserstein
GAN have also been used for domain adaptation [57]. Re-
cent research efforts in this area include Universal Domain
Adaptation, which addresses the practical problem where
the label set between the source and target domains may not
be exactly identical [70], Source-free Domain Adaptation,
where only a trained model (and no data) is available from
the source domain, due to privacy concerns [71], and Active
Domain Adaptation, which attempts to address the disparity
between the source and target domains, and simultaneously
identifies the exemplar unlabeled samples in the target do-
main for manual annotation [48].

Domain Adaptation for Deepfake Detection: Even
though both DA and deepfake detection have been exten-
sively studied, DA for deepfake detection is much less ex-
plored. Kim et al. [31] employed representation learning
and knowledge distillation to perform domain adaptation on
new types of deepfakes, while minimizing catastrophic for-
getting. The same authors also combined the paradigms of
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continual learning, representation learning and knowledge
distillation to perform DA on new deepfake datasets [30].
Tariq et al. [62] first trained a DNN on the source data; the
first half of the model layers were then frozen, while the
deeper layers were fine-tuned with the target domain data.
Along similar lines, Cozzolino et al. [16] introduced the
ForensicTransfer framework, which learned a forensic em-
bedding on the sourse domain videos using an autoencoder,
which was fine-tuned using a handful of training videos
from the target domain. However, all these methods require
all the data in the target domain to be labeled. In the context
of deepfake detection, we may encounter a situation where
we have access to a large number of images, but we are un-
able to verify whether they are forged using the new faking
mechanism or not, that is, the labels of these images are not
available to us. To address this, very recently, researchers
have begun to explore unsupervised / semi-supervised DA
techniques for deepfake detection, which can also utilize
unlabeled data in the target domain. Chen and Tan [14]
used the domain adversarial neural network (DANN) ar-
chitecture to train a deep CNN with labeled source domain
data and unlabeled target domain data. Zhang et al. [72,73]
used the maximum mean discrepancy (MMD) to quantify
the disparity between the source and target domain videos
and proposed to train a deep CNN to minimize the MMD.
Both MMD and DANN require access to the domain labels
(whether a sample is derived from the source or target do-
main), rather than the task labels (fake / genuine) and can
thus leverage unlabeled videos in the target domain.

In our method, we use adversarial training to address the
disparity between the source and target domains; we further
formulate an unsupervised entropy loss term which operates
on the unlabeled target data, and imposes each target sam-
ple to align closely with exactly one of the source categories
and be distinct from the other category. We conduct ex-
tensive experiments to study the performance of our frame-
work under challenging conditions, such as low-resolution
images and very few (including none) labeled samples from
the target domain of interest.

3. Proposed Framework
3.1. Problem Setup

In our problem setup, we are given data from two
domains: source and target, where each domain repre-
sents data generated using a particular faking technology
(FaceSwap, Face2Face etc.). The data in the source domain
are all labeled: Dg = {z;, yi}f\fl. In the target domain,

L
we are given labeled samples: DE = {x;,y; };V:TI, as well
U
as unlabeled samples: DY = {z; }jval As explained in

Section 1, the amount of labeled samples in the target do-
main is scarce, that is, | D%| < |D¥|. Here {z} denotes

the deep feature representation of a particular image and
{y} denotes the binary label (fake / genuine). Our objec-
tive is to train a deep convolutional neural network (CNN)
which will furnish good generalization performance on both
the source and target domains; that is, we would like our
trained CNN to reliably detect deepfakes generated using
both the faking techiques. We propose to formulate a novel
loss function and train the network to optimize that loss.
Our loss function consists of three components: (i) super-
vised loss on the labeled data, which encourages the net-
work to be consistent with the labeled data, that is, incur
minimal prediction error on the labeled source and labeled
target samples; (i) a strategy to address the disparity be-
tween the source and target domains (since the data in the
two domains are derived from different faking techniques)
and learn feature representations accordingly; and (ii%) un-
supervised loss on unlabeled target data, which encourages
the network to deliver high confidence predictions on the
unlabeled target samples. These are detailed in the follow-
ing sections.

3.2. Supervised Loss on the Labeled Source and
Labeled Target Data

The goal of this term is to ensure that the network fur-
nishes accurate predictions on the labeled source and tar-
get data. Let DY = Dg U D% = {z1,79,...,2,,} be
the labeled source and target data with corresponding labels
{y1,Y2, -, Yn, }- Since the labels are binary in our prob-
lem (fake / genuine), we use the binary cross entropy (BCE)
loss to train the deep CNN:

Loon = —% > i og(p(y:)) + (1 —32): log(1 —p(y:))

1
where p(y;) denotes the probability obtained from the so(ft2
max activation layer of the CNN.

3.3. Adversarial Domain Alignment Loss on Source
and Target Data

Our domain alignment strategy is inspired by Domain
Adversarial Neural Network (DANN) [20]. For the sake of
completeness, we review the main idea here. Given an input
sample x, our deep CNN will predict its task label y (fake /
genuine) and also its domain label, where the target domain
is labeled as yr and the source domain as yg. Our deep
network consists of three components: a feature extractor
F(x;0¢) which maps an input z into a feature vector f; a
task classifier C(x; 6.) which maps the feature vector f to
a task label y; and a domain classifier D(x; ;) which maps
the same feature vector f to a domain label yr or ys. The
feature extractor will be updated in an adversarial manner
with two competing objectives. The feature extractor and
the task classifier will be updated such that the task classifier
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correctly classifies the labeled source and target data. Sim-
ilarly, the domain classifier will be updated such that it cor-
rectly classifies which domain a given sample comes from.
At the same time, the feature extractor will also be updated
such that the domain classifier cannot correctly classify the
domain of a given sample (adversarial component). This
will ensure that our model learns domain invariant features,
so that a classifier trained on the abundant source domain
data can generalize well on the target domain, due to the
domain aligned feature distributions.

Let £, and £, denote the cross entropy loss functions for
task classification and domain classification respectively.
The loss functions to train the deep neural network are de-
picted below.

arg min| £, (C(F(2)),y) — La(D(F(x)).ys)|

05,0, (z,y)€S

+ [£/(C(F @), ) - LdD(F (@), yr)]

(z,y)€T
(2
swgmin [ La(DF@) )] 3)

+ [ca(DE@),yr)]
(z,y)eT
Equation (2) updates the parameters of F' and C' such that
C correctly predicts the source and the target task labels
and D incorrectly predicts the domain labels (the £, terms
are negated). Equation (3) updates the parameters of D
to correctly predict the domain labels. Using the gradient
reversal layer (GRL), Equations (2) and (3) can be com-
bined together into a single equation. The GRL is placed in
the deep network between the feature extractor and domain
classifier; it flips the gradient during backpropagation while
updating the weights. The GRL can be represented as R (x)
with different forward and backward propagation behavior:
oR
or
where 7 denotes the identity matrix and k is a constant. The
optimization problem for domain alignment thus reduces to:

R(x) = x; —kT “)

arg min| £, (C(F(2)),y) + La(D(R(F(x))), ys)]
05,0c,04

(z,y)€S
+ [£4(C(F (@), 9) + La(DR(F(2))), yr)]
&)

We refer to this term as the adversarial 10ss L4, .

3.4. Unsupervised Loss on Unlabeled Target Data

One of the attractive features of our framework is that it
can leverage unlabeled data in the target domain (which is
more readily available than labeled data) to further improve
the generalization capability of the deep CNN. Inspired by

(z,y)€T

[66], we propose a class alignment loss term which enforces
the CNN to predict each unlabeled target sample confi-
dently, and learn feature representations accordingly. Since
this is a binary classification problem, each unlabeled target
sample can belong to exactly one of the 2 classes (fake /
genuine). We assume the presence of M samples from each
class j in the labeled source data, where j € {1,2}, and let
wZ" be the m'" source output from class j. The fundamen-
tal idea is to ensure that the output w7, of an unlabeled target
sample x; is similar to all the M source outputs from one
of the classes j and dissimilar to the other class (we used
the dot product to compute similarity). Enforcing similarity
with all the M data points (instead of a single data point)
results in a more robust target data class assignment. We
define a measure to capture this idea, which quantifies the
probability that the target sample x; is assigned to class j:

>t eap(wh, w")
Semt Lo explw, wg")
Here, (-, -) denotes the dot product between two vectors, the
exponential function exp(.) has been used for ease of dif-
ferentiability and the denominator ensures that the meaure
is normalized, that is, i Pij = 1. When the output of the
target sample is similar to exactly one class and dissimilar
to the other class, the probability vector p; tends to be a one-
hot vector, with one entry high and the other entry low. This
implies that the unlabeled target sample aligns well with ex-
actly one class (fake / genuine), and can thus be interpreted
as having low prediction uncertainty (entropy). The class
alignment loss is therefore defined to capture the entropy of
the target probability vectors:

R
Loa= -7 > pijlogpi; (M
T i=1j=1

Dij = (6)

where N¥ denotes the number of unlabeled target samples.
Minimizing this loss produces probability vectors p; that
tend to be one-hot vectors, that is, the unlabeled target data
sample outputs are similar to source data outputs from ex-
actly one class. This ensures that the deep network furnishes
confident predictions on the unlabeled target data. Com-
puting the similarity with M source samples ensures that
the feature representations are learned based on a common
similarity between multiple source category data points and
the target data point. Note that the probability values in
Equation (7) are derived using the class alignment score in
Equation (6) and not using class prediction probabilities, as
done conventionally. The overall loss function to train the
deep CNN can thus be expressed as:

L=Lpcr+MLagw +ALca ¥

where A; and )\, are weights governing the relative impor-
tance of the terms.
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Figure 1. Schematic diagram of the deep neural network architecture used in our study. The network is trained using mini-batches
consisting of labeled source samples (red), labeled target samples (green) and unlabeled target samples (blue). The cross-entropy loss for
the domain classifier operates on all three types of samples; the cross-entropy loss for the category / label classifier operates only on the
labeled source and target samples; the class alignment loss operates only on the unlabeled target samples. Best viewed in color.

4. Experiments and Results

Dataset: The FaceForensics++ (FF++) dataset [54] is
a benchmark dataset for research in deepfake detection. It
includes Face2Face (F2F), FaceSwap (FS), DeepFakes
(DF) and NeuralTextures (NT). We used the first three fak-
ing mechanisms to study the performance of our framework
in this paper. The dataset contains 1000 videos for each of
these categories. Apart from this, it also contains 1000 Pris-
tine videos. We generated 50 images (128 x 128) per video,
which produced a total of 50, 000 images per faking tech-
nique. We used face recognition > to detect and crop facial
areas in these images.

Comparison Baselines: Since our objective was to ad-
dress the specific problem of deepfake detection, we se-
lected our comparison baselines from the DA algorithms
that have been studied explicitly for this problem. Exist-
ing DA techniques for this problem are mostly supervised,
that is, they require labeled data in the target domain. We
used the following algorithms as comparison baselines in
our work: (¢) FT [62], which freezes some of the layers of
the network (trained on the source data) and fine-tunes the
deeper layers using the target domain data; (i¢) TGD [22],
a Transferable GAN-images Detection (TGD) framework,
which is composed of a teacher and a student model that it-
eratively teach and evaluate each other to improve the detec-
tion performance; (i44) FReTAL [31], which employs repre-
sentation learning and knowledge distillation to perform do-
main adaptation on new deepfakes in the target domain; (iv)
KD [31], which uses only the knowledge distillation com-
ponent of FReTAL to perform domain adaptation; and (v)
UDA [14], an unsupervised DA framework that uses a do-

Zhttps://pypi.org/project/face-recognition/

main adversarial network to address the disparity between
the source and target domains and learn feature representa-
tions accordingly. Except UDA, all the baselines are super-
vised. The other unsupervised DA techniques for deepfake
detection use MMD for domain alignment [72, 73]; how-
ever, considering the popularity and remarkable success of
adversarial learning for DA, we only include UDA (that uses
adversarial domain alignment) as a comparison baseline in

this research.
Experimental Setup: In each experiment, we were

given images from a source domain and a target domain
(each domain represents a particular faking technique). The
data in the source set were all labeled. The target set was
divided into two parts: a labeled set and an unlabeled set.
The number of labeled target samples was much less than
the number of unlabeled target samples, to appropriately
mimic a real-world application. The test contained an equal
number of samples from both the source and target do-
mains to assess the performance of our algorithm on both
types of faking technologies, and prevent catastrophic for-
getting. We used 42,000 images as labeled source domain
data, 2,000 images as labeled target domain data, 6,000
images as the unlabeled target domain data and 20, 000 im-
ages (10,000 from each of the source and target domains)
as the test set. Each experiment was conducted 3 times and
the results were averaged to rule out the effects of random-
ness. The parameters A\; and Ao were taken as 5 and 25
respectively.

Following [31], we used the Xception [15] as the back-
bone deep neural network architecture in our experiments.
Further, Rossler et al. [55] demonstrated that Xception
achieves the best accuracy on the FaceForensics++ dataset.
A schematic diagram of the network architecture used in
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DA Task Domain Proposed UDA FReTAL KD FT TGD
DF —s F2F Source | 99.36 £0.04 | 97.29+0.08 | 92.27+0.93 | 93.16 £5.51 | 89.73£1.66 | 91.85+4.65
Target 91.35+£0.25 | 86.86 +0.35 | 86.02+0.32 | 64.23£6.98 | 82.53 +0.53 | 73.88 +4.99
F2F — DF Source | 99.09 £0.24 | 97.01 £0.16 | 91.00£0.27 | 90.16 +6.14 | 86.30 +0.26 | 87.87 £ 2.81
Target 9434 £0.29 | 89.17+£0.46 | 91.54£0.13 | 82.29+2.31 | 91.05+0.33 | 85.72 +0.47
DF — FS Source | 99.40+0.13 | 97.19+0.25 | 83.10+£3.94 | 95.75+1.25 | 83.82+£0.74 | 87.34 £1.72
Target 89.02 £1.56 | 86.80+0.52 | 85.46+1.83 | 70.78 £4.75 | 86.68 +0.40 | 82.36 &+ 1.09
FS — DF Source | 98.98£0.18 | 96.98+0.12 | 86.49+2.15 | 92.99+0.56 | 83.75 £ 1.22 | 86.71 £ 3.39
Target 93.38+£0.89 | 88.86£1.03 | 89.51£0.38 | 74.40+1.05 | 90.92+0.31 | 83.79 £4.54
FS s F2F Source | 99.16 £0.10 | 95.95+0.04 | 89.84 +0.88 | 94.56 +1.33 | 87.66 £0.62 | 90.69 £ 1.01
Target 89.36 £ 0.30 | 84.27£1.24 | 84.91£0.55 | 67.97+1.56 | 81.77+0.16 | 75.48 +£0.98
FOF — FS Source | 99.17 £0.14 | 96.17+0.10 | 90.42£0.88 | 82.12+3.01 | 86.96+0.45 | 81.59 £ 3.84
Target 90.86 +0.35 | 85.43£0.61 | 86.70£0.65 | 73.46 +0.73 | 85.63+0.16 | 77.81 £2.73

Table 1. Mean (£ std) F1 scores (in percentage) of all the methods for 6 out-of-domain deepfake detection tasks. Best F1
marked in bold. The notation # — y implies that z is the source domain and y is the target domain. Results are averaged over 3 runs.

values are

our study is depicted in Figure 1. We used the F1 score on
the test set to evaluate the performance of the algorithms,
similar to [31].

Implementation Details: We employed the Stochastic
Gradient Descent (SGD) optimization algorithm to train our
Xception model. The learning rate was set to 0.01. We used
a batch size of 200 and executed a total of 75 epochs to
train the deep model. To enhance the efficiency of training,
we incorporated early stopping with a patience value of 10.
This mechanism allowed us to halt training if the validation
performance did not show any improvement for consecutive
epochs, thus preventing overfitting. The experiments were
conducted on a DELL ALIENWARE AURORA R15 ma-
chine. This machine is equipped with the NVIDIA GeForce
RTX 3090 GPU with 24GB of memory. The underlying OS
was Ubuntu 22.04.2 LTS. We used TensorFlow 2.12.0 with
CUDA 12.1 and Python 3.10.9 to build, train and evaluate
our model.

4.1. Main Results

Table 1 reports the performance of all the methods on
6 different out-of-domain deepfake detection tasks (the no-
tation x — y implies that = is the source domain and y
is the target domain). We note that our framework com-
prehensively outperforms all the baselines, both in terms of
source and target domain F1 scores, across all the 6 tasks.
The performance improvement achieved by our method is
quite substantial; for instance, in the DF — F2F task, the
performance improvement achieved by our method is more
than 4% on the target domain, compared to the closest com-
petitor (UDA). The supervised detection methods (FReTAL,
KD, FT and TGD) cannot leverage the unlabeled samples
in the target domain, and hence depict much lower accuracy
values. Even though UDA utilizes unlabeled target domain
data, it is only used to align the source and target domains;
it does not involve any strategy to further leverage the infor-
mation contained in the unlabeled target samples. In con-
trast, our framework efficiently utilizes the information in
the unlabeled target data through the class alignment loss

term. The results show the efficacy of our framework to ad-
dress the disparity between the source and target domains
and also utilize the unlabeled data in the target domain to
train a robust detection network. Our framework is not only
able to accurately identify deepfakes in the new domain (tar-
get), but also retains the knowledge acquired in the origi-
nal domain (source). The results unanimously corroborate
the promise and potential of our method for out-of-domain
deepfake detection in real-world applications.

4.2. Performance on Low Resolution Deepfakes

The goal of this experiment was to study the perfor-
mance of our framework in the challenging setup of low
resolution deepfake images. We used images of resolu-
tion 64 x 64 for this experiment (original resolution was
128 x 128). The results are presented in Table 2. Our frame-
work once again depicts impressive performance and sur-
passes all the baselines consistently both in the source and
target domains. Thus, similar to the previous experiment,
our method efficiently retains the knowledge to detect the
deepfakes in the source domain, while also learning to de-
tect new types of deepfakes accurately in the target domain.
This shows the robustness of our framework to operate in
the presence of low quality data, and identify deepfakes
even in low resolution data. These results are particularly
important from a practical standpoint, since high quality im-
ages are not always available in real-world applications.

4.3. Study of the Effect of Labeled Target Samples

In a real-world setup, obtaining a large number of la-
beled samples in the target domain (new type of deepfake)
may not always be feasible. Ideally, we would like to detect
deepfakes reliably, even when the target domain contains
only unlabeled samples, and no labeled samples are avail-
able in the target domain. The goal of this experiment was
to study the performace with varying number of labeled im-
ages in the target domain. We considered DF as the source
domain and F2F as the target domain for this experiment.
The results are reported in Table 3. We studied the per-
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DA Task Domain Proposed UDA FReTAL KD FT TGD
DF —s F2F Source 99.25 £ 0.01 | 96.03 +0.59 | 91.60+0.68 | 89.19+6.49 | 90.43 + 1.44 | 90.37 £ 5.55
Target 88.00 £ 0.54 | 81.93+2.73 | 83.88£0.35 | 58.80 & 1.50 | 80.04 £0.40 | 68.90 &+ 2.25
F2F — FS Source 98.94 £0.05 | 93.84 +0.04 | 89.65+0.50 | 89.80£3.76 | 85.63 +0.51 | 86.40 £ 4.39
Target 8731 +£0.45 | 81.11+0.17 | 84.444+0.49 | 66.64 £1.66 | 83.91+0.77 | 76.34 +1.32
FS — DF Source 99.03 £0.25 | 95.56 +0.11 | 90.97+1.76 | 97.36 £0.62 | 89.43+0.89 | 90.81 £0.72
Target 9297 £0.39 | 87.51+0.56 | 90.89 £0.05 | 80.85 £2.75 | 90.81 +£0.20 | 79.87 £ 5.38

Table 2. Mean (= std) F1 scores (in percentage) of all the methods for detecting low resolution deepfakes. Best F1 values are marked in

bold. The notation z — y implies that x is the source domain and y is the target domain. Results are averaged over 3 runs.

LT Domain Proposed UDA FReTAL KD FT TGD
0 Source 97.74 £ 0.91 | 97.55+0.41 N/A N/A N/A N/A
Target 73.36 +£2.27 | 82.17 £ 1.67 N/A N/A N/A N/A
300 Source 99.25+0.31 | 97.444+0.15 | 99.44 £ 0.07 | 94.36 + 4.48 90.30 + 0.55 85.49 + 2.23
Target 81.34+3.06 | 8349+ 1.26 | 51.32+£0.23 | 65.65 +4.79 76.07 + 0.72 75.51 +0.87
1600 Source 99.33 £ 0.07 | 97.24+0.46 | 91.294+0.91 | 82.68 £4.18 | 70.49 +10.96 | 72.65 + 9.64
Target 89.54 £0.29 | 86.04 +=0.85 | 85.88 £0.10 | 60.79 £ 0.88 69.00 + 9.65 64.91 + 4.40
2400 Source 99.31 £0.03 | 97.24 +0.34 | 92.26 +0.14 | 96.38 £ 1.03 91.04 + 0.65 82.61 + 5.99
Target 92.33 £0.59 | 87.09+0.71 | 89.28 +0.31 | 64.08 £6.97 | 84.85+0.66 82.61 +5.99

Table 3. Mean (£ std) F1 scores (in percentage) of all the methods with varying number of labeled samples in the target domain for the
DF — F2F task. Best F1 values are marked in bold. Results are averaged over 3 runs. LT denotes the number of labeled samples in the

target domain.

formance with 0,800, 1600 and 2400 labeled samples in
the target domain; all the other parameters were kept con-
stant. The supervised detection methods (FReTAL, KD, FT
and TGD) require labeled samples in the target domain and
are hence not applicable when the target domain contains
only unlabeled data (first row of the table). Our method
and UDA can operate even in the absence of labeled target
domain data, which corroborates their practical usefulness.
Our framework once again depicts impressive performance
with varying number of labeled samples in the target do-
main. This shows that it can be deployed in applications
where very little supervision information is available about
anew type of deepfake, that we are interested to detect. This
further reinforces the usefulness of our framework for real-
world applications. We also note that with an increase in
the number of labeled samples in the target domain, the F1
score on the target domain improves, which is intuitive.

4.4. Study of the Effect of Unlabeled Target Samples

In this experiment, we studied the effect of the number of
unlabeled samples in the target domain. The performance
of the supervised detection methods (FReTAL, KD, FT and
TGD) will not be affected by a change in the number of
unlabeled samples in the target domain; they were hence
excluded from this study. We conducted experiments with
3600, 7200, 9000 and 10800 unlabeled samples in the tar-
get domain. The results are presented in Table 4. The pro-
posed framework consistently outperforms UDA in both the
source and target domains, across all the different number
of unlabeled samples in the target domain, which corrobo-
rates its efficacy. With 3600 unlabeled samples in the target
domain, the improvement in F1 score in the target domain

is almost 5%. The performance in the target domain of both
methods increases slightly with an increase in the number
of unlabeled target samples.

UuT Domain Proposed UDA
3600 Source 99.32 +£0.03 | 97.19+0.25
Target 89.30 £ 0.54 | 84.68 +0.18
7200 Source 99.29 +£0.06 | 96.87 + 0.03
Target 90.41 +0.40 | 86.55+0.74
9000 Source 99.27 £ 0.11 | 96.68 + 0.04
Target 90.77 £ 0.07 | 86.69 +0.18
10800 Source 99.15+0.07 | 96.79 £+ 0.03
Target 90.79 £ 0.31 | 87.52+0.74

Table 4. Mean (£ std) F1 scores (in percentage) of all the methods
with varying number of unlabeled samples in the target domain for
the DF' — F2F task. Best F1 values are marked in bold. Results
are averaged over 3 runs. UT denotes the number of unlabeled
samples in the target domain.

4.5. Feature Visualizations

In this experiment, we studied the t-SNE embeddings of
the features learned by the proposed framework. We com-
pared our results with the UDA method, as it is also an un-
supervised method that can utilize unlabeled target domain
data. The results are depicted in Figure 2 for 4 different
out-of-domain deepfake detection tasks. Here, each color
denotes a category (blue denotes genuine, red denotes fake)
and each symbol denotes a domain (plus denotes source,
circle denotes target). As evident visually, the proposed
method shows a better clustering of the two categories (blue
and red clusters) and a better overlap between the source
and target domains, compared to UDA. Thus, using our
domain alignment and class alignment loss functions, the
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Figure 2. t-SNE visualization results. Best viewed in color.

deep model is able to learn discriminating feature represen-
tations, which minimize the disparity between the source
and target deepfakes and also separate the real and fake im-
ages from the two domains. This accounts for its superior
performance, as evidenced in Tables 1, 2, 3 and 4.

4.6. Ablation Study

We conducted an experiment to study the performance
of our framework without the unsupervised class alignment
loss term L¢ 4 in Equation (7). The F1 score on the target
test set for three different detection tasks are reported in Ta-
ble 5. We note that the performance of our framework is

DA Task Proposed | Proposed w/o Lo 4
DF — F2F 91.35 87.27
F2F — DF 94.34 89.81

FS — DF 93.38 89.01

Table 5. Ablation study results.

affected in the absence of the unsupervised class alignment
loss term on the target domain data. This shows the use-
fulness of L 4 to leverage the information in the unlabeled
target domain data, learn discriminating feature representa-
tions and boost the performance of our method.

5. Conclusion and Future Work

Thanks to the tremendous progress of generative Al, de-
tecting deepfakes reliably has become a problem of im-

mense practical importance in today’s world. While CNNs
have demonstrated promise in detecting deepfakes, their
performance is affected drastically when validated on deep-
fakes generated using a different faking technique (out-of-
domain). We proposed a novel semi-supervised deep do-
main adaptation algorithm to address this challenging prob-
lem. Contrary to most methods that have studied this prob-
lem, our framework can leverage unlabeled data in the target
domain (which is more readily available than labeled data)
through a class alignment loss term. Our extensive exper-
imental studies on the benchmark FaceForensics++ dataset
demonstrated the efficacy of our method against competing
baselines. We hope this research will motivate the devel-
opment of other unsupervised / semi-supervised DA algo-
rithms for the challenging problem of out-of-domain deep-
fake detection.

As part of future work, we plan to incorporate data aug-
mentation in our DA pipeline, which has shown remarkable
success in deepfake detection [18]. We also plan to vali-
date the performance of our algorithm on other challenging
deepfake datasets, such as DFDC [18] and CelebDF [40].
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