
Investigating Weight-Perturbed Deep Neural Networks With Application in Iris
Presentation Attack Detection

Renu Sharma, Redwan Sony, Arun Ross
Michigan State University

{sharma90, sonymd, rossarun}@msu.edu

Abstract

Deep neural networks (DNNs) exhibit superior per-
formance in various machine learning tasks, e.g., image
classification, speech recognition, biometric recognition,
object detection, etc. However, it is essential to analyze
their sensitivity to parameter perturbations before de-
ploying them in real-world applications. In this work,
we assess the sensitivity of DNNs against perturbations
to their weight and bias parameters. The sensitivity
analysis involves three DNN architectures (VGG, ResNet,
and DenseNet), three types of parameter perturbations
(Gaussian noise, weight zeroing, and weight scaling), and
two settings (entire network and layer-wise). We perform
experiments in the context of iris presentation attack
detection and evaluate on two publicly available datasets:
LivDet-Iris-2017 and LivDet-Iris-2020. Based on the
sensitivity analysis, we propose improved models simply by
perturbing parameters of the network without undergoing
training. We further combine these perturbed models at
the score-level and at the parameter-level to improve the
performance over the original model. The ensemble at
the parameter-level shows an average improvement of
43.58% on the LivDet-Iris-2017 dataset and 9.25% on the
LivDet-Iris-2020 dataset. The source code is available at
https://github.com/redwankarimsony/WeightPerturbation-
MSU.

1. Introduction

Deep Neural Networks (DNNs) have revolutionized the
machine learning field through their superior performance
in various tasks especially in the field of computer vision
[12, 13, 22], natural language processing [6], and speech
technology [5]. In essence, a DNN comprises a sequence
of layers containing trainable parameters (weights and bias)
to learn a complex mapping between input signals and out-
put labels. For deploying DNNs in real-world applica-
tions, it is crucial to analyze their robustness or sensitiv-

ity to hardware/sensor noise introduction [2], environment
changes [26] and adversarial attacks [9]. Sensitivity anal-
ysis also helps in building a quantized-weights model with
commensurate performance [11, 28].

In the literature, sensitivity analysis of DNNs has been
performed by perturbing either the input signal or the ar-
chitectural parameters. The work in [8, 10, 14, 16, 17, 24]
analyze DNN robustness by manipulating the input signals,
whereas the work in [11,21,26,28,29] perturb architectural
parameters to analyze robustness. Yeung et al. [31] provide
a detailed sensitivity analysis of neural networks over input
and parameter perturbations. In this work, we focus on the
sensitivity analysis of DNNs when architectural parameters
(learned weights) are perturbed.

The authors in [21, 26, 28, 29] provide a theoretical sen-
sitivity analysis based on parameter perturbations. Shu and
Zhu [21] propose an influence measure motivated by infor-
mation geometry to quantify the effects of various pertur-
bations to input signals and network parameters on DNN
classifiers. Xiang et al. [29] design an iterative algorithm to
compute the sensitivity of a DNN layer by layer, where sen-
sitivity is defined as “the mathematical expectation of abso-
lute output variation due to weight perturbation with respect
to all possible inputs” [29]. Tsai et al. [26] study the robust-
ness of the pairwise class margin function against weight
perturbations. Weng et al. [28] compute a certified robust-
ness bound for weight perturbations, within which a neural
network will not make erroneous outputs. In addition, they
also identify a useful connection between the developed cer-
tification and the challenge of weight quantization.

In this work, we empirically analyze the sensitivity
of DNNs by manipulating their architectural parameters.
We examine sensitivity of three widely used architectures
(VGG [22], ResNet [12], and DenseNet [13]) under three
types of parameter perturbations (Gaussian noise, weight
zeroing and weight scaling). We apply the perturbations
in two settings: over all the layers of a network simulta-
neously and over each layer at a time. Our work is mo-
tivated from [2], where they also empirically analyze the
sensitivity of the pre-trained AlexNet and VGG16 networks
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to internal architecture and weight perturbations. However,
our work is vastly different. Being motivated by their anal-
ysis, not only do we analyze the robustness or sensitivity
of the newer networks, we also improve those models with
different perturbation methods without any training. First,
we extend the work by evaluating the sensitivity of heavily
used CNN architectures in biometric tasks: VGG, ResNet,
and DenseNet. Second, we perform additional weight ma-
nipulations (weight scaling, variants of weight zeroing, and
additional setting of applying perturbations over the entire
network parameters) in the sensitivity analysis. Third, we
leverage the findings from the sensitivity analysis and pro-
pose an ensemble of perturbed models to improve the per-
formance without any further training. Our main contribu-
tions are as follows:
1. We perform sensitivity analysis of three DNN architec-
tures (VGG [22], ResNet [12] and DenseNet [13]) against
parameter perturbations.
2. We apply a number of parameter perturbations (three
types of perturbations and its variant in two settings) to an-
alyze the sensitivity of deep neural networks in the context
of iris presentation attack detection.
3. We leverage the sensitivity analysis to propose a better
performing model by ensembling the perturbed models at
two different levels: score-level and parameter-level.
4. We perform experiments using five datasets. Three of the
datasets (IARPA, NDCLD-2015, Warsaw Postmortem v3)
are used for training, whereas the others (LivDet-Iris-2017
and LivDet-Iris-2020) are used for testing. This represents
a cross-dataset scenario, where training and testing are per-
formed on different datasets.

The rest of the paper is organized as follows: Section 2
provides the details of various parameter perturbations used
for the sensitivity analysis of DNNs; Section 3 describes
the application scenario considered in this work; Section
4 explains the dataset and experimental setup; Section 5
provides the sensitivity analysis of the three architectures
against the considered parameter perturbations; and Sec-
tion 6 describes how we leverage the sensitivity analysis
to generate an ensemble of perturbed models for improving
performance. Finally, Section 7 summarizes the paper and
provides future directions.

2. Parameter Perturbations
We explore the sensitivity of neural networks by perturb-

ing their architectural parameters (weights and bias). From
here on, we use the terms ‘architectural parameters’, ‘pa-
rameters’, and ‘weights’ interchangeably. To measure the
sensitivity, we consider the change in the performance of the
DNN when weights are perturbed. Let n input samples be
{x1, x2, ..., xn} and their output be {y1, y2, ..., yn}. Here,
we labeled the positive class as ‘1’ and the negative class
as ‘0’. The predicted output values from a DNN approx-

imator are {f(x1,Worg), f(x2,Worg), ..., f(xn,Worg)},
where Worg are the learned parameters. We measure the
performance of the DNN in terms of True Detection Rate
(TDR). TDR is a percentage of positive samples correctly
classified:

TDRorg =

∑n
i (f(xi,Worg) > T )∑n

i yi
∗ 100 (1)

where, T is the threshold. The input sample with a
predicted value above the threshold is considered a pos-
itive class. After weight perturbation, we estimate the
output as {f(x1,Wmod), f(x2,Wmod), ..., f(xn,Wmod)},
where Wmod are the perturbed parameters. We then use
these predicted values to measure the performance of DNN
(TDRmod). The higher the change in the performance
(|TDRorg − TDRmod|), the higher the sensitivity of the
neural network to the particular perturbation.

We perturb the parameters in two settings: manipulat-
ing parameters of all layers simultaneously and manipulat-
ing parameters one layer at a time. The first setting aims
to understand the overall sensitivity of DNNs, whereas the
second setting examines which layer has more impact on
the model. The higher the sensitivity, the lower the gen-
eralization of the DNN [17, 26]. The three perturbations
we consider are Gaussian noise manipulation, weight zero-
ing, and weight scaling. These perturbations resemble (a)
noise introduction due to defects in hardware implementa-
tions of neural networks [15], and (b) adversarial weight
perturbations [9, 19] on open-sourced models. Eventually,
the choice of perturbations is based on their simplicity. This
work has also the potential of obtaining quantized or com-
pressed DNN models, which consume less memory with
equivalent performance. Details of these perturbations are
as follows:
1. Gaussian Noise Manipulation: Here, we manipulate
the original parameters of the layers by adding Gaussian
noise sampled from a normal distribution of zero mean and
scaled standard deviation. We control the scaling of the
standard deviation by the scalar factor α. The modified pa-
rameters are defined as

Wmod = Worg +N(0,α ∗ σ(Worg)). (2)

Here, Worg are the original parameters, Wmod are the
modified parameters, and N(µ, σ) is the normal distribu-
tion. We calculate σ(Worg) for a particular layer by first
flattening the parameter tensor to a 1-D array and then com-
puting the standard deviation. So, the standard deviation
and the Gaussian noise distribution will differ for each layer
since σ(Worg) varies from layer to layer. Consequently, the
absolute perturbations differ for each layer. However, rela-
tive perturbations are the same across layers.
2. Weight Zeroing: In the second manipulation, we ran-
domly select a certain proportion of parameters and set them
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to zero. The portion of parameters is determined by a scalar
factor β. The modified parameters are represented as

Wmod[random(β,Worg)] = 0. (3)

Here, random(., .) is the function that returns the index
of β proportion of randomly selected parameters from the
original set of parameters. We also define another version
of weight zeroing, where weights are first sorted, and then
β proportion of low-magnitude weights is set to zero.
3. Weight Scaling: The third perturbation scales the origi-
nal parameters by a scalar factor γ as

Wmod = γ ∗Worg. (4)

3. Application Scenario

We perform sensitivity analysis in the context of iris pre-
sentation attack detection (PAD). A presentation attack (PA)
occurs when an adversary presents a fake or altered bio-
metric sample such as printed eyes, plastic eyes, or cos-
metic contact lenses to circumvent the iris recognition sys-
tem [1]. Our application is to detect these PAs launched
against an iris system. We formulate the detection problem
as a two-class problem based on DNNs, where the input is a
near-infrared iris image and the output is a PA score (range
from 0-1) which is based on a specified threshold labeled as
“bonafide” or “PA”.

4. Datasets and Experimental Setup

The training data we use to build our iris PAD models
are IARPA, NDCLD-2015 [27] and Warsaw PostMortem
v3 [25] datasets. The IARPA dataset is a proprietary dataset
consisting of 19,453 bonafide irides and 4,047 presentation
attack (PA) samples. From the NDCLD-2015 dataset, we
use 2,236 cosmetic contact lens images for training. From
the Warsaw PostMortem v3 dataset, 1,200 cadaver iris im-
ages from the first 37 cadavers are used for training. Test-
ing is performed on the LivDet-Iris-2017 [30] and LivDet-
Iris-2020 [3] datasets. Both of these are publicly available
competition datasets for evaluating iris presentation attack
detection performance. The LivDet-Iris-2017 dataset [30]
consists of four subsets: Clarkson, Warsaw, Notre Dame,
and IIITD-WVU. All subsets contain train and test parti-
tions, and we use only the test partition. Warsaw and Notre
Dame subsets further contains two splits in the test partition:
‘Known’ and ‘Unknown’. The ‘Known’ split corresponds
to the scenario where PAs of the same type or images from
similar sensors are present in both train and test partitions,
while the ‘Unknown’ split contains different types of PAs
or images from different types of sensors in the train and
test partitions. In our case, both test splits are considered
as ‘Unknown’ type as we use different datasets for training.

Such a testing scenario is referred to cross-dataset. How-
ever, we keep the original terminologies (‘Known’ and ‘Un-
known’) of test splits in the work. The LivDet-Iris-2020 [3]
consists of a single test split, and this scenario also corre-
sponds to cross-dataset. Table 1 describes all training and
test sets, along with the types of PAs and images present in
them. In aggregate, both datasets provide a diverse set of
PAs.

We use three iris PA detectors for sensitivity analysis.
Two of the detectors utilize VGG19 [22] and ResNet101
[12] networks as their backbone architecture. The third de-
tector is D-NetPAD [20], where the backbone architecture
is DenseNet161 [13]. The D-NetPAD shows state-of-the-
art performance on both LivDet-Iris-2017 and LivDet-Iris-
2020 iris PAD competitions [3, 20]. Since D-NetPAD al-
ready had the state-of-the-art performance on the evalua-
tion datasets and Smith et. al. [23] found that convolution-
based networks can perform same as vision transformer at
scale, we did not perform similar analysis or experiments on
transformer-based models like ViT [7]. The convolutional
networks we use require a cropped iris region resized to 224
× 224 as input. For training, we initialize the model with
the weights from the ImageNet dataset [4] and then fine-
tune the models using the training datasets described above.
The learning rate was set to 0.005, the batch size was 20,
the number of epochs was 50, the optimization algorithm
was stochastic gradient descent with a momentum of 0.9,
and the loss function used was cross-entropy.

We measure the sensitivity of these DNNs by evaluating
their performance as a function of the weight perturbations.
The performance is estimated in terms of TDR (%) at 0.2%
False Detection Rate (FDR).1 FDR is the percentage of
bonafide samples incorrectly classified as PAs.2 In Table 3,
the row corresponding to the ‘Original’ method reports the
performance of these models on the LivDet-Iris-2017 and
LivDet-Iris-2020 datasets before weights were perturbed.
On the LivDet-Iris-2017 dataset, ResNet101 performs the
best (average 74.55% TDR), whereas on the LivDet-Iris-
2020 dataset, D-NetPAD performs the best (90.22% TDR).
We also provide information about the number of weights
and bias parameters present in all three models (Table 2).
The VGG19 architecture has the highest number of param-
eters, followed by the ResNet101 architecture.

5. Sensitivity Analysis
5.1. Gaussian Noise Addition

The Gaussian noise manipulation involves the addition
of Gaussian noise to the original parameters. Figure 1a

1The threshold at this specific FDR was selected by the sponsor.
2ISO/IEC 30107-3:2023 specifies Attack Presentation Classification

Error Rate (APCER) and Bonafide Presentation Classification Error Rate
(BPCER) as evaluation metrics for PAD. TDR is 1−APCER, and FDR is
the same as BPCER.
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Table 1. Summary of training and test datasets along with the number of bonafide and PA iris images present in the datasets. The
information about the sensors used to capture images is also provided. Here, “K. Test” means a known test set of the dataset, and “U. Test”
means an unknown test set (see text for explanation).

Train/Test Train Test
Datasets

IARPA NDCLD
-2015

Warsaw
PostMortem
v3

LivDet-Iris-2017
LivDet-Iris-2020Dataset

Subsets
Clarkson

(Cross-PA)
Warsaw

(Cross-sensor)
Notre Dame
(Cross-PA)

IIITD-WVU
(Cross-Dataset)

Splits Test K. Test U. Test K. Test U. Test Test
Bonafide 19,453 - - 1,485 974 2,350 900 900 702 5,331
Print 1,005 - - 908 2,016 2,160 - - 2,806 1,049
Cosmetic
Contacts 1,187 2,236 - 765 - - 900 900 701 4,336

Artificial
Eyes 1,804 - - - - - - - - 541

Electronic
Display 51 - - - - - - - - 81

Cadaver Eyes - - 1,200 - - - - - - 1,094

Sensor
COTS Iris

Sensors x31

IrisGuard
AD100,
IrisAccess
LG4000

IriShield
MK2120U

IrisAccess
EOU2200

IrisGuard
AD100

Aritech ARX-3M3C,
Fujinon DV10X7.5A,
DV10X7.5A-SA2 lens

B+W 092 NIR filter

IrisGuard AD100,
IrisAccess LG4000

IriShield
MK2120U

Iris ID iCAM7000,
IrisGuardAD100,
IrisAccess LG4000,
IriTech IriShield

1Specific sensor names withheld at sponsor’s request

Table 2. The number of parameters (weights and bias) present
in all convolutional layers and the entire network of the VGG19,
ResNet101, and D-NetPAD architectures.

Architecture VGG19 ResNet101 D-NetPAD
Weights 139,570,240 42,451,584 26,366,448
Bias 19,202 52,674 109,970
Total 139,589,442 42,504,258 26,476,418

shows the performance of all the networks when we perturb
parameters of all layers with the Gaussian noise. The scale
factor (α) used to modify the standard deviation is shown
on the x-axis. Every data point in the figure represents a sin-
gle performance of the model. From a trend standpoint, the
performance of all networks decreases with an increase in
the standard deviation. However, this decrease is not linear.
In fact, there are some performance gains at certain scales.
These scales are different for different networks. For in-
stance, the VGG19 network shows improvement for α =
0.3, 0.6, and 0.9, ResNet101 for α = 0.1, 0.3, and 0.9,
and D-NetPAD for α = 0.1, 0.4 and 1.0. Surprisingly, cer-
tain scales give higher performance than the original model,
such as 0.1 scale for the ResNet101 and D-NetPAD mod-
els, and 0.3 scale for the VGG19 model. The results indi-
cate that all three networks are sensitive to Gaussian noise
perturbations when perturbations are applied over all layers
of the network, and we cannot conclude which network is
comparatively stable under these weight perturbations.

We further analyze the impact of perturbation at different
layers on the performance of the models. We manipulate the
parameters one layer at a time and observe the performance
change. For the layer-wise analysis, we show the results for
only the D-NetPAD model since the other two models also
show similar performance trends. In the case of D-NetPAD,

we select the first convolution layer and the last convolu-
tion layers of four dense blocks for perturbation. Figure 1b
shows the performance of D-NetPAD when the individual
layer’s parameters are perturbed. We observe that the initial
layers have more influence on the performance of the D-
NetPAD compared to the later layers. The model is highly
robust to the perturbations in the last convolution layer of
the fourth dense block, even at a scale factor of 30. Cheney
et al. [2] also observe the higher impact of perturbations
in the initial layers on the performance. Generally, initial
layers focus more on capturing discriminative or represen-
tative features, whereas later layers are more responsible
for generating decision boundaries. Manipulations to ex-
tracted features have more impact on the performance com-
pared to a slight change in decision boundaries. Moreover,
manipulation in initial layers changes feature maps of all
subsequent layers and, hence, causes propagation of error.
Change in middle layers exhibit large fluctuations in perfor-
mance compared to the initial and later layers.

5.2. Weight Zeroing

The weight zeroing manipulation involves random selec-
tion of a particular fraction of weight parameters and setting
them to zero. Figure 2a shows the performance of all three
architectures when we manipulate the entire set of network
parameters, while Figure 2b shows the performance of D-
NetPAD when we perturb individual layers. Similar con-
clusions can be drawn from Figure 2a as drawn from Figure
1a that the overall performance of all three architectures de-
creases with an increase in the proportion of weights set to
zero. However, certain perturbations give improved perfor-
mance. For example zeroing 3% of weights improves the
VGG19 network performance from 76.87% TDR (original)
to 92.70% TDR. In the case of ResNet101, zeroing 3% of
weights improves performance from 84.11% TDR (origi-
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(a) (b)

Figure 1. Gaussian noise manipulation: (a) Performance (TDR at 0.2% FDR) of VGG19, ResNet101, and D-NetPAD when weights and
bias parameters of the entire network are perturbed. (b) Performance of D-NetPAD when the individual layer’s parameters (weights and
bias) are perturbed. Here, Conv1 means the first convolution layer of the D-NetPAD, Dense1 LastConv means the last convolution layer
of the first dense block, and so on.

nal) to 88.88% TDR. Again, all three networks are sensitive
to the zeroing out of randomly selected weights.

In the layer-wise setup (Figure 2b), the performance of
D-NetPAD is stable except for the first convolution layer.
This is due to the fact that the original weights of the con-
volution layers have a zero mean and a small standard devi-
ation ranging from 0.10 (first convolution layer) to 0.01 (last
convolution layer) as shown in Figure 3. Initial layers have
a higher standard deviation compared to later layers, which
makes the network more sensitive to the manipulations in
the initial layers. A similar performance trend is observed
in the VGG19 and ResNet101 networks as well.

Since most of the original weights are already close
to 0, we apply a variant of weight zeroing where only
low-magnitude weights are set to zero. Figure 4a shows
the performance of all architectures when we manipulate
the entire network in this fashion, while Figure 4b shows
the performance of D-NetPAD on layer-wise manipulation.
ResNet101 and D-NetPAD networks are observed to be ro-
bust to this manipulation as zeroing out even 33% of all
weights does not affect their performance. VGG19 also
shows robustness with only a 6% drop in performance,
though its performance is not as stable as the ResNet101
and D-NetPAD networks. Figure 4b shows the sensitivity
of the D-NetPAD on layer-wise perturbations. Zeroing out
even 30% of the first convolution layer weights does not im-
pact its performance. Remarkably, the manipulation in the
last convolution layer of the first and second dense blocks
shows a linear increase in performance. The performance
of D-NetPAD increases from 90.22% TDR to 96.28% TDR
upon manipulating the last convolution layer of the first

dense block. This implies that we could zero out low-
magnitude weights and reduce the size of the model without
affecting its performance. This finding is useful in building
a compressed DNN model with better time and memory ef-
ficiency to deploy on mobile or embedded devices.

5.3. Weight Scaling

This manipulation scales the original parameters with a
scalar value. Figure 5a shows the performance of all three
architectures when we manipulate the entire set of network
parameters, while Figure 5b presents the performance of D-
NetPAD when we perturb specific layers. The performance
at scale 1 indicates the original performance without weight
perturbations. Weight perturbations across the entire net-
work resulted in a radical drop in performance even with a
small scalar factor (0.8 or 1.1). In the layer-wise manipula-
tion, the initial layers show a higher impact on the perfor-
mance of D-NetPAD compared to the later layers. The ma-
nipulation in the last convolution layer does not impact the
performance even at a scaling factor of 10. A similar per-
formance trend is observed on the VGG19 and ResNet101
networks as well.

5.4. Findings

Here are the main findings from the aforementioned
analysis:
1. All three networks decrease in performance when per-
turbations are applied over the entire network. 3 However,

3The notion of ‘significant’ change in performance is a subject of future
work.
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(a) (b)

Figure 2. Weight zeroing manipulation: (a) Performance (TDR at 0.2% FDR) of VGG19, ResNet101, and D-NetPAD when parameters of
the entire network are perturbed. (b) Performance of D-NetPAD when the individual layer’s parameters are perturbed.

(a) Conv1
µ: 0.0, σ: 0.103

(b) Dense1 LastConv
µ: 0.0, σ: 0.019

(c) Dense2 LastConv
µ: 0.0, σ: 0.018

(d) Dense3 LastConv
µ: 0.0, σ: 0.016

(e) Dense4 LastConv
µ: -0.0, σ: 0.012

Figure 3. Weight distribution of different layers of the trained D-NetPAD architecture. Mean (µ) and standard deviation (σ) are provided
below each distribution.

the networks show robustness when low-magnitude weights
are set to zero. The scaling of weights has a major negative
impact on the performance of networks.
2. Layer-wise sensitivity analysis shows that perturbations
in initial layers impacted the performance to a greater extent
compared to the later layers. The weight distribution of all
layers are zero-centered and later layers have a lower stan-
dard deviation compared to initial layers (Figure 3), making
later layers less sensitive to weight zeroing and scaling per-
turbations as majority of their weights are already close to
the zero mean. The zero-centered nature of weight distribu-
tions is also a reason why Gaussian noise perturbations have
the most negative impact on the performance compared to
the other perturbations.
3. Certain perturbations improve the performance of net-
work models over the original one in both settings (entire
network and layer-wise). This observation indicates that the
parameters learned by the models during training are not op-
timum. Random change in the weights in their close vicin-
ity shows improvement in the performance. Hence, there is
further scope for optimizing weights.
4. Zeroing out low-magnitude weights results in better per-

formance as well as reduces the size of the model.

6. Performance Improvement

We observe that certain perturbations result in better per-
formance, even higher than that of the original model. We
leverage this observation and obtain better performing mod-
els using these perturbations without any additional train-
ing. In this regard, we explore two directions: the first is
to find a single perturbed model which achieves good per-
formance consistently, and the second is to create an en-
semble of high-performing perturbed models. In the earlier
part of the work, we analyzed the sensitivity of different ar-
chitectures based on their performance on the LivDet-Iris-
2020 dataset. Here, we select a high-performing perturbed
model and validate its performance on the LivDet-Iris-2017
dataset. For the ensemble of models, we further explore two
sub-directions based on the level of fusion. In the first, we
simply fuse their decision scores using the sum rule. This
level of fusion better spans the decision space and gener-
alizes well to the test data [18]. However, it increases the
inference time as decision scores are required from all the
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(a) (b)

Figure 4. Variant of the weight zeroing manipulation (low-magnitude weights are set to zero): (a) Performance (TDR at 0.2% FDR) of
VGG19, ResNet101, and D-NetPAD when parameters of the entire network are perturbed. (b) Performance of D-NetPAD when individual
layer’s parameters are perturbed.

(a) (b)

Figure 5. Weight scaling manipulation: (a) Performance (TDR at 0.2% FDR) of VGG19, ResNet101, and D-NetPAD when parameters of
the entire network are perturbed simultaneously. (b) Performance of D-NetPAD when the individual layer’s parameters are perturbed.

component models. The second level of fusion is at the
model parameter-level, where we fuse the parameters by av-
eraging and merge the component models into one model.
This level of fusion better spans the parameter space and re-
duces the inference time as a decision is required from only
one model. Details of these models are given below:
1. Original Model: The model utilizes originally trained
parameters without any perturbation of the parameters.
2. Perturbed Model: In the case of VGG19, we create
a perturbed model by setting 95% of the low-magnitude
weights of the seventh convolution layer to zero. For the
ResNet101 model, a perturbed model is formed by setting

40% of low-magnitude weights of the first convolution layer
to zero, while for the D-NetPAD, 92% of the low-magnitude
weights of the last convolution layer of the first dense block
are set to zero. The selection of these perturbed models are
based on their consistent high performance on the LivDet-
Iris-2020 dataset (4b). We repeat the experiment 100 times
for each of the high-performing models and select the one
with the most consistent performance.
3. Ensemble Models at the Score-Level: We combine
two consistent high-performing perturbed models by fusing
their PA scores using the sum rule. For all three architec-
tures, we fuse the above specified perturbed models with
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Table 3. The performance of VGG19, ResNet101, and D-NetPAD models in terms of True Detection Rate (%, higher the better) at 0.2%
False Detection Rate on the LivDet-Iris-2017 and LivDet-Iris-2020 datasets. The performance is shown on original model (no parameter
perturbations), perturbed model and an ensemble of model.

Datasets LivDet-Iris-2017
LivDet-Iris-2020Subsets Clarkson Warsaw Notre Dame IIITD-WVU

Splits Test K. Test U. Test K. Test U. Test Test
VGG19 Model

Original 51.32 86.25 10.12 100 99.00 1.44 76.87
Perturbed 54.88 91.12 9.08 100 97.78 1.58 90.31
Ensemble (Score-level) 66.17 92.95 7.23 100 98.00 3.14 89.53
Ensemble (Parameter-level) 73.01 84.92 13.90 99.78 97.78 9.43 88.26

ResNet101 Model
Original 15.82 89.93 91.67 100 99.44 50.47 84.11
Perturbed 23.01 95.33 94.65 100 95.67 58.14 86.40
Ensemble (Score-level) 21.61 92.95 94.60 100 89.88 58.02 91.07
Ensemble (Parameter-level) 19.10 95.33 94.37 100 95.67 58.14 89.92

D-NetPAD Model
Original 60.04 76.68 35.76 100 99.33 32.01 90.22
Perturbed 68.54 94.94 53.02 100 99.00 50.35 96.86
Ensemble (Score-level) 68.34 93.84 46.40 100 97.66 48.08 96.71
Ensemble (Parameter-level) 64.29 94.94 53.02 100 99.00 42.59 95.66

the model formed by adding Gaussian noise with α = 0.1
(N(0, 0.3 ∗ σ(Worg)) to the entire network.
4. Ensemble Models at the Parameter-Level: We cre-
ate a single ensemble model by averaging the parameters of
two consistent high-performing perturbed models. The PA
score is generated from a single merged model. The models
selected for fusion are the same ones used for ensembling
at the score-level.

Table 3 provides the performance of these models (based
on VGG19, ResNet101, and D-NetPAD architectures). The
performance of perturbed and ensemble models is better
than the original model on both datasets. The observation
holds true for all three architectures. The perturbed mod-
els show an average improvement of 47.12% and 8.97%,
the ensemble model at the score-level shows an improve-
ment of 16.01% and 10.65%, and the ensemble model
at the parameter-level shows an improvement of 43.58%
and 9.25% on the LivDet-Iris-2017 and LivDet-Iris-2020
datasets, respectively. One major advantage of these per-
turbed models is that these models are created without any
further training. Another advantage is that these high-
performing perturbed models have reduced model size.

7. Summary and Future Work
We analyze the sensitivity of three DNN architectures

(VGG19, ResNet101, and D-NetPAD) under three types
of parameter perturbations (Gaussian noise manipulation,
weight zeroing, and weight scaling). We apply the pertur-
bations in two settings: modifying the weights across all

layers and modifying weights layer-by-layer. We found that
CNNs are generally less sensitive to a variant of weight ze-
roing, where low-magnitude weights are set to zero. From
the layer-wise analysis, we observe that the CNNs are more
robust to perturbations in later layers compared to the initial
layers and Gaussian noise addition most negatively impacts
the performance due to the zero-centered nature of weight
distributions. Certain manipulations improve the perfor-
mance over the original one. Based on these observations,
we propose the use of an ensemble of models that consis-
tently perform well on both LivDet-Iris-2017 and LivDet-
Iris-2020 datasets. As future work, we will focus on finding
the analytical optimum direction for weight perturbations.
Additionally, the approach can be applied to other domains
and tasks.
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