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Abstract

Aquatic invasive species like dreissenid mussels disrupt
ecological balance and damage agricultural infrastructure.
Machine vision tools can use plankton or water samples im-
ages for early detection of invasive dreissenid larvae. Su-
pervised learning techniques require large amounts of la-
beled data, which is costly to acquire in the case of invasive
species. Additionally, invasive species larvae can be rare
among aquatic organisms, leading to the problem of data
imbalance.

Active Learning (AL) reduces labeled data needs by it-
eratively selecting and labeling the most informative data
for model training. In this paper, we propose an innova-
tive active learning strategy for recognition of aquatic dreis-
senid larvae with minimal labeled data, while being robust
to data imbalance. Our strategy is based on a combination
of supervised contrastive training and k-means clustering.
The key idea of our algorithm is to project the data into
a smaller, more discriminative representation using con-
trastive learning, where we can apply clustering to select
the most informative samples.

We evaluate our algorithm on invasive larvae data and
compare with several state-of-the-art AL methods. Tradi-
tional AL methods face challenges in generalization, class
bias, and low-budget effectiveness. Our method provides
an efficient sampling process that is effective in the class-
imbalanced, low budget setting. Starting with only 100 sam-
ples, after 100 additional active learning samples we get
78% balanced accuracy, which is a 27% improvement over
random sampling and 22% over core-set.

1. Introduction

Zebra and quagga mussels are dreissenid mussels na-
tive to Eurasia but have been introduced and become in-
vasive to the United States waterways [66]. These invasive
species can cause ecological damage by out-competing na-
tive species for food as well as attach themselves to organ-

isms, pipes, boats and other critical infrastructure [48]. In-
vasive mussels attach themselves to hard surfaces and con-
crete blocks, thereby restricting the flow of water through
hydroelectric, irrigation, and fish facilities [29]. Recre-
ational activities on Great Lakes are adversely affected as
mussels accumulate on docks, boat hulls, anchors. Mar-
itime archaeologists also note increased shipwreck deterio-
ration caused by quagga mussels in the Great Lakes. The
annual economic impact of invasive species specifically on
power plants and municipal drinking water systems in North
America has been estimated at between $ 267 million and $
1 billion [11, 29].

A single female adult zebra mussel can produce over a
millions of eggs in a year, which grow into veliger larvae
that are free-floating in the water column until they settle
and attach to hard surfaces. Dreissenid mussels attached
to watercraft [1] can live outside of water for several days
under the right conditions, thereby spreading to other wa-
ter bodies [29]. Thus, early detection at the larvae stage
and regular monitoring is key to response against invasive
mussels. Traditionally, veliger/larvae presence is detected
by examining water sample using cross-polarized light mi-
croscopy [29] or e-DNA [12]. These processes are gen-
erally time consuming, causing delays in ability to imple-
ment water infrastructure mitigation or conduct rapid re-
sponse, and can be costly. A recent state-of-the art method
is to use digital imaging-in-flow instruments with image
recognition models to detect veliger presence in water sam-
ples [23,38,39]. This process aims to rapidly detect veliger
presence using deep learning based models without any hu-
man supervision. A set of invasive and non-invasive images
taken from a data set of water sample video are shown in
Figure 1.

In the last few years, deep learning based models have
made massive advancements in almost all areas of machine
learning [41] especially in image classification [16, 24, 37,
67, 79]. However, one of the drawbacks of deep learning is
that it is often dependent on the availability of large amounts
of labeled data [14,68,75]. Most deep learning based meth-
ods like Vision Transformer are built to take advantage of
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Figure 1. Example of invasive and non-invasive species larvae in our data set. The first row contains images of non-invasive larvae and
the following row contains images of invasive larvae. The sample images demonstrate that the visual distinction between invasive and
non-invasive species is quite subtle. It can be challenging for human annotators to discern invasive species unless they possess experience
and expertise in analyzing larval images.

pre-training on large annotated data sets [16]. However,
large annotated data sets are costly to build and at times im-
possible to get. There are many areas in Computer Vision
like underwater imaging [28], medical imaging [49,52,68],
microscopy imaging [7, 45] etc. where data annotation is
very costly. In the case of invasive species, labelled exam-
ples are costly to acquire, as it requires previous experience
and domain expertise to distinguish between invasive and
non-invasive larvae. In the early introduction stage when
detection is critical, dreissenid veligers are rare compared
to non-invasive species and have a lot of seasonal variance
too. So, there is an added problem of data imbalance in in-
vasive larvae data sets. Active learning [44,59] is a promis-
ing solution to this challenge, as it enables the development
of models that require fewer labeled examples by iteratively
training on the most informative instances of the data set.

Our aim is to build an active learning system that
can maximize the accuracy of invasive species recognition
model with minimal labels, while being robust to data im-
balance issue. In active learning (AL) a model is learned
with a small amount of training data and then a subset of
unlabeled data is annotated to be used for incrementally
training the model [65]. In order to maximize the accu-
racy of the model with fewer annotated data, AL methods
generally rely on the latent space, data distribution, uncer-
tainty or other heuristics based approaches to pick out the
best samples [44, 60, 65].

In recent years there has been a lot of interest in active
learning research [6, 10, 35, 54, 55, 63, 77, 78] due to its ca-
pability of learning from limited labeled data. However,
traditional active learning approaches have several limita-
tions [51]. Uncertainty sampling relies heavily on model
architectures and might be difficult to generalize for differ-
ent models, hyper-parameters and data sets [44, 51]. These
methods can also suffer from efficiency problems due to
continuous unbounded retraining and complex heuristics to
select training data points. Therefore, there is a need for

novel active learning approaches that can overcome these
limitations. Our proposed Active learning algorithm is
based on a combination of Supervised contrastive learning
and k-means clustering which is efficient and robust against
data imbalance.

Supervised contrastive learning (SCL) [34] allows us to
apply self-supervised contrastive training in a supervised
setting. The idea behind contrastive learning is to have an
anchor and a group of positive and negative samples for
each anchor. In the embedding space the distance between
negative samples and anchor are maximized, while the dis-
tance between the positive samples and anchor are mini-
mized. A positive sample is generally formed using data
augmentation of the anchor and a negative sample is cho-
sen from the examples in the rest of the batch. Unlike tra-
ditional supervised learning, contrastive training can learn
a representation that captures the intrinsic structure of the
data [69]. Contrastive learning has been effective in various
downstream tasks in Computer Vision, especially in cases
where there is a lack of labeled data [22, 27, 40, 47, 72, 76].
Due to its representation learning capability, contrastive
learning can be really useful for active learning, especially
in the process of sample selection.

k-means is a widely used unsupervised clustering tech-
nique, especially useful for low dimensional 1D vectors
[43]. K-means starts with a set of cluster centers and it tries
to minimize the distance between a center and a point within
the same cluster. K-means is a well-studied algorithm and
there are various improvements to support scalability and
stability of clustering [2,21,43,80]. In the context of active
learning k-means can be used to guide the selection of sam-
ples that maximize the diversity of the data used for model
training.

The combination of active learning and k-means presents
a great opportunity for active learning, especially in the case
of large scale deep learning models. SCL enables an en-
coder to learn an effective, discriminative data representa-
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Figure 2. On left we have a flowchart for pool-based active learning. On the right we expand on the sampling process. Here Xk,Yk

are initial training set. Xu is the unlabeled set from which Xi data points are sleeted in an iteration. Finally, an oracle would give the
annotation for those samples to create a new training setXk+i,Yk+i

tion [34], which can serve as a foundation for effective clus-
tering. K-means can cluster the learned representation into
distinct groups. Now, we can use sample of data from each
cluster to select a diverse batch of data. We use Euclidean
distance [13] to maximize the information gained from sam-
ples within each cluster. K-means clustering is fast, effec-
tive and highly informative for a smaller representation of
the data [2, 21, 43]. In short, the combination results in a
highly scalable, efficient and stable active learning strategy
that achieves strong performance across different ranges of
data sets and experimental settings.

In this paper, we develop an active learning approach to
address the high annotation cost of aquatic invasive species.
The presence of invasive zebra and quagga mussels have a
lot of seasonal variation as well as changes in life stages
[31]. Larvae images also vary a lot based on time of the
day, whether the samples are from surface or deep water,
using kayak or pump [31]. Large part of our current ze-
bra mussel data set [8, 9] is based on images collected from
water sampling in 2019. Active learning can help fine-
tune specialized models for different conditions and adapt
to these changes [56, 58, 73]. We present a novel AL algo-
rithm shown in Figure 2 that combines contrastive learn-
ing with k-means clustering to select highly informative,
diverse samples. To the best of our knowledge the com-
bination of contrastive learning and k-means clustering has
never been used before for Active learning [44]. We pri-
marily test our active learning approach on invasive species
data set and conduct experiments in different settings. Our
experiments show that the proposed AL algorithm is very

effective in dealing with imbalanced data in the low bud-
get regime, which is crucial for invasive larvae recognition.
To show the robustness of our approach against imbalanced
data we’d report balanced accuracy and F1-score on inva-
sive species. To establish consistent improvement over ran-
dom sampling we conduct experiment on other data sets like
CIFAR10 [36] CIFAR100 [36].

2. Related Work
In many U.S. states, efforts are in place to mussel infesta-

tions and mitigate impacts on infrastructure [11, 46]. How-
ever, the economic impact of invasive species remains sub-
stantial [11,26,46]. It is estimated to be around $219 billion
in the U.S. and over $4 trillion globally [11]. To mitigate
both environmental and financial repercussions, an auto-
mated early detection system would play a crucial role [11].

Early detection methods for invasive mussels generally
rely on microscope photography and eDNA-based meth-
ods [29], which is expensive as well as time-consuming.
Deep learning based image recognition methods have been
introduced before to recognise images of invasive species
from water sample videos [23, 38, 39]. But annotation of
dreissenid veligers requires a lot of domain expertise and
it is costly to acquire. So, in this paper we’re investigating
the use of active learning to reduce the annotation burden
while achieving good accuracy of invasive species recogni-
tion. In addition, we would look into some of the recent ac-
tive learning approaches and discuss how we improve from
that.

Compared to traditional machine learning methods Deep
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Neural Networks (DNN) are able to take advantage of mas-
sive annotated data sets and have made a lot of progress in
different areas like image recognition [16, 24, 37, 67, 79],
natural language processing [33, 70, 74] etc. Active learn-
ing tries to maximize the performance of a model with
fewer labeled data points. A Combination of DNN and AL
has been used in areas like image recognition [17, 19, 20],
text classification [61, 81] and object detection [18, 57] etc.
Among different AL methods, (like pool-based, stream-
based, membership query-based etc.) pool based active
learning is most frequently used [10, 51, 60]. In this paper,
we focus on pool-based active learning for image classifica-
tion using Neural Networks. In pool-based active learning
the most frequently used ones are uncertainty based [30,71],
diversity based [19, 53, 63] and a few approaches that try to
consider both diversity and uncertainty [3]. Here we es-
tablish the foundation of our method by discussing relevant
work in the areas of uncertainty-based sampling, diversity
sampling, and contrastive learning.

Uncertainty based methods try to select the most am-
biguous samples based on confidence or entropy. The as-
sumption is that adding samples that lie close to the deci-
sion boundary would lead to the highest information gain.
These uncertainty based methods are hard to generalize
for different models and are often biased towards certain
classes leading to poor results especially in low budget
regime [44, 51]. The difficulty with uncertainty sampling
is defining the regions of uncertainty in the decision space
and generalizing the sampling process across different data
sets. There are several papers that try to define uncertain
regions for a classifier by modifying the softmax layer [50],
using a validation set with softmax [32] etc. An ensemble
of classifiers have also been used to estimate uncertainty for
active learning with encouraging results [5].

Among diversity based methods, Sener et al. [63] pro-
posed a core-set based approach to enforce diversity of sam-
pled labels on the unlabeled batch. Core-set tries to choose
a subset of points for a batch that can represent the whole
batch. This approach doesn’t consider the informativeness
of the samples and is difficult to use in case of large data
set or batch size [10]. Another interesting approach to ac-
tive learning is by Ash et al. [3] where the authors propose
using gradients of the final layer of the network as a repre-
sentation and use kmeans++ to select the samples. Here, the
gradient vector size is dependent on the number of classes
and can lead to inconsistent result [10].

In our method, we try to address some of these chal-
lenges using the combination of contrastive learning and
k-means clustering. Contrastive learning tries to learn a rep-
resentation of the data where similar data points are brought
closer together, while dissimilar data points are pushed fur-
ther apart. This is accomplished by optimizing a contrastive
loss function. A classifier can be attached on top of it for

supervised image classification. Due to the representation
learning capability, contrastive learning is especially effec-
tive at learning from limited labeled data [47, 72, 76] and
has been effective in different downstream tasks in Com-
puter Vision [15,40,42,64]. Pool based Active learning can
often depend on the initial labeled set. The ability of con-
trastive learning to generalize representation to unseen data
makes it a good candidate for scalable active learning.

We use Supervised contrastive learning framework intro-
duced by Khosla et al [34]. The encoder is used to learn a
discriminative representation of the data and k-means clus-
tering is used to select the samples iteratively. Kmeans++
based initialization introduced by Arthur et al. is used to
speed up the sampling process. By building on the insights
from these prior works, our method advances the state-of-
the-art in active learning, providing improved results and
scalability in variety of different data sets and experimental
settings.

Active learning is a promising ML paradigm that can sig-
nificantly reduce dependence on labeled data and speed up
training process. But, there are several reproducibility re-
lated challenges in AL algorithms. To this end, Munjal et
al. [51] have shown that the performance gains of different
AL algorithms over random sampling are inconsistent over
different experimental settings. The authors have given sev-
eral recommendations and guidelines in order to improve
the robustness and reproducibility of AL algorithms. Based
on these guidelines we conducted our experiments under
varying sizes of initial labeled data and annotation budget.
We try to keep hyper-parameter settings consistent as much
as possible and we share details of all our hyper-parameters
and other experimental settings used in evaluation of our
AL algorithm.

3. Method
Let’s define data set X of size N as a set of all examples,

where XL = (xi, yi) is the set of labeled example and XU

= (xj , yj) is the set of unlabeled example. Initially a base
model Ψ0 is trained on the data set XL. At every step of
active learning, we need to select B examples from XU for
manual annotation and further training of the model. The
selected example set S ⊆ XU , B = |S| ≤ N is added to
XL to create a new training set Xi

L and train a new model
Ψ1. Generally, the cycle of training and annotation is re-
peated until the annotation budget is exhausted or a sat-
isfying metric is achieved. Most active learning methods
have unbounded training and annotation cycles, which can
be computationally expensive. So, in our case, the number
of iterations would be fixed and the amount of annotation
budget would be varied for evaluation of the proposed al-
gorithm. We train the model using supervised contrastive
learning and use k-means with kmeans++ initialization for
sample selection. In the next few paragraphs we would
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introduce contrastive learning based training strategy, de-
scribe our sample selection strategy with k-means in detail.
Following that, we’d give the details of neural network ar-
chitecture, hyper-parameters and different evaluation met-
rics.

3.1. Supervised Contrastive Learning

Our training method is similar to the supervised con-
trastive learning paper introduced by Khosla et al [34]. Our
classification model is based on two steps 1. Training an en-
coder to create representation vector from an input image in
a way that the vectors from the same class would be similar
compared to the vectors from different class; 2. Training a
classifier on top of a frozen encoder.

Given a batch of input data, we apply data augmentation
twice and feed them to the encoder network. If x is the in-
put image, we create x̂ = Aug (x) where Aug() is a function
that applies different data augmentation like random flips
and rotations on the image. Followed bt that, the encoder
would create a representation vector, r = Enc(x), r ∈ R. In
our case, Resnet50V2 architecture [24, 25] is used to build
the encoder. A projection network maps r to f(z) where con-
trastive loss is applied, z = Proj(r). When the labels are not
given the loss is calculated by taking the augmented sample
as a positive example and the loss function for a sample in
the batch looks like this

L = − log
exp(sim(zi, zj)/τ)∑

k∈A(i) exp(sim(zi, zk)/τ)
(1)

Here, zi is the anchor and zj is the augmented positive
sample and zk are the negative samples in a mini-batch.
sim() calculates the cosine similarity between two vectors
and τ is a scalar temperature parameter. So, for each an-
chor there is one positive example and 2(N-1) negative ex-
amples. A(i) has a total of 2N-1 terms and is defined as
A(i) = {k|k ∈ 1, 2, ..., 2N, k ̸= i}.

In case of supervised contrastive learning there are more
positive samples than the augmented image. So, a modifi-
cation is used to incorporate the label information and it is
given by

L = − 1

P (i)

∑
p∈P (i)

log
exp(sim(zi, zj)/τ)∑

k∈A(i) exp(sim(zi, zk)/τ)
(2)

Here P (i) includes indices of all positive samples in the
batch, including the augmented image. contrastive loss gen-
erally works better with a large batch size due to a greater
number of negative images. Once the encoder is trained
with a contrastive loss, a classifier is attached to make the
final prediction and it is trained with a cross-entropy loss.

Algorithm 1: Active Learning using Contrastive
Training and k-means Clustering

Input: Labeled set (XL,YL), Unlabeled set XU ,
annotation budget B, number of clusters k

Output: Updated labeled set XL

1 for i = 1 to n do
2 Train encoder, classifier on (XL,YL) using

supervised contrastive learning (SCL);
3 Use the encoder to generate representations zU

from XU ;
4 Perform k-means clustering on zU to create k

clusters;
5 for each cluster Cj do
6 Calculate centroid cj ;
7 Select sample x∗ in Cj that maximizes

distance to cj ;
8 if number of labeled samples < B then
9 Add (x∗, y∗) to XL where y∗ is the label

for x∗ given by the annotator;
10 Remove x∗ from XU ;
11 Continue to train encoder and classifier

on XL using SLR;

12 else
13 break;

14 if number of labeled samples ≥ B then
15 break;

3.2. Sampling with k-means

As shown in algorithm 15, we start with a set of labeled
examples XL and train using contrastive learning. Once we
have trained the encoder, it is used to create a set of repre-
sentations zu from the unlabeled set XU . Given the repre-
sentations learned by the CLR, we apply k-means cluster-
ing to partition the unlabeled set into distinct clusters based
on the number of classes. Each cluster represents a spe-
cific class from the data and captures the diversity of the
data. For each cluster, we select the samples that are most
distant from cluster centers using euclidean distance. Let’s
assume that there are k clusters with k centroids µi where
i ∈ {1, 2, ..., k}. For each cluster, there are S data points as
zs. We calculate the distance of each of those data points
using euclidean distance, given by ds =

√
(zs − µi)2. The

largest values of ds are used to select samples from each
cluster and these are used to continue training the model.

To improve the efficiency of our sampling algorithm
we integrate Mini-Batch k-means algorithm into our ac-
tive learning. Mini-Batch Kmeans, described by Sculley et
al [62] operates on a random subset of data, which reduces
computational cost while preserving cluster quality [4]. In
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addition to this, we use kmeans++ for selecting the initial
centroids. Kmeans++ proposed by Arthur et al. [2] se-
lects initial centers in a way that leads to improved cluster-
ing and faster convergence. kmeans++ selects one centroid
randomly and each subsequent centroid is selected based
on probability proportional to its distance squared to the
nearest existing centroid. By integrating Mini-Batch and
kmeans++, we improve the efficiency and effectiveness of
our algorithm.

This selection is based on the distance of the samples to
the cluster centroids, with the assumption that these samples
are different from the initial labeled data which has been
used to train the model already. By iteratively performing
this selection process, our approach effectively reduces the
volume of data that needs to be labeled, while training the
model on diverse and highly informative samples. Selection
from different clusters also ensure that the model is robust to
data imbalance which is crucial in case of invasive species.

4. Experimental Results
We evaluate our algorithm on classification of aquatic

invasive species data set. We seek to demonstrate improve
the accuracy of our method with minimal annotation along
with efficiency, robustness to data imbalance, robustness
to changes in experimental setting and budget. For the
encoder, we use ResNet50V2 architecture with ImageNet
weights and a projector of feature size 2048. For active
learning, we start with a base set of labeled examples and
then choose a set of examples to annotate in each iteration.
For all our experiments, we keep the number of AL itera-
tions fixed to 10. We vary the amount of labeled data at start
and also the budget available during AL iterations. The re-
sults are sensitive to the size of the base labeled set and
budget. However, a good choice of budget depends on the
data set size and number of clusters k. We compare our
algorithm to different baseline AL methods listed here

1. RAND: This is the active learning baseline that ran-
domly selects examples every iteration [51]. In this
case, we train a ResNet50V2 in a supervised manner
and select samples for annotation randomly.

2. ENTROPY: This is the active learning algorithm that
selects samples with higher entropy. This method [30]
tries to select instances for which the model’s predic-
tion confidence exhibits a greater level of variability.

3. CONF: This is the active learning algorithm that aims
to acquire the most uncertain data samples. [71] In this
case, the algorithm tries to find data samples that are
challenging to classify or predict confidently and in-
crease the robustness of the model.

4. CORE-SET: This is the active learning algorithm is
based on core-set selection, which tries to select a

small set of points for annotation that approximate the
shape of the larger unlabeled data set. Core-set [63] is
widely considered as one of the state-of-the-art meth-
ods for Active learning.

5. RAND-CLR: Here we compare random sampling
based active learning with supervised contrastive
learning for model training. The other baseline ap-
proaches mentioned above are based on simple super-
vised training of ResNet50V2. But, in case of RAND-
CLR, we train using contrastive learning and make the
selection of samples randomly.

4.1. Results on Invasive Species data set

Our invasive veliger data set is created from water sam-
ple videos. The larvae images are cropped using a propri-
etary algorithm that is based on a Kalman filter. The data
set contains cropped images of 6,905 organisms, with a to-
tal of 178904 images. There are 42055 invasive images and
136849 non-invasive images. The data set is imbalanced
towards non-invasive species. So, instead of accuracy, we
have decided to use F1 Score of invasive species and Bal-
anced Accuracy as evaluation criteria. The average image
size is approximately 22 × 19 pixels. So, we resize images
to (32×32×3) with padding and cropping based on whether
the original image is larger or smaller. We use ResNet50V2
with ImageNet weights for training with Adam Optimizer
and cross-entropy loss. During Active learning process we
start with an initial base set of images and then select a set
of images to be annotated during 10 iterations. Our exper-
iments are performed using varying range of base-set and
annotation-set. We train the base-set for 10 epochs and then
train the new training set for 10 epochs in each iteration.
For contrastive learning we train the encoder for 10 epochs
and the classifier for 10 epochs. We present the average re-
sults after 3 iterations of training and compare them with
the baselines mentioned above.

Initially, we vary the number of images in the initial la-
beled set from 1500 to 7000 and we select a total of 500 im-
ages for annotation in 10 AL iterations. We plot the results
on Figure 3 and Figure 4. Those figures compare the Inva-
sive Species F1 score or Balanced Accuracy against the size
of base labeled set. The results are based on three different
experiments with the mean score on X-axis along with the
standard deviation plotted using area. The results demon-
strate that our model can achieve high accuracy with very
minimal labeled data and outperform all other AL methods
specially when the initial labeled set is really small. This is
mostly due to the representation learning capability of con-
trastive learning. Selecting samples from different classes
ensures the diversity and selection of most distant samples
ensures that most informative samples among the unlabeled
data is used for active learning. The data points that are
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Figure 3. Invasive species results with different variations of initial
labeled set. We plot the AL initial labeled set budget in X-Axis
and F1-score on Y-Axis. The results are based on the average
of three experiments and our algorithm clearly outperforms other
approaches of active learning.

Figure 4. Invasive species results with different variations of ini-
tial labeled set. We plot the AL initial labeled set budget in X-
Axis and Balanced Accuracy(BAC) on Y-Axis. Due to high data
imbalance some of the comparing methods don’t provide constant
improvement with Active Learning. Compared to that our method
performs well even with data imbalance and shows consistent im-
provement.

most distant from the cluster center are chosen using eu-
clidean distance.

We conduct further experiments using a fixed amount of
initial labeled set of 100 images and vary the AL annotation
budget from 100 to 2000. We plot the results in Figure 5
and Figure 6. The results demonstrates the advantage of our
algorithm over other AL methods especially in low budget
regime.

4.2. Other data sets

To show the robustness of our model we performed some
experiments on standard image recognition data sets like
CIFAR10, CIFAR100. For random sampling, we train on
the base labeled example for 50 epochs and then 10 epochs

Figure 5. In this case, we start with a constant size of base set.
From that, we vary the AL annotation budget and plot the F1-
Score of invasive species.

Figure 6. We also plot Balanced Accuracy (BAC) with variable
AL annotation budget. Our approach provides huge improvement
in low budget regime which is crucial for invasive species recog-
nition.

in each iteration. For our contrastive learning based algo-
rithm, we train the encoder for 50 epochs and the classifier
for 10 epochs initially, and then 10 epochs of training for
both encoder and classifier in each iteration. Because CI-
FAR10 and CIFAR 100 have larger number of classes, we
decided to train for longer epochs on the initial labeled set.

CIFAR-10
CIFAR-10 has 50,000 images for training and 10,000 for

testing. Each image is of size (32 × 32) and belongs to
one of the 10 different classes. The images are evenly dis-
tributed between different classes. We use the ResNet50V2
architecture and vary the number of labeled examples dur-
ing AL iterations. We plot the results in Figure 7 with accu-
racy on X-axis and annotation budget on Y-axis.

CIFAR-100
CIFAR-100 has 60,000 images of 100 different classes

with each class having 60 images. Similar to CIFAR-10 the
image size is (32× 32) with 50,000 images for training and
10,000 images for test. We plot the results in Figure 8. The
results show that our algorithm gives strong performance
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Figure 7. Comparative performance of our proposed active learn-
ing approach against random sampling on CIFAR-10 data set. For
random sampling, we train on the base labeled example for 50
epochs and then 15 epochs in each iteration. For our contrastive
learning based algorithm, we train the encoder for 50 epochs and
the classifier for 10 epochs initially, and then 10 epochs of train-
ing for both encoder and classifier in each iteration. We plot the
AL annotation budget in X-Axis and the accuracy on Y-Axis. As
shown in the plot, our algorithm consistently outperforms other
approaches of active learning. RND(CLR) is close to our method
due to the quality of contrastive representation learning in in the
small data regime.

Figure 8. Comparative performance of our proposed active learn-
ing approach against random sampling on CIFAR-100 data set.
We plot the AL annotation budget in X-Axis and the accuracy on
Y-Axis. Our algorithm provides strong improvement over other
approaches of active learning.

across different data sets and experimental settings.
For invasive species, we also plot some of the examples

selected by our AL method during different iterations on
Figure 9. Due to k-means clustering, our method selects
specific types of examples during the different iterations
and thereby targets different distributions of the data set.
Compared to that, Random sampling doesn’t have any clear
pattern and doesn’t lead to a lot of improvement.

The results show that, active learning can be used to
build an invasive species recognition model using minimal

Figure 9. Comparison of samples selected by our algorithm and
Random Sampling

labeled data. Our algorithm is robust to data imbalance
and outperforms baseline solutions across different data sets
and experimental settings. However, the effectiveness of
our approach depends a lot on the quality of the represen-
tation learning. Due to this, starting with pre-trained Ima-
geNet weights might be helpful. Contrastive learning is also
affected by batch size and that might make our approach
computationally expensive in some cases. Our active learn-
ing experiments are based on fixed number of iteration and
the number of iterations might have an impact on the re-
sults. This should ideally be chosen based on the time and
computational resources available. Our experiments also
assume noiseless human annotation during AL iterations,
which might not be true in every case, especially for appli-
cation in invasive species recognition.

5. Conclusion
The application of deep learning for recognition of inva-

sive veligers is potentially rewarding but difficult task due
to the cost of acquiring labeled data. We have proposed a
framework that utilises active learning to overcome these
difficulties. Our approach is based on contrastive learning
to iteratively train an encoder and a classifier. The encoder
projects the data to a smaller representation space, where
we apply k-means to select the most informative samples.
Selection of most distant samples from different clusters
ensure that our algorithm is robust against data imbalance
while getting high accuracy. With 100 initial labeled sam-
ples and 100 during active learning, we achieve 78% BAC,
rising to 85% with 2000 AL samples. Our algorithm con-
sistently outperforms state-of-the-art on invasive larvae as
well as datasets like CIFAR10, CIFAR100. However, there
is still much work needed to have working application that
can automate invasive veliger recognition.

In this paper, we concentrate on using active learning to
recognize zebra and quagga mussel larvae. As more inva-
sive species are anticipated, the focus of research needs to
shift to new species. Nonetheless, our paper provides an ac-
tive learning framework that can reduce the annotation cost
of invasive larvae, facilitating the construction of efficient
and robust deep learning recognition models.
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