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Abstract

High-quality training data is essential for enhancing the

robustness of object detection models. Within the mar-

itime domain, obtaining a diverse real image dataset is

particularly challenging due to the difficulty of capturing

sea images with the presence of maritime objects , espe-

cially in stormy conditions. These challenges arise due to

resource limitations, in addition to the unpredictable ap-

pearance of maritime objects. Nevertheless, acquiring data

from stormy conditions is essential for training effective

maritime detection models, particularly for search and res-

cue, where real-world conditions can be unpredictable. In

this work, we introduce SafeSea, which is a stepping stone

towards transforming actual sea images with various Sea

State backgrounds while retaining maritime objects. Com-

pared to existing generative methods such as Stable Diffu-

sion Inpainting [27], this approach reduces the time and

effort required to create synthetic datasets for training mar-

itime object detection models. The proposed method uses

two automated filters to only pass generated images that

meet the criteria. In particular, these filters will first clas-

sify the sea condition according to its Sea State level and

then it will check whether the objects from the input im-

age are still preserved. This method enabled the creation

of the SafeSea dataset, offering diverse weather condition

backgrounds to supplement the training of maritime models.

Lastly, we observed that a maritime object detection model

faced challenges in detecting objects in stormy sea back-

grounds, emphasizing the impact of weather conditions on

detection accuracy. The code, and dataset are available at

https://github.com/martin-3240/SafeSea.

Figure 1. Diagram summarizing our method (SafeSea). Original

maritime images’ sea background is edited with a mask and text

description using Blended Latent Diffusion [1]. The edited images

are then classified into 4 Sea State categories before their marine

objects (boats) are cropped according to the ground truth bounding

box and checked for preservation.

1. Introduction

Climate change is increasing the likelihood of extreme

weather events, such as large storms [6], which can be de-

structive, especially for humans and boats in stormy waters.

Quick and accurate rescue efforts are crucial in such situa-

tions as death can occur in as little as 50 minutes [31]. Au-

This WACV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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tomated disaster response in the ocean is a growing area that

uses advanced technology to help search and rescue in ex-

treme weather events. Leveraging autonomous systems, re-

mote sensing technologies, artificial intelligence, and real-

time data analysis, automated disaster response aims to

minimise risks, and accelerate response times. However,

detecting entities in need of rescue during severe conditions

in the ocean is often challenging. Therefore, there is a need

for automated disaster responses that can operate effectively

in these harsh conditions and can precisely locate objects,

vessels, and people requiring assistance.

Developing robust models to automatically detect ob-

jects in the sea during extreme weather conditions is a chal-

lenging task. The challenge primarily arises from the dif-

ficulty of obtaining high-quality data in such chaotic and

unpredictable situations. Adverse weather conditions, par-

ticularly during storms, pose a safety risk, preventing the

deployment of cameras in critical areas for data collec-

tion. Furthermore, the wild nature of disaster scenes of-

ten stretches already limited resources, including personnel,

equipment, and communication channels, thus constraining

the capacity for data acquisition [11]. Due to the lack of

datasets for training models to effectively detect maritime

objects in the ocean during severe weather conditions, gen-

erating synthetic datasets to train and test object detection

models can be highly beneficial.

By harnessing recent generative models such as Stable

Diffusion (SD) [27], and DALL-E [25], it is now possible

to generate realistic images based on textual descriptions.

However, generating synthetic images solely based on tex-

tual descriptions experiences limitations in specifying ob-

ject location, size, and type within the ocean scene, restrict-

ing the replication of realistic scenarios. To overcome this

challenge, a more practical approach is to utilize real sea

images with marine objects and performing transformations

on the sea background.

Unfortunately, when applying the Stable Diffusion

model to edit the real sea image’s backgrounds, our exper-

iments reveal a significant limitation in using text prompts

to precisely control the desired Sea State. The edited back-

ground randomly appears not according to the description,

so it would require checking manually to ensure the im-

age’s quality. Consequently, this process becomes time-

consuming as it requires manual control to achieve a vi-

sually satisfactory Sea State. Furthermore, we found that

existing image editing methods often replace or excessively

modify the objects in the edited images, making the images

unusable. Therefore, relying solely on synthetic image gen-

eration techniques to create a dataset with diverse Sea State

Levels proves to be challenging, as it demands a substantial

amount of time for generation and manual verification.

To tackle this issue, we propose a method for editing im-

ages of calm ocean scenes into stormy ocean scenes, fo-

cusing on UAV-view images. We replace the original calm

ocean with an ocean environment corresponding to standard

definitions from a Bureau of Meteorology as depicted in Ta-

ble 1, all while attempting to retain the maritime objects

in the images 1. This method shows as a proof-of-concept

to develop a simple-yet-effective approach, capable of au-

tomatically screening out poor-quality edited images with

overly edited preserved objects.

Our work takes an input image and use an image gen-

eration method to perform background transformation. Re-

cent work proposed the Blended Latent Diffusion [1] which

demonstrates significantly improved results over the Sta-

ble Diffusion model in preserving foreground objects while

also translating the background. Therefore, we employed

Blended Latent Diffusion to modify images with object

masking. Due to the stochastic nature of diffusion [30],

we find that prompts alone can be unreliable for producing

images according to the sea state definitions. Thus we ap-

ply the Sea State Classifier which classifies the transformed

image into one of the sea state definitions. Then, the Ob-

ject Preservation Checker is applied to evaluate whether the

transformed image still preserve the objects from the input

image.

We leverage the SeaDroneSee dataset [34] for experi-

mentation and validation. To quantitatively evaluate the ef-

fectiveness of our approach, we compare it against other

image editing methods, such as Stable Diffusion Inpainting

[27]. Furthermore, we conducted object detection tests us-

ing YoloV5 model pre-trained on calm sea state images [20]

to assess the impact of various sea states on object recog-

nisability in edited images. Our findings reveal that the

pre-trained object detection model struggles to identify ob-

jects in increasingly stormy conditions. This suggests that

the model’s performance is less effective when it encoun-

ters previously unseen stormy sea backgrounds, making it

more challenging to detect objects in rough sea surface con-

ditions.

Contributions - We list our contributions as follows:

1. We propose a simple-yet-effective method for modifying

the sea state level of the ocean in maritime images while

preserving the objects of interest, enhancing their utility

for various applications;

2. We construct and propose a synthetic dataset, the Safe-

Sea dataset, enabling the training of models to accom-

modate diverse weather conditions;

3. We conduct an evaluation of the SafeSea dataset with

YoloV5 to assess the model’s performance under varying

weather conditions.

We continue our paper as follows. Section 2 presents

an overview of prior work including maritime datasets and

diffusion models. In Section 3, we define our problem and

the goal we want to achieve before Section 4 outlines our

1In this work we confine ourselves to only retaining the boats and re-

serving the other marine objects for future work.
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proposed SafeSea method designed to accomplish this goal.

The description of the SafeSea dataset are presented in Sec-

tion 5. Section 6 presents our experiment and discussion.

We conclude the paper and discuss about limitations and

future work in Sections 7 and Section 8.

2. Related Works

Sea Datasets - Numerous public maritime datasets facil-

itate the training of marine object detection models. No-

table examples include the VAIS dataset [35], offering over

1,000 RGB and infrared image pairs, showcasing various

ship types. The IPATCH dataset [21] records realistic mar-

itime piracy scenarios, while the SeaShips dataset [28] fea-

tures ship images from inland waterways. The ’Singapore

Maritime Dataset’ [23] captures marine objects using on-

shore platforms and vessels, providing diverse perspectives.

Additionally, the Seagull dataset [26] and Maritime SATel-

lite Imagery (MASATI) dataset [9] offer aerial images. The

SeaDronesSee dataset [34] contains over 54,000 frames

with around 400,000 instances. Despite their strengths,

these datasets often focus on specific objects like ships and

boats, and often the objects of interest are relatively large

compared to the image size in certain datasets. Further-

more, most of the images are taken under good weather

conditions.

Synthetic Datasets - Extensive research explores method-

ologies employing synthetic images for training object de-

tection models. Noteworthy contributions include Peng et

al. [22] emphasizing the refinement of synthetic object

backgrounds for improved detection reliability. The use

of powerful game engines like Unity [16] and Unreal En-

gine [7] is prominent, as demonstrated by Becktor et al. [3]

in the context of spacecraft guidance and control. Unreal

Engine 4 [7] has proven valuable in autonomous driving,

Dosovitskiy et al. [5], and maritime image generation, as

utilized by Becktor et al. [2]. Kiefer et al. [17] analyzed

maritime and terrestrial images, incorporating real and syn-

thetic data from the Grand Theft Auto V (GTAV) simula-

tion platform [10]. Xiaomin et al. [18] introduced See-

DroneSim, utilizing the Blender game engine [4] for UAV-

based maritime images. Airbus [15] released a 2018 dataset

of 40,000 satellite images designed for ship detection using

synthetic aperture radar (SAR) technology. While existing

datasets focus on synthetic objects of interest, our work con-

centrates on generating diverse environmental conditions

based on real data.

Diffusion Models - Diffusion models have been widely

employed for image transformation in various contexts.

Trabucco, Doherty et al. [32] employed pre-trained text-

to-image diffusion models for semantic-based image mod-

ification. Shin et al. [29] utilized Stable Diffusion for im-

age generation using the Textual Inversion [8] method. Ron

et al. proposed the Null-text Inversion method [19], em-

Sea State Definition

1

The water exhibits a gentle ripple, devoid

of breaking waves, featuring a low swell of

short to average length occasionally.

2
Slight waves breaking, with smooth waves

on the water surface

3
Mildly increased waves, leading to some

rock buoys and causing minor disturbances

for small craft

4
The sea takes on a furrowed appearance,

characterized by moderate waves

Table 1. Sea States descriptions as defined by the ABS

ploying prompt-to-prompt text editing for image denoising.

Rombach et al. [27] introduced Stable Diffusion Inpainting

for image inpainting using masks and a latent text-to-image

diffusion model. Omri et al. [1] accelerated the transfor-

mation process with a lower-dimensional latent space. Our

selection of the Blended Latent Diffusion approach [1] is

based on its demonstrated superior results in editing image

backgrounds.

Presently available real-image maritime datasets have

limitations, including fixed camera positions and a re-

stricted variety of marine objects. Furthermore, they of-

ten lack diversity in representing various weather condi-

tions reflecting on the sea background. This lack of diver-

sity can restrain the development of a high-quality dataset

for training deep-learning models. To address this chal-

lenge, numerous studies have been conducted to generate

high-quality synthetic images capable of replicating real-

world scenarios. These synthetic images can be produced

by leveraging game engines such as Unity [16] and Unreal

Engine [7] or by employing diffusion models to modify real

images[1, 8, 12, 27, 29, 32]. While using game engines can

be resource-intensive, editing images with diffusion models

offers a simpler approach. Unfortunately, the editing pro-

cess via diffusion models is still time consuming and labour

intensive due to imprecise control that specifies which part

of the image that needs to be edited. This works proposes

a proof-of-concept to enable automation in the editing pro-

cess which significantly reduces the time and labour whilst

maintaining the quality of the edited images.

3. Problem Definition

Here we technically define our problem. Starting from an

image X containing a set of objects, B = {bi}
N
i=1

, where

N is the number of objects, and bi is the i-th object bound-

ing box. We first define the foreground fx of image X as

all areas of B, subsequently, we define the background bgx
as the inverse of all areas of B in X . Initially, bgx is a calm

ocean environment. We wish to replace bgx such that it

corresponds to a particular sea state, SS, where SS ranges
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from 1 to 4 and are defined in Table 1, with examples shown

in Figure 6. We only aim to replace bgx, and aim to retain

the number of N as was present in X . We refer to the re-

sulting image as Y . Specifically, let fy and bgy as the fore-

ground, and the background of Y , respectively. The goal is

to have bgy ̸= bgx, and fy ≈ fx.

4. Proposed SafeSea method

The overall diagram of the propose method is depicted in

Figure 1 and the pseudo code is presented in Algorithm 1.

The method has three main components: (1) the image gen-

eration module which transform the background of an in-

put image; (2) Sea State Level classifier; and (3) the Object

Preservation Checker. Once an image is generated, its qual-

ity is automatically assessed by using (2) and (3). Specifi-

cally, the Sea State Level classifier determines the sea state

level of the generated image, and the Object Preservation

Checker ensures the generated image still contains the ob-

jects from the input image.

The following section first discusses the image genera-

tion module which is powered by a diffusion model. Then,

the Sea State Level classifier and the Object Preservation

Checker modules are presented.

4.1. Image Generation Module

Diffusion models [13] are capable of being trained with

guiding input channels, enabling them to perform condi-

tional image generation such as creating synthesizing visual

content based on textual descriptions [24]. Beyond synthe-

sis, diffusion models are versatile image editors, allowing

for targeted modifications. In this process, noise is added to

the original image and subsequently denoised in response to

an optional prompt, which describes the new image. Using

masking techniques, these models can carry out semantic

editing, selectively altering specific regions within the im-

ages while leaving others intact. Various approaches exist

for utilizing Stable Diffusion in image editing, which can be

broadly categorized into two main groups: those that em-

ploy pre-specified masks and those that mask images based

on provided text descriptions.

In this work, we applied Blended Latent Diffusion

method [1] to edit original sea images. Blended Latent Dif-

fusion provides a versatile approach to image editing, uti-

lizing masks alongside guided text prompts. In a nutshell,

it provides a versatile approach to image editing, utilizing

masks alongside guided text prompts. To alter an image,

a mask of identical dimension to that image is applied to

designate the region to be modified, while guided text in-

structions define how the edited area should appear. The

intended outcome is an image in which the masked region

undergoes alterations while the unmasked portion remains

unaltered. In the transformation process, the original image

is encoded into a latent space, introducing a controlled level

ALGORITHM 1

Pseudocode for generating synthetic images of the sea with

marine objects from real images as proposed in SafeSea

method. The real image has its sea background edited us-

ing Blended Latent Diffusion [1], then its Sea State level is

provided by the Sea State Classifier. Finally, the original

objects are checked if they are retained in the edited image,

which lead to the decision of saving the image if at least one

object is preserved.

Input: Real sea images with marine objects (Rs),

matching mask images (Ms) with ground true bounding

boxes of marine objects are masked as black, text descrip-

tion of background (P )

Output: Transformed images with edited background

reflected different sea condition and the marine objects are

preserved

1: for each X in Rs do

2: M ← Corresponding mask image from Ms

3: Y ← Blended Latent Diffusion(X,M,P ) ▷

Edited image

4: SSE ← Sea State Classifier(Y ) ▷ Find the edited

image’s Sea State

5: ER ← Y ▷ Resize the edited image

6: Cs← ER ▷ Crop objects from the edited image

7: for each C in Cs do

8: if Object Preservation Checker(C) = boat then

9: Save Y

10: break

11: end if

12: end for

13: end for

of noise. Additionally, the mask is downsampled within this

latent space. At each stage of this process, the noisy latent

image is subjected to denoising and is regarded as the fore-

ground to be blended with the background elements. We

observe that the method demonstrates promise in generat-

ing images with different ocean backgrounds whilst main-

taining a considerable level of object preservation, in which

the object can be recognized visually after the background

edition process.

4.2. Sea State Classifier

To provide information about Sea State level in the edited

image’s background, we employed a Sea State classifier.

We selected four distinct Sea States for our study, namely

Sea States 1, 2, 3, and 4, as these are the only Sea States

for which datasets are publicly available. The Sea State

definitions are shown in Table 1 .It is important to note

that without recorded weather conditions at the time of im-

age capture, visually classifying sea images into different

Sea States is a challenging task. Leveraging the Manzoor-
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Umair Sea State Image Dataset (MU-SSiD) [33], we trained

a DenseNet [14] to categorize images into the four Sea State

categories. The trained model achieved an accuracy rate of

71% against the testing dataset.

4.3. Object Preservation

To evaluate whether an object remains preserved follow-

ing image transformation, we developed an object preser-

vation checker. This checker’s primary function is to iden-

tify objects that are no longer recognizable within the pro-

vided ground truth bounding box. To do this, we train

a binary classifier on a dataset consiting of two classes:

”boat” and ”not boat.” The ”boat” class contains images

of cropped boats sourced from the ground truth SeaDrone-

See dataset [34], complemented by their augmented ver-

sions, which include flipping and blurring. In contrast,

the ’not boat’ class comprises images from the negative

class extracted from the Boat-MNIST dataset [34], as well

as crops from randomly selected backgrounds from syn-

thetic images. Additionally, it includes crops intentionally

containing small portions of boat objects from the edited

images.These crops are generated by following the object

ground truth bounding box, ensuring that they contain only

one-fourth of the bounding box’s area with the rest out-

side. Using the dataset with only horizontal flip data aug-

mentation for the boat class. We trained a DenseNet [14]

model with a training batch size of 32, a fixed learning rate

of 1e-5 without decay, and utilized the Adam optimization

algorithm during the training process. Overall, the model

achieves the accuracy of 74.86% against testing dataset, in-

cluding crops of boat objects in real images and non-boat

crops from real and edited images.

Subsequently, based on the given ground truth bounding

box information, we extracted boat objects from the edited

images for evaluation using the trained checker. We con-

ducted random visual checks on the preserved boat objects

to evaluate the model’s performance. While there are oc-

casional misclassifications of objects as boats that do not

visually resemble boats, the model generally achieves satis-

factory accuracy in detecting non-boat objects, in which it

can pick up cropped objects that resemble boats and filter

out non-boat crops according to the visual checks with the

accuracy of 69.45%. Examples of the cropped boat objects

are illustrated in Figure 2.

5. SafeSea dataset

The SafeSea dataset is created using the SafeSea method,

involving the transformation of 300 calm ocean background

images originally sourced from the ’SeaDroneSee’ dataset

[34]. All edited images were resized to match the dimen-

sions of their respective originals. The SafeSea method pro-

duces 69,694 images images. These are then classified into

one of the sea state levels. The distribution of these im-

Figure 2. Examples of boat object crops from edited images. The

crops are taken based on the ground truth bounding boxes provided

from the source images in the ’SeaDroneSea’ dataset [34].

Sea State Level 1 Sea State Level 2

Sea State Level 3 Sea State Level 4

Figure 3. Examples of images in the SafeSea dataset. There is one

example representing each Sea State level in the dataset.

ages across different sea state levels is detailed in Table 3.

Notably, Sea State levels 3 and 1 exhibit the most and the

least number of images, boasting 45,066 and 2,087 images

respectively. In the intermediate Sea State 2 category, there

are 19,390 images, while Sea State 4 includes 3,151 images.

For a visual representation, a selection of dataset examples

is provided in Figure 3.

6. Experiment

This section is divided into two parts. The first part evalu-

ates the proposed SafeSea method efficacy in filtering com-

pared with the other methods such as the vanilla Stable

Diffusion Inpainting. Then, we study the performance of

YoloV5 detection model on the proposed SafeSea dataset.
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6.1. SafeSea method evaluation

We first describe the experiment setup and then present the

results afterwards.

6.1.1 Experiment setup

Evaluation protocol - We generate 100 images from each

evaluated method. Then, each image is manually checked

by humans and categorized into good quality of bad quality

group. A good quality image is defined as the following

rules:

• The background should contain either island, ocean or

cloud. For instance if the background contains unex-

pected objects such as a fridge, then the image is deemed

low quality.

• The background should look realistic

• All the objects should look visually acceptable. At least

one boat is preserved in the image.

Each method is then compared by looking at its percentage

of generating good quality images.

Methods - The proposed SafeSea method is compared

against two baselines: (1) the vanilla Stable Diffusion in-

painting [27]; and (2) the vanilla Blended Latent Diffu-

sion [1]. Details for each baseline parameters is presented

as follow.

Stable Diffusion inpainting (SD Inpainting) - We use

Stable Diffusion v1-4 [27] with batch size of one. The

masked image is derived from the groundtruth bounding

boxes. The method is then fed with the following prompts

to generate the images.

• Sea State 1: Aerial image of the sea’s surface. The water

is gently rippled with no waves breaking. Canon EOS

R3, Nikon d850 400mm, Canon DSLR, lens 300mm, 4K,

HD.

• Sea State 2: Aerial image of the sea’s surface. There

are slight waves breaking with smooth wave on surface.

Canon EOS R3, Nikon d850 400mm, Canon DSLR, lens

300mm, 4K, HD.

• Sea State 3: Aerial image of the sea’s surface. Mild

Waves are slight causing rock buoys and small craft.

Canon EOS R3, Nikon d850 400mm, Canon DSLR, lens

300mm, 4K, HD.

• Sea State 4: Aerial image of the sea’s surface. The

water has furrowed appearance with moderate waves.

Canon EOS R3, Nikon d850 400mm, Canon DSLR, lens

300mm, 4K, HD.

Blended Latent Diffusion (BLD) - We use Stable Diffu-

sion v2-1-base [27] with batch size of ten. Similar to the

method above, we use the derived mask image from ground

truth bounding boxes. We observe that when editing the

sea background of an image to various Sea State Level,

the reliance on prompts alone is insufficient. Therefore,

to simplify the generation issue with prompt we only use

one prompt in our experiments, which is “Aerial image of

sea’s surface. Canon EOS R3, Nikon d850 400mm, Canon

DSLR, lens 300mm, 4K, HD”. The prompt allows gener-

ation of images with varying sea state levels with different

generation seeds.

SafeSea (proposed) - We utilize Blended Latent Diffusion

with the same parameters as above to edit original images.

Then we use the sea state level classifier to determine the

sea state level of the generated images. The Object Preser-

vation Checker ensures objects are preserved. The gener-

ated image will be preserved if it preserves at least one ob-

ject. Same as the other methods, the mask image is de-

rived from the groundtruth bounding boxes provided by the

SeaDroneSee dataset [20]. Note that this dataset contains

several classes, but in this experiment we only aim to pre-

serve the boat as boats have much larger object size.

6.1.2 Results

Table 2 presents the comparison results. The results suggest

that the proposed SafeSea outperforms the baselines. As

expected the BLD produces better image quality than the

SD Inpainting as also shown in [1]

It is clear that SafeSea outperforms the other methods,

as it generates more good images with a realistic sea back-

ground and maintains object integrity more effectively.

Good images (in %)

SD Inpainting [27] 26.5% ± 5.94

BLD [1] 52.94% ± 8.25

SafeSea (proposed) 63.59% ± 2.76

Table 2. Comparison between SD Inpainting, BLD and SafeSea

when we manually check quality of the 100 generated images from

each method. The good image rate computes the percentage of

good images passed by manually check by humans. High good

image rate suggests the method works better for the task.

While the result of Stable Diffusion Inpainting appear to

achieve realism, many objects are blended into the back-

ground, or overly edited. Additionally, there are other in-

herent issues, such as other objects being inserted into the

edited image. It appears as though the objects of inter-

est may be inadvertently duplicated and dispersed into the

background, as shown in figure 4. Although some edited

background is of considerable quality, many of objects of

interest are not retained. Additionally, the edited images

may not be suitable for use due to the introduction of irrel-

evant modified objects and unexpected background.

When employing Blended Latent Diffusion, the issue of

objects of interest being uncontrollably spread is mitigated,

as demonstrated in Figure 5. Notably, the boat objects are

effectively preserved, and the edited background exhibits

acceptable quality. Nevertheless, it is worth mentioning that
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Original Edited

Original Edited

Original Edited

Figure 4. Failure edited images using SD Inpainting. It suggests

that this method can edit the image’s sea background, however,

the objects are not retained well, and several irrelevant objects are

introduced unintentionally.

the generated sea background does not possess the same

vividness observed in Stable Diffusion Inpainting. This dis-

parity may be affected by the utilisation of different trained

Diffusion models in these approaches. Future work will in-

vestigate other image generation methods that have simi-

lar preservation properties to the Blended Latent Diffusion

whilst producing more vivid background.

To further confirm the above result, we present the per-

centage of images produced by SD Inpainting and BLD re-

tained after applying our SafeSea filter. Results in Table 4

suggest that SD Inpainting produces much lower quality

than BLD as significant amount of images are filtered.

SS1 SS2 SS3 SS4

Generated 2,336 25,114 65,275 4,275

Filtered 2,087 19,390 45,066 3,151

Table 3. Number of images generated before and after applying

object preservation checker. 97,000 images are generated from

300 sourced images and then filter out the ones that do not retain

any object.

6.2. Applying YoloV5 on the SafeSea dataset

We employed the SafeSea dataset for assessing a pre-trained

YoloV5 object detection model’s ability in detecting ’boat’

objects across various Sea State levels.

Original Edited

Original Edited

Figure 5. Example of good edited images using Blended Latent

Diffusion. The image’s sea background is edited while the objects

are preserved.

Sea State Level 1 Sea State Level 2

Sea State Level 3 Sea State Level 4

Figure 6. Examples of edited images belong to different classified

sea state levels. The Sea State level information is provided to

these images after the editing process. The sea surface becomes

more dynamic with waves and whitecaps as the Sea State Level

increases.

6.2.1 Experiment setup

We run the YoloV5 with default parameters on the SafeSea

dataset images. the Mean Average Precision (mAP) for the
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SD Inpainting [27] BLD [1]

Image passing rate (in %) 8.16% 71.85%

Table 4. Comparison between SD Inpainting and BLD when we

apply our SafeSea filters. The Image passing rate computes the

percentage of images passed by our filters. High passing rate sug-

gests better quality images according to our filters.

four sea state level is then calculated.

6.2.2 Results

Figure 7 presents the result. Notably, there is a noticeable

decrease in mAP values from Sea State 1 to Sea State 4,

both for IoU of 0.5 and the range of 0.5 to 0.95.

Given that the Sea State Level background is not entirely

controlled within the transformation process, the distribu-

tion of images among the sea state categories is determined

by the Sea State Classifier. The results indicate a signif-

icantly higher number of images classified as Sea State 3

of 45,066; while Sea State 1 comprises the lowest number

with 2,087 images. It is important to note that each image

originally contains a varying number of objects, both before

and after the editing process. Additionally, object size plays

a considerable role in the editing process; we have observed

that larger objects tend to be better preserved in comparison

to smaller ones. This, in turn, has a direct impact on the ob-

ject detection confidence scores, which subsequently affect

the mAP scores. In general, we observe that the pre-trained

model tends to be more struggle when detecting objects in

images classified with higher sea state levels. However, it

is crucial to acknowledge that several other factors also in-

fluence the results, such as the number of objects being pre-

served and the sizes of the original objects.
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Figure 7. mAP Comparison for Different Sea State Levels. It

shows that the mAP values decrease from Sea State 1 to Sea State

4 for both IoU of 0.5 and from 0.5 to 0.95.

7. Conclusion

In this work, we introduce SafeSea, a proof-of-concept for

generating synthetic maritime images by modifying real im-

ages, where the original sea background is transformed to

simulate various sea surface conditions, corresponding to

different Sea States. Our method capitalizes on the capa-

bilities of Blended Latent Diffusion [1] to manipulate im-

ages. Subsequently, these modified images are categorized

into distinct Sea State Levels, ranging from 1 to 4. More-

over, the original objects within these images are scruti-

nized to ensure their preservation throughout the editing

process. Employing this technique, we have created the

SafeSea dataset, which includes maritime images featuring

marine objects set against diverse Sea State backgrounds by

utilizing the ’SeaDroneSea’ dataset [34]. Additionally, we

have observed that stormy sea backgrounds can impact the

performance of the YoloV5 object detection model.

8. Limitation and Future Work

The current SeaSafe method, as proposed, exhibits certain

limitations that necessitate attention in our future work. Pri-

marily, it lacks control over the generated sea background

during the editing process, limiting the diversity of realistic

backgrounds. Furthermore, the diffusion model employed

by BLD [1] has constraints in generating realistic wave and

whitecap patterns. Additionally, smaller objects such as

swimmers are ignored in the image quality evaluation. Our

forthcoming efforts will concentrate on optimizing the im-

age editing process to elevate the overall quality of gener-

ated images. Exploring alternative image editing methods

is also on the agenda to enhance the image generation mod-

ule. Additionally, addressing the control over the insertion

of irrelevant objects during editing is crucial, as it can sig-

nificantly impact object detection models. Future work will

specifically tackle the introduction of unexpected objects,

mitigating their potential impact on object detection mod-

els. Simultaneously, improvements are planned for both the

Sea State Classifier and Object Detection Checker to ele-

vate their performance. Furthermore, we aim to implement

an additional filter to exclude generated images that do not

align with the desired Sea State Level criteria. These en-

hancements collectively constitute our roadmap for refining

the SeaSafe method in subsequent stages of development.

Future work will also delve into the scalability of SafeSea

on larger datasets and in real-world scenarios beyond the

SeaDronesSee dataset with the exploration of how the ob-

ject detector performs against the unedited SeaDronesSee

dataset.
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[26] Ricardo Ribeiro, Gonçalo Cruz, Jorge Matos, and Alexandre

Bernardino. A data set for airborne maritime surveillance

environments. IEEE Transactions on Circuits and Systems

for Video Technology, 2019. 3
[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image syn-

thesis with latent diffusion models. In CVPR, 2022. 1, 2, 3,

6, 8
[28] Zhenfeng Shao, Wenjing Wu, Zhongyuan Wang, Wan Du,

and Chengyuan Li. Seaships: A large-scale precisely anno-

tated dataset for ship detection. IEEE Transactions on Mul-

timedia, 2018. 3
[29] Joonghyuk Shin, Minguk Kang, and Jaesik Park. Fill-up:

Balancing long-tailed data with generative models, 2023. 3
[30] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,

and Surya Ganguli. Deep unsupervised learning using

nonequilibrium thermodynamics. In ICML. PMLR, 2015.

2
[31] Michael Tipton, Elizabeth McCormack, Graham Elliott,

Monica Cisternelli, Arthur Allen, and Arden C. Turner. Sur-

vival time and search time in water: Past, present and future.

Journal of Thermal Biology, 2022. 1
[32] Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan

Salakhutdinov. Effective data augmentation with diffusion

models. ArXiv, 2023. 3
[33] Muhammad Umair, Manzoor Ahmed Hashmani, Syed Saj-

jad Hussain Rizvi, Hasmi Taib, Mohd Nasir Abdullah, and

Mehak Maqbool Memon. A novel deep learning model for

sea state classification using visual-range sea images. Sym-

metry, 2022. 5
[34] Leon Amadeus Varga, Benjamin Kiefer, Martin Messmer,

and Andreas Zell. Seadronessee: A maritime benchmark for

detecting humans in open water. In WACV, 2022. 2, 3, 5, 8
[35] Mabel M. Zhang, Jean Choi, Kostas Daniilidis, Michael T.

Wolf, and Christopher Kanan. Vais: A dataset for recogniz-

ing maritime imagery in the visible and infrared spectrums.

In CVPRW, 2015. 3

829

https://www.epa.gov/climate-indicators/weather-climate
https://www.epa.gov/climate-indicators/weather-climate
 https://universe.roboflow.com/ntnu-2wibj/seadronessee-odv2-rebalanced-2x2-train-val-1x1-test 
 https://universe.roboflow.com/ntnu-2wibj/seadronessee-odv2-rebalanced-2x2-train-val-1x1-test 
 https://universe.roboflow.com/ntnu-2wibj/seadronessee-odv2-rebalanced-2x2-train-val-1x1-test 

	. Introduction
	. Related Works
	. Problem Definition
	. Proposed SafeSea method
	. Image Generation Module
	. Sea State Classifier
	. Object Preservation

	. SafeSea dataset
	. Experiment
	. SafeSea method evaluation
	Experiment setup
	Results

	. Applying YoloV5 on the SafeSea dataset
	Experiment setup
	Results


	. Conclusion
	. Limitation and Future Work
	. Acknowledgement

