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Abstract

Skeleton-based action recognition is a prominent research
area that provides a concise representation of human mo-
tion. However, real-world scenarios pose challenges to the
reliability of human pose estimation, which is fundamen-
tal to such recognition. The existing literature mainly fo-
cuses on laboratory experiments with near-perfect skeletons,
and fails to address the complexities of the real world. To
address this, we propose simple yet highly effective data
augmentation techniques based on the observation of erro-
neous human pose estimation, which enhance state-of-the-
art methods for real-world skeleton-based action recogni-
tion. These techniques yield significant improvements (up to
+4.63 accuracy) on the widely used UAV Human Dataset,
a benchmark for evaluating real-world action recognition.
Experimental results demonstrate the effectiveness of our
augmentation techniques in compensating for erroneous
and noisy pose estimation, leading to significant improve-
ments in action recognition accuracy. By bridging the gap
between laboratory experiments and real-world scenarios,
our work paves the way for more reliable and practical
skeleton-based action recognition systems. To facilitate re-
producibility and further development, the Skelbumenta-
tions library is released at https://github.com/
MickaelCormier/Skelbumentations. This library
provides the code implementation of our augmentation tech-
niques, enabling researchers and practitioners to easily aug-
ment skeleton sequences and improve the performance of
skeleton-based action recognition models in real-world ap-
plications.

1. Introduction

Action recognition is the process of classifying differ-
ent actions in videos and is used in various applications
such as human-computer interaction and surveillance. Deep
learning techniques have led to the development of differ-
ent methods for action recognition, including RGB-based

Figure 1. Realistic data augmentation – Illustration of augmented
skeleton sequences. A skeleton sequence is shown as ground truth in
a) where all keypoints of the skeletons are perfectly placed for each
frame. Missing keypoints due to low-confidence are represented in
b) where body parts such as a leg or an arm are missing on single
frames. The case of a person totally occluded for a few seconds
is shown in c), where a block of skeletons is missing for several
frames. The case of mirror swapping for which keypoints detector
fails to correctly differentiate between left and right is shown in d).

and skeleton-based approaches. However, RGB-based meth-
ods are sensitive to environmental factors like background
color, lighting conditions, and clothing, which can result
in recognition errors. In contrast, skeleton-based methods
have gained popularity due to their resilience to these factors.
These methods analyze the 2D or 3D coordinates of major
human joints over time to accurately recognize actions.

However, in real-world scenarios, human pose estima-
tion, which is essential for skeleton-based action recognition,
faces significant challenges due to environmental factors
and noise. Existing literature primarily focuses on labora-
tory experiments with near-perfect skeletons, neglecting the
complexities of real-world conditions. This creates a gap
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between high recognition rates in controlled environments
and lower rates in more challenging datasets.

There are several challenges in skeleton-based action
recognition. Missing detections during tracking can be ad-
dressed through interpolation, but this can lead to impre-
cise bounding boxes and inaccurate pose estimations. Frag-
mented tracks, where the subject disappears or is occluded
for a significant duration, require zero-padding to maintain
a fixed track length. Additionally, applying Human Pose
Estimation models on a single-frame basis may introduce
artifacts like jittering, random keypoints or sudden body part
swaps. Furthermore, in real-world scenarios, when applying
a confidence threshold to the keypoints detector, keypoints
with low confidence are often missing. Finally, the use of tem-
poral upsampling in order to improve the speed of processing
and consistency over time may also produce interpolation
artifacts if the chosen key frames are erroneous.

To address these limitations and enhance the reliability
of skeleton-based action recognition models in the presence
of environmental noise, we propose dedicated augmentation
techniques. These techniques aim to improve the robust-
ness of skeleton-based action recognition models by miti-
gating the impact of environmental factors and artifacts that
arise throughout the action recognition pipeline. Since this
pipeline is required to operate in real-time while deliver-
ing reliable predictions, the use of lightweight models is an
imperative. Thus the use of larger models for Human Pose
Estimation or larger and more complex Graph Convolutional
Networks (GCNs) do not present a realistic option. In this
case we chose a data-driven solution in augmenting the train-
ing with multiple example of realistic noise sources. Specifi-
cally, as illustrated in Fig. 1 we propose data-augmentation
techniques for modelling keypoints as well as body parts
occlusion in the case of body parts not being visible as well
as for the case of missing keypoints due to low confidence.
We use frame occlusion for cases of a person occlusion for
several seconds. We also cover the case a keypoints detector
failing to correctly identifying left and right by modelling
keypoints mirroring and swapping. Furthermore, we simu-
late noise generated by temporal upsampling.

We conduct extensive experiments on both sets of the
UAV-Human action recognition dataset [23] and additionaly
validate our results on the JHMDB dataset [17]. Our main
contribution are summarized as follows:

• We propose realistic data augmentation techniques en-
hancing skeleton-based action recognition human ac-
tion recognition in real-world scenarios with noisy
skeleton input.

• We release Skelbumentation, a library with the imple-
mentation of our augmentation techniques, to easily
augment skeleton sequences and improve the perfor-
mance of skeleton-based action recognition models in

real-world applications.

• All state-of-the-arts methods trained with our method
on both benchmarks for skeleton-based action recogni-
tion largely outperform their baseline.

2. Related Work

2.1. Skeleton-based Action Recognition

There is a long series of works in action recognition from
videos using deep learning, starting from [36] which relied
on RGB and optical flow, leading to several improvements
using spatio-temporal representations [7, 14, 19, 35, 44, 45,
47, 51] and better performance in standard action recogni-
tion benchmarks. However, RGB and flow-based models
are often biased [24, 25, 46] and challenging for real-world
scenarios in term of privacy. Using an abstract representation
of a person through a sequence of skeletons solves most
privacy issues and offers through its representation of human
joints and motions is less susceptible to dataset biases. The
use of skeleton features was thus early recognized as an effi-
cient alternative for action recognition [17] and also recently
for salient behavior recognition [15]. Nowadays, with the
fast developement of deep learning for human pose estima-
tion, the extraction of skeletons from in-the-wild videos for
skeleton-based action recognition have made tremendous
progess [3, 6, 10, 21, 26, 43, 48, 50] and offer different strate-
gies from bottom-up models extracting multiple poses at
the same time [3, 6, 21] to top-down models relying on the
performance of person detectors [10, 26, 43, 48, 50]. How-
ever [8] highlights the important challenges faced by pose
detector in real world surveillance scenarios and show that it
is currently almost impossible in such scenarios to obtain a
skeleton quality similar as dataset collected in cooperative
situations.

2.2. Datasets

The NTU RGB+D Dataset [28, 32], is probably one of
the most popular example of large-scale dataset for action
recognition recorded in laboratory. It consists of RGB and
depth videos capturing various actions performed by multi-
ple subjects in different environments. The dataset provides
synchronized RGB and depth modalities, along with annota-
tions of 3D skeletal joint positions for each action sequence.
The dataset is divided into cross-subject (CS) and cross-view
(CV) splits to evaluate generalization abilities across subjects
and camera views, respectively.

Skeletics 152 [16] is a large dataset which aims at
benchmarking skeleton based human action recognition
in-the-wild. It is based on the much larger Kinetics-700
dataset [4, 20] composed of youtube videos of 700 actions.
Skeletics 152 provides a total of 152 curated actions with
3D skeletons estimated from RGB Videos. Posetics [49]
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is a similar dataset build from Kinectics-400 [20] with re-
fined and filtered poses in 2D and 3D. This dataset is used
for large-scale pre-training real-world skeleton-based action
recognition.

Recent datasets tackle the challenge of real-world sce-
narios for surveillance and autonomous robots. The JRDB
dataset [12, 30, 41] is a large-scale benchmark for egocentric
robot visual perception captured on an university campus.
It provides annotations for spation-temporal action, social
group and activity detection as well as for multi-person pose
estimation and tracking in challenging crowded indoor and
outdoor locations. The Human in Events dataset [27] is a
large-scale dataset for understanding human motions, poses
and actions in complex and realistic events. The dataset
is manually annotated and covers a wide range of human-
centric annotations including tracking, pose estimation and
action recognition and focuses on challenging scenes which
are crowded and complex.

2.3. Graph Convolutional Neural Networks

The majority of these skeleton-based action recognition
datasets is dominated by GCNNs which contributed an im-
portant performance boost [5, 29, 33, 34, 40]. Most of these
approaches profit from an improved representation of skele-
ton toplogy to process long-rang dependencies.

The 2s-AGCN [33] introduced an adaptive graph convo-
lutional network that utilizes self-attention to dynamically
learn the graph topology, resulting in improved action recog-
nition performance. Building upon this, the MS-AAGCN
[34] extended the approach by incorporating multi-stream
adaptive graph convolutional networks with attention mod-
ules and a 4-stream ensemble based on 2s-AGCN [33]. These
methods primarily focus on spatial modeling of actions. In
contrast, the MS-G3D Net [29] proposed a unified approach
for capturing complex joint correlations across both spatial
and temporal dimensions. A Channel-wise Topology Re-
finement Graph Convolution (ctr-gcn) is introduced in [5]
with a depth-wise and dynamic graph convolution approach.
Their model learns a channel-shared topology during train-
ing, which models the generic correlations of the joints. The
novelty of their approach is that this topology gets refined
with a dynamic channel-wise topology. The channel-wise
topology is dynamically inferred for every sample, and mod-
els subtle correlations between keypoints within certain chan-
nels. For temporal modeling, four parallel branches of con-
volutions with different kernel sizes and dilation are used
to model different temporal scales. Trivedi et al. [40] intro-
duced in psumnet a unified modality part-based streaming
approach, which makes use of four different skeleton modal-
ities: joint, bone, joint-velocity and bone-velocity. Instead of
having an own stream for each modality, they are concate-
nated on the channel dimension, resulting in input data with
12 channels for three-dimensional coordinates. This way,

unified modality streams are also able to model correlations
across different modalities.

3. Method

3.1. Challenges in Real-World Surveillance

Skeleton-based action recognition datasets are mostly col-
lected in the laboratory in a controlled environment with
near-perfect skeletons as input [11,28,32,42]. Unfortunately,
when the task is transferred to the real world, for example,
in the area of surveillance using either UAV or static cam-
eras, there are many challenges whether indoors or outdoors
regarding generalization [9, 38]. In this context, pose estima-
tors face important challenges [8], which can also be felt in
more realistic AR datasets, as shown in Fig. 2.

Typically, the input to a skeleton-based action recognition
model is a sequence of 2D skeletons generated by a detector,
a tracker, and a top-down pose estimator. Since models for
human pose estimation are very time-consuming, temporal
upsampling with either interpolation or models can be used
additionally [18, 52]. However, temporal upsampling can
also introduce artifacts or amplify existing artifacts.

There are various types of errors that can occur in skele-
ton input. For example, imprecise person recognition may
cut a person, resulting in missing body parts. A person may
be missed, i.e. not recognized, or incorrectly tracked, result-
ing in repeated identity changes. In the wild, people are often
partially or completely obscured by objects or other people.
In such cases, the temporal upsampler may produce interpo-
lation artifacts that let the movement appear less natural or
realistic. In addition, individual keypoints may be swapped,
or the pose estimator may even incorrectly infer the right
and left sides of body parts.

Despite numerous inaccuracies and errors, this type of in-
put is fed to action recognition models and is often expected
to yield reliable results. However, state-of-the-art models in
the literature are not at all prepared for this kind of data, and
few works actually propose strategies to deal with it. In this
work, we propose several data augmentation techniques for
skeleton-based action recognition to remedy this situation.

3.2. Data Augmentation

We propose various augmentation techniques specifically
for skeleton sequences. The idea of these augmentations
is to introduce errors into the training data that the model
may encounter in real-world applications. On the one hand,
these augmentations aim to increase the robustness of the
model to these errors. On the other hand, the augmentations
should help against overfitting and improve generalization.
In the following, several intuitive augmentation techniques
are introduced and combined.
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Figure 2. Wrong skeleton annotation in UAVHuman [23] – From left to right: a hand keypoint is placed in the air while the hand is on the
body of the person; the knee and feet of the person are placed between his legs while the right hand is placed on the left; the predictor seems
to detect the head of the person on the backpack; two persons are merged into a single skeleton; a skeleton is attached to one side of the
person.

3.2.1 Occlusions

As previously proposed by Angelini et al. [1], the training
data can be augmented by adding artificial occlusions to the
skeleton sequences. However, instead of randomly occluding
the same keypoints throughout a sequence, this work aims at
an approach that better reflects the occlusions encountered in
real-world scenarios. Inspired by Song et al. [37], multiple
occlusion cases are used to augment the data. In contrast,
the cases in this work are not mutually exclusive, but are ap-
plied simultaneously. While a pose-aware data augmentation
method is proposed in [31], which is composed of a random
global jitter on the whole skeleton followed by part-based
local jitter and add noise to the training data, we aim to learn
different invariances.

Instead of occluding selected keypoints throughout the
entire sample, the approach of this work is to occlude the
keypoints on a randomly selected subsequence only. This ap-
proach is closer to mimic real-world situations, as keypoints
do not have to be occluded through the entire sequence. The
minimum duration of artificial occlusions introduced into
the sequence is selected to be 25 frames. This choice is
based on the fact that short-time occlusions in the keypoint
sequence can be reasonably reconstructed using interpola-
tion [1]. As in previous works, occluded joints will be set to
the origin [37].

The following occlusion augmentation cases are applied
on a random subsequence with a random length between 25
and 100 frames:

1. Frame Occlusions: All keypoints in the subsequence
are set to zero as in Algorithm 1. This simulates the
loss of certain keyframes.

2. Random body part occlusions: Four groups of keypoints
are created: left leg, right leg, left arm, and right arm.
One of these body parts is then randomly selected and
the keypoints of the selected body part are set to zero
in the subsequence as in Algorithm 2. Since occlusions
usually occur in a local area and not over the entire

skeleton, this case aims to simulate this with the help
of the body parts.

3. Random Keypoints Occlusion: Random keypoints ac-
cording to B(p) are selected to be occluded in the sub-
sequence as shown in Algorithm 3.

Algorithm 1: Frame Occlusions

Input: The skeleton sequence P ∈ RC×T×V with C
channels, T frames and V keypoints

1 size← Random integer in [25, 100]
2 start← Random integer in [1, T − size]
3 end← start + size
4 for i ∈ [start, end) ⊆ N do
5 P [:, i, :]← 0
6 return P

Algorithm 2: Random Body Part Occlusions

Input: The skeleton sequence P ∈ RC×T×V with C
channels, T frames and V keypoints, body
parts B

1 size← Random integer in [25, 100]
2 start← Random integer in [1, T − size]
3 end← start + size
4 part← Choose random b ∈ B
5 for i ∈ [start, end) ⊆ N do
6 for j ∈ part do
7 P [:, i, j]← 0

8 return P

In summary, three occlusion cases are constructed: Frame
Occlusions, Body Part Occlusions, and Random Occlusions.
Each of these cases can be assigned a probability, which
determines how likely the given case is to be applied to the
current skeleton sequence sample. When multiple cases are
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Algorithm 3: Random Keypoint Occlusions

Input: The skeleton sequence P ∈ RC×T×V with C
channels, T frames and V keypoints, keypoint
occlusion probability w

1 size← Random integer in [25, 100]
2 start← Random integer in [1, T − size]
3 end← start + size
4 for j ∈ [1, V ] ⊆ N do
5 chance← Random in [0, 1) ⊂ R
6 if chance < w then
7 for i ∈ [start, end) ⊆ N do
8 P [:, i, j]← 0

9 return P

applied simultaneously, each case is applied to its indepen-
dently selected subsequence.

3.2.2 Interpolation

Short-term occlusions can be reasonably reconstructed using
a simple interpolation [1]. However, this interpolation is not
able to reconstruct the missing data exactly and differs from
the original data. The idea in this section is to use short-term
occlusion interpolation as another data augmentation strat-
egy. On the one hand, the interpolation of short occlusions
increases the data variety, and on the other hand, it aims to
improve the robustness of the model to these interpolations.
For each sample, two subsequences between 3 and 27 frames
in length are randomly selected. The first and last frames
are used for interpolation, while the rest of the inner frames
are occluded. In the first subsequence, the entire skeleton
is occluded, and in the second subsequence, only a random
body part is occluded. The motivation here is that occlusions
and their potential erroneous interpolation are not likely to
occur on the entire skeleton, but only on parts of it. The
body parts used are: left leg, right leg, left arm, right arm,
and back. The occluded keypoints are then reconstructed by
linear interpolation between the two outer frames (Algo. 4).

3.2.3 Keypoint swapping

Since most human pose estimation models provide predic-
tions from a single image section, they may confuse key-
points with each other. To provide some robustness, we pro-
pose a simple augmentation case that aims to artificially
reproduce this effect by randomly swapping two keypoints.

Based on this simple idea, this perturbation can be used
for further data augmentation techniques. Here we propose
another case in Algorithm 5 that is often encountered in real-
world scenarios: randomly swapping all keypoints of legs or
arms, e.g. mirroring the body parts.

Algorithm 4: Interpolation for COCO Topology

Input: The skeleton sequence P ∈ RC×T×V with C
channels, T frames and V keypoints, body
parts B

B = {{5, 7, 9}, {6, 8, 10}, {6, 8, 10}, {11, 13, 15},
{12, 14, 16}, {5, 6, 11, 12}}

1 // Interpolate entire skeleton
2 size← Random integer in [3, 27]
3 start← Random integer in [1, T − size]
4 end← start + size
5 for i ∈ [start, end) ⊆ N do
6 weight← i−start

size
7 P [:, i, :]← P [:, start, :] ∗ (1− weight) + P [:

, end, :] ∗ weight
8 // Interpolate only one body part
9 size← Random integer in [3, 27]

10 start← Random integer in [1, T − size]
11 end← start + size
12 part← Choose random b ∈ B
13 for i ∈ [start, end) ⊆ N do
14 for j ∈ part do
15 weight← i−start

size
16 P [:, i, j]← P [:, start, j]∗(1−weight)+P [:

, end, j] ∗ weight
17 return P

3.3. Skelbumentations

For implementation and further study of useful skeleton-
based data augmentation techniques, we develop a Python
library called Skelbumentations for skeleton sequence aug-
mentation. Its principle is based on the popular image aug-
mentation library Albumentations [2]. While Albumenta-
tions also offers the possibility to augment keypoints in ad-
dition to images, the operations are limited to image-related
tasks such as cropping and blurring the image. Furthermore,
Albumentations does not support the ability to augment se-
quences of images with keypoints. Therefore, we borrow
concepts such as select and compose functions and imple-
ment our augmentation cases. To apply an operation to only a
part of the skeleton sequence, different select operations can
be used. An example of the simplicity of the augmentation
pipeline is shown in Listing 1.

Behind the scenes, Skelbumentations keeps track of oc-
cluded keypoints with an invalid map. This invalid map can
also be passed to the pipeline before augmentation in case
the data already contains some occluded keypoints. By keep-
ing track of occluded keypoints, Skelbumentations can block
perturbations from changing occluded keypoints or ignore
them when calculating keypoint velocities for high motion
selection. The setting of occluded keypoints to the origin
is done at the end of the pipeline and can be turned off. In
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Figure 3. Augmentation pipeline overview – Schematic illustration of our agumentation pipeline. First a random block of 25 to 100 Frames
is set as occluded. Then the interpolation augmentation is applied: first a block of whole frames is deleted and reconstructed by interpolation,
second the same procedure is repeated on an other random block, this time only for a single body part. Then random keypoints are swapped
for random frames in the sequence. Finally, for small random blocks of frames, mirror augmentation is applied.

Algorithm 5: Mirror keypoints

Input: The skeleton sequence P ∈ RC×T×V with C
channels, T frames and V keypoints, opposite
keypoints O

Coco:
Olegs = {(11, 12), (13, 14), (15, 16)}, Oarms =
{(5, 6), (7, 8), (9, 10)}

1 size← Random integer in [1, 4]
2 start← Random integer in [1, T − size]
3 end← start + size
4 for i ∈ [start, end) ⊆ N do
5 for (v1, v2) ∈ Olegs do
6 temp← P [:, i, v1]
7 P [:, i, v1]← P [:, i, v2]
8 P [:, i, v2]← temp
9 size← Random integer in [1, 4]

10 start← Random integer in [1, T − size]
11 end← start + size
12 for i ∈ [start, end) ⊆ N do
13 for (v1, v2) ∈ Oarms do
14 temp← P [:, i, v1]
15 P [:, i, v1]← P [:, i, v2]
16 P [:, i, v2]← temp

this case, the user can decide how to deal with occluded
keypoints using the invalid map, which is also returned by
Skelbumentations next to the keypoints.

Finally, a possible augmentation pipeline combining the
different techniques is illustrated in Fig. 3. First, occlusion
and interpolation of a random body part and entire frames are
performed, then swap and mirror augmentation are applied.
The code of the library will be released upon publication on
Github.

1 import skelbumentations as S
2

3 pipeline = S.Compose([
4

5 # Frame Occlusion
6 S.SelectRandomFrames([
7 S.WholeOcclusion()
8 ], min_num=25, max_num=100),
9

10 # Interpolation
11 S.SelectRandomWithBorder([
12 S.OneOf([
13 S.SpecificOcclusion(arm_left),
14 S.SpecificOcclusion(arm_right),
15 # [...]
16 ])
17 ],[
18 S.InterpolateOcclusions()
19 ], min_num=1, max_num=25,),
20 S.SelectRandomWithBorder([
21 S.WholeOcclusion()
22 ],[
23 S.InterpolateOcclusions()
24 ], min_num=1, max_num=25),
25

26 # Swapping
27 S.SelectRandomFrames([
28 S.SwapPerturbation()
29 ], contiguous=False, p=0.8, min_num=1,

max_num=30),
30 # [ ... ]
31

32 # Mirroring
33 S.SelectRandomFrames([
34 S.MirrorPerturbation(opposite_points=

opposite_legs)
35 ], p=0.8, min_num=1, max_num=4),
36 # [...]
37 ])

Listing 1. An Augmentation pipeline of frame occlusions created
with Skelbumentations. Every pipeline starts with the Compose
class. In this pipeline a randomly positioned frame block of
randomly 25 to 100 frames is selected and occluded of the skeleton
sequence. Aftwerward interpolation swapping and mirroring
augmentation are applied.
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4. Experiments
4.1. Datasets and Experimental Settings

UAV-Human is a large-scale benchmark for UAV-based
human behavior understanding. It contains 67,428 annotated
video sequences with 155 action classes, 20 of which are
gestures used to control the unmanned aerial vehicle. The
videos were recorded during both day and night, indoors
and outdoors. Unlike other datasets that were captured with
fixed ground cameras, UAV-Human was captured with a
flying drone at different speeds, altitudes, and trajectories. In
addition to RGB video, other data modalities were collected
such as night vision video, infrared sequences, and depth
maps. 2D skeletons obtained with the RMPE pose estimator
[13] are also provided. This is currently the largest dataset
for action recognition with UAVs [23].

We implement the baselines using the PyTorch deep learn-
ing framework. All experiments are run on a single GPU,
either an RTX 3090, A6000, or RTX Quadro 6000 GPU,
depending on availability. The Stochastic Gradient Descent
(SGD) optimizer is used with 0.9 momentum and 0.0005
weight decay for model training. The initial learning rate is
set to 0.1 and decreases by a factor of 0.5 after a plateau. We
train all models with 300 epochs and select the best perfor-
mance. We use the 2D skeletons provided by the dataset and
convert them to pseudo-3D with z = 0. All sequences are
resized to 300 frames. We use the default weighting of each
original method for the stream ensemble.

Similarly, we conduct experiments on the JHMDB
dataset [17] which is a subset of HMDB [22] with 928
short videos with 21 action classes. With around 40 frames
per video, all frames provide an approximative 2D skeleton
ground-truth annotated with a puppet model that is fitted to
the actor. In this case, we train the models on sequences of
40 frames for 600 epochs and adjusts the augmentations to
fit the shorter sequences.

4.2. Ablation Study

We perform ablation studies using 2s-agcn [33] and eval-
uate the different augmentations on the CSV1 benchmark
of the UAVHuman dataset to verify the effectiveness of our
proposed methods. The results of the ablation studies are
presented in Table 1. Empirical studies using Nesterov or
AdamW did not provide better results and are not listed here.

Since research has shown that using the Exponential Mov-
ing Average (EMA) of a model’s trainable parameters for
evaluation can significantly improve the results [38, 39], we
perform a first experiment with EMA. The results are im-
proved by +0.73% and +1.03% for each stream, respec-
tively, and by +0.41% to 44.16 for the ensemble. We then
apply the frame augmentation and show an improvement
for each stream of +1.49% and +1.31% respectively and
+1.40% to 45.55 for the ensemble. The interpolation aug-

Method Joints Acc (%) Bones Acc (%) 2-Streams Acc (%)

2s-agcn [33] 40.80 40.64 43.75
+ EMA 41.53(+0.73) 41.67(+1.03) 44.16(+0.41)
+ Frame Aug 43.02(+1.49) 42.98(+1.31) 45.55(+1.40)
+ Interpolation 42.73(−0.29) 43.90(+0.92) 45.55(+0.00)
+ Swap & Mirror 45.5(+2.77) 45.62(+1.72) 48.36(+2.81)

Table 1. UAVHuman CSv1 – Top-1 Accuracy. The proposed aug-
mentations applied to the baseline approach increase the perfor-
mance significantly.

Method CSv1 Acc (%) CSv2 Acc (%) Params (M) MACS

2s-agcn [33] 43.75 71.31 7.56 25.38
4s-agcn 44.97 72.57 − −
4s-ctr-gcn [5] 45.93 72.19 5.80 21.64
psumnet [40] 45.09 72.16 2.50 7.15

2s-agcn (ours) 48.36(+4.61) 73.53(+2.21) 7.56 25.38
4s-agcn (ours) 49.60(+4.63) 76.04(+3.47) − −
4s-ctr-gcn (ours) 50.09(+4.15) 76.47(+4.27) 5.80 21.64
psumnet (ours) 48.11(+3.02) 73.25(+1.09) 2.50 7.15

Table 2. Benchmarking GCN skeleton-based action recognition
algorithms on the UAVHuman benchmark. Inputs are 2D (zero-
padded to 3D) skeletons with 17 joints. We set the input length
to 300, input person number to 2, and apply all augmentations
introduced in Sec. 3.2.

mentation further improves the bone stream by +0.92%,
but the joint stream shows a loss of −0.29%. The ensemble
results remain unchanged. Finally, we apply the Swapping
and Mirroring augmentations, which provide another sig-
nificant improvement of +2.77% and +1.72%, respectively,
and +2.81% to 48.36 for the ensemble.

This is an impressive total improvement of +4.61% over
the baseline. This is probably mainly due to the rather poor
quality of the skeletons provided by the dataset. However,
such variable skeleton quality is a property of real-world
action recognition and thus needs to be accounted for.

4.3. Benchmarking GCN Algorithms

We compare four representative GCN approaches: 2s-
AGCN [33] and four stream variant for better comparibility,
ctr-gcn [5], and psumnet [40]. We report the top-1 accuracy
for the different methods with and without augmentations
for both the CSV1 and CSV2 benchmarks in Table 2. The
four methods show similiar improvement of more than +4%
for the former. For the latter 2s-agcn and psumnet show an
improvement of +2.21% and +1.09%respectively, while
4s-agcn and 4s-ctr-gcn show improvements of +3.47% and
+4.27% respectively. This is particularly noticeable, since
both these models perform well without augmentations and
seem to profite more from these.

Finally, we validate our observations with the 4s-agcn
model on the JHMDB dataset. The dataset is composed of
three splits which are then averaged. As shown in Table 3,
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Method Split1 Acc (%) Split2 Acc (%) Split3 Acc (%) Average Acc (%)

4s-agcn 76.87 71.11 74.72 74.23
4s-agcn (ours) 80.22(+3.35) 78.15(+7.04) 75.09(+0.37) 77.82(+3.59)

Table 3. Benchmarking 4s-agcn on the JHMDB benchmark.
Inputs are 2D (zero-padded to 3D) skeletons with 15 joints. We
set the input length to 40, input person number to 1, and apply
all augmentations introduced in Sec. 3.2 adapted to the sequence
length.

our augmentations also improve the baseline considerably. It
is to notice, that we did not search for optimal parameter for
neither dataset, thus the results may improve with optimized
hyperparameters.

While the proposed data augmentation pipeline provides
significant improvement, the overall results are still insuf-
ficient compared to the performance of GCNs on lab data.
Further work is needed on realistic uncontrolled scenarios.

5. Discussion of Potential Societal Implications
The field of skeleton-based action recognition, which in-

cludes human pose estimation as well as tracking, is related
to visual surveillance and has several potential applications
in real-world scenarios. Intended scenarios may include the
use of retrograde action systems by law enforcement to de-
tect violent crime. However, it is currently unclear how well
human pose estimation models discriminate between cloth-
ing and skin color in low-resolution surveillance images,
i.e., whether the model could provide less reliable skele-
tons leading to systematic misclassification. We believe that
mitigation strategies should include robustness against such
unreliable skeletons to reduce the impact of bias in datasets.

6. Conclusion
In this work, we have proposed Skelbumentations, a

Python library that allows data augmentation for skeletal
sequences. Furthermore, we propose several data augmenta-
tion techniques for skeleton-based action recognition. Our
experiments on the largest UAV action recognition dataset
show an impressive improvement over baselines without aug-
mentation. Based on the skeleton augmentation results, we
believe that the research community will develop new robust
models for real-world skeleton-based action recognition.
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