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Abstract

To ensure the security of airports, it is essential to pro-
tect the airside from unauthorized access. For this pur-
pose, security fences are commonly used, but they require
regular inspection to detect damages. However, due to the
growing shortage of human specialists and the large man-
ual effort, there is the need for automated methods. The
aim is to automatically inspect the fence for damage with
the help of an autonomous robot. In this work, we explore
object detection methods to address the fence inspection
task and localize various types of damages. In addition
to evaluating four State-of-the-Art (SOTA) object detection
models, we analyze the impact of several design criteria,
aiming at adapting to the task-specific challenges. This in-
cludes contrast adjustment, optimization of hyperparame-
ters, and utilization of modern backbones. The experimen-
tal results indicate that our optimized You Only Look Once
v5 (YOLOv5) model achieves the highest accuracy of the
four methods with an increase of 6.9% points in Average
Precision (AP) compared to the baseline. Moreover, we
show the real-time capability of the model. The trained
models are published on GitHub: https://github.com/N-
Friederich/airport fence inspection.

1. Introduction

In contemporary times, airplanes have assumed a cru-
cial role in global transportation. Ensuring the safety of
passengers, cargo, and machinery is of great importance.
This requires appropriate safety mechanisms, both onboard
the aircraft and within the airport infrastructure. Protecting
sensitive areas such as the airside is a major challenge for
airport operators. In Germany, for instance, there are over
540 airfields, out of which 15 are classified as international
airports according to § 27d Paragraph 1 Luftverkehrsgesetz

Figure 1. Examples of damaged security fences – The Bounding
Box (BBox) colors symbolize different types of damage: Green
marks a hole in the fence; Red marks damage to the climb-over-
protection.

(LuftVG) 1 [9]. To obtain this classification, airfields must
secure their sensitive areas, including the airside, against
unauthorized access by adhering to § 8 Luftsicherheitsge-
setz (LuftSiG)1. Appropriate security fences are a common
practice to protect these areas [10]. These fences must be
regularly checked for damage in accordance with § 8 and §
9 LuftSiG1. Even minor damage to the fence potentially al-
lows animals to enter the airfield and pose a danger to them-
selves, people, and machinery [10]. However, the availabil-
ity of skilled human personnel to perform fence inspections
is becoming increasingly limited [3]. Therefore, exploring
automated methods to monitor this real-world surveillance
application, such as utilizing mobile robots with cameras
for detecting damages, is highly valuable.

To implement such an automatic system, this work fo-
cuses on 2D object detection methods for three main rea-

1https://www.gesetze-im-internet.de/ (Gesetz im Netz - Federal Min-
istry of Justice), Date 01/09/2023
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sons. First, the existing literature offers numerous robust
methods to effectively tackle this task [5, 11, 17, 46]. Sec-
ond, using cheap camera sensors is adequate for capturing
the necessary imagery. Last, 2D image processing is com-
putationally less heavy compared to, e.g., processing 3D
data from a stereo camera.

In general, object detection methods aim at identifying
and localizing specific objects or patterns within an input
image. In the context of this work, our objective is to detect
two commonly occurring types of damages within fence im-
ages captured at airports using a self-recorded dataset. Two
examples of airport fences are presented in Fig. 1. There
is a wire mesh structure in the lower part as a passage bar-
rier and multiple rows of barbed wire in the upper part for
climbing-over protection. Damage can occur in both sec-
tions. However, damage detection needs a clear differenti-
ation between the fence and structures in the background.
Moderate contrast in many areas, such as with the trees
in the background, hardens the task. In addition, back-
ground clutter, e.g., leaves, further complicates the detec-
tion process, especially with the intricate wire mesh. To
overcome these challenges, various techniques, including
contrast adjustment, are examined throughout this work.
For this purpose, SOTA deep learning methods, namely
YOLOv5 [17], Task-aligned One-stage Object Detection
(TOOD) [11], VarifocalNet (VFNet) [46], and Deformable
DEtetction TRansformer (DETR) [51], are evaluated and
compared for their potential in addressing the detection
challenges associated with the security fence inspection
task. Ideally, the resulting detection system should work
autonomously on a mobile robot. However, this requires
the most economical operation possible with reliable dam-
age detection on affordable hardware. Therefore, we also
investigate the tradeoff between speed and accuracy.

In summary, the main contributions of this paper are
threefold:

• We conduct the first analysis of SOTA object detection
methods for the security fence inspection use case.

• Our thorough evaluation of various design choices
highlights key factors for strong damage detection re-
sults.

• The resulting real-time model demonstrates remark-
able performance and generalization ability and, thus,
provides a strong baseline for future research.

2. Related Work
The automated damage detection at airport fences re-

quires Computer Vision (CV) algorithms [12]. In this use
case, a simple image classification approach would be in-
sufficient, resulting in a time-consuming search game for
human operators. On the other hand, precise segmenta-
tion is not required for this task, as it does not demand de-

tailed segmentation of each object instance wire. In addi-
tion, creating segmentation labels for intricate objects such
as the wire mesh structure by human annotators would be
both time-consuming and costly [21]. Therefore, object
detection is utilized as a compromise between classifica-
tion and segmentation. For the purpose of object detection,
Deep Learning (DL) methods have gained prominence over
classical CV methods due to hierarchical feature extrac-
tion, higher accuracy, and improved generalization capabili-
ties [16,27,29,37]. For object detection methods, a differen-
tiation can be made between anchor-based and anchor-free
methods. Whereas anchor-based methods often converge
faster, anchor-free methods require fewer hyperparameters
and may have stronger generalization capabilities. Whether
this is true in the context of this thesis is evaluated using the
anchor-based method YOLOv5 and the anchor-free meth-
ods TOOD, VFNet and Deformable DETR.

Regardless of the model type, DL models often en-
counter issues with overfitting, particularly when dealing
with small datasets. To mitigate this issue, pre-trained mod-
els are commonly employed. Since no pre-trained model
tailored explicitly for the use case has been published, a de-
fault pre-trained model is utilized, such as those trained on
the Common Objects in Contexts (COCO) dataset [22, 40].
Furthermore, to the best of our knowledge, no appropri-
ate datasets for security fence inspection have been pub-
lished. Although there are related use cases, such as de-
fencing [14, 18, 26], these datasets consist of images taken
in closer proximity and different spatial contexts [14].

3. Methodology
This paper thoroughly examines the use of SOTA DL

methods with different characteristics regarding their suit-
ability for the damage detection task and derives best prac-
tices concerning design criteria. In detail, YOLOv5 [17],
TOOD [11], VFNet [46], and Deformable DETR [51] are
considered. After motivating these choices in Sec. 3.1, sev-
eral adaptions are introduced to increase the detection per-
formance for the task under real-world conditions. The
overall goal is to identify the best design characteristics for
DL methods from a quantitative perspective and further in-
vestigate this method concerning the influence of input im-
age resolution to achieve a beneficial trade-off between de-
tection results and computational complexity.

3.1. Deep Learning Methods

Recently, numerous new DL methods have been in-
troduced [4, 6, 11, 17, 46, 51]. In terms of real-time ob-
ject detection, several derivatives of the YOLO approach
[20, 28, 34, 42] have proven suitable for various real-world
applications [43,48]. For instance, YOLOv5 achieves good
detection results at lower operational expenses. However,
YOLOv5 and its predecessors [1, 30, 31] are anchor-based,
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which may lead to limitations in generalization capabili-
ties [23]. Therefore, two anchor-free DL methods are in-
cluded in the analysis, namely TOOD [11] and VFNet [46].

All these three methods were developed as CNN-
based methods [11, 17, 46]. Since transformer-based mod-
els promise improved generalization capabilities [7], the
transformer-based Deformable DETR [51], a successor of
the popular Vision Transformer (ViT)-based DETR [4], is
investigated. However, Transformers, such as ViT, typically
require more training data than Convolutional Neural Net-
works (CNNs) [44]. Since the available data for the fence
inspection task is limited, further investigations need to be
conducted.

3.2. Optimizations

In this work, we thoroughly study various design param-
eters to improve damage detection in security fences under
real-world settings. In the following, the considered aspects
are motivated and introduced.
Numerical stability: When implementing DL methods,
numerical instabilities such as exploding gradients or zero
divisions may occur. These numerical instabilities can lead
to a degradation of the training results, which is why we
eliminate them to improve the meaningfulness of the exper-
iments. We contributed our code changes to the original
code repositories.
Regularization: Regularization of DL models is crucial for
preventing overfitting on small datasets with few Regions of
Interest (RoIs) per image. For this, primarily three adapta-
tions are investigated. First, the image weighting technique
from YOLOv5 is used to over-represent difficult training
examples. Due to the small training dataset, edge cases that
occur rarely may otherwise be covered by the background
noise of decent images. Second, optimizers with regular-
ization abilities like Adam [19] or AdamW [25] are investi-
gated. To prevent gradient oscillations but at the same time
allow for a steep gradient descent, the impact of learning
rate adjustments is explored.
Data augmentation: Data augmentation methods aim at
increasing the diversity in small-scale datasets to prevent
overfitting and improve robustness. Due to the small
amount of data with few damages each, the impact of data
augmentation methods like mosaic and affine transforma-
tions are investigated.
Contrast enhancement: Poor contrast, e.g., caused by low
light during dusk or dawn, presents a significant challenge
in detecting damages on airport fences. In such cases, the
fine structures of the fences do not stand out clearly against
the background. Pre-processing images with contrast en-
hancement methods prior to damage detection alleviates the
problem. Contrast adjustment can generally be executed
on the entire image or separately for multiple image re-
gions. We compare both global and local contrast enhance-

ment methods represented by Histogram equalization (His-
tEqu) [35, 36] and Contrast Limited Adaptive Histogram
Equalization (CLAHE) [52], respectively.
Backbone: While YOLOv5 utilizes a modern CSPDark-
net [38, 39] as backbone [17], TOOD and VFNet rely
on variants of the Residual Network (ResNet) [15] and
ResNeXt [41] architectures. However, more recent back-
bones such as Res2Net [13] or ConvNeXt [24] show bet-
ter performance in various tasks [47, 49]. Therefore, these
backbones are applied in conjunction with TOOD and
VFNet. Analogous to the original backbones, we pre-train
these backbones on the COCO dataset first.
Hyperparameter tuning: The choice of appropriate hy-
perparameters is essential to assure good performance, es-
pecially if few training data are available. In addition, the
fence inspection task requires strong generalization capa-
bilities. Due to the different conditions and demands, hy-
perparameters proposed by the original works might not be
optimal in damage detection. As a result, detailed studies
concerning the choice of hyperparameters are conducted.
Image resolution: When object detectors are deployed in
real-world applications, fast computation is crucial. For in-
stance, if the processing is performed on autonomous plat-
forms, such as robots. The inference speed of object detec-
tors is greatly affected by the resolution of the input images.
Higher-resolution images provide a more detailed context,
enabling improved detection of damages, while the compu-
tational complexity increases. Thus, achieving a suitable
trade-off between detection accuracy and computational re-
quirements is essential.

4. Experiments
For maximum reproducibility, the hardware and soft-

ware stack was kept constant during all experiments.
The official implementations of YOLOv5 (v6.2) [17] and
MMDetection (MMDet) (v2.25.1) [5] were used as the ba-
sis for our adaptions and experiments. The methods were
then executed using Nvidia’s A6000 GPU and Intel’s Xeon
Silver 4210R CPU.

4.1. Dataset & Evaluation Metrics

Since there is no publicly available dataset for the task,
a dataset of airport fence damages was created. There-
fore, video sequences of different sections were recorded
using two different camera models, namely a FLIR2 camera
model and Panasonic’s GH53. A total of 5 datasets were
recorded, 3 with the FLIR and 2 with the GH5 camera.
Then all images with damage were labeled, images without
damage were sorted out and were not considered further.
This results in 5 video sequences with an overall 475 video

2flir.eu, Date: 01/09/2023
3panasonic.com, Date: 01/09/2023
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Case Training Validation Test

1 FLIR FLIR FLIR
2 FLIR FLIR GH5
3 FLIR+GH5 FLIR+GH5 FLIR+GH5

Table 1. Dataset splits – Each investigation case specifies which
the datasets used for training, validation, and testing. Training and
evaluation are performed in each examination case according to
the LOOCV.

frames and 725 annotated damages, divided into 104 climb-
over defects and 621 holes. The images recorded with the
FLIR camera have a resolution of 1920 × 1200 and those
with the GH5 camera of 1920× 1080, respectively.

This work considers three different cases, each reflecting
another real-world scenario. The cases differ regarding the
training, validation, and testing data, as shown in Tab. 1.
Case 1 is the specialization case when training data from
the exact camera used in the application is available. Case 2
evaluates the generalization performance since training and
test data originate from different camera models with dis-
similar characteristics. In the last Case 3, data from both
camera models are used for all splits to evaluate the case
when diverse data is available for training.

To ensure meaningful evaluation results, Leave-One-Out
Cross-Validation (LOOCV) is performed in each of the
three study cases to compensate for the small size of the
dataset. In each split, another video sequence is leveraged
for training, resulting in 12 splits.

The COCO AP [22] serves as the primary metric for
both evaluation and validation. The results given represent
the average across all three cases and will be abbreviated as
Avg. AP in the following.

4.2. Baseline

Each method’s baseline is evaluated on the 12 Leave-
One-Out Cross-Validation (LOOCV) splits. For this pur-
pose, the original implementations of the methods were
slightly modified. For YOLOv5, only Pytorch’s recom-
mended measures for reproducibility4 were added. This en-
sures better comparability of experiments. Unfortunately,
this was impossible for the other three methods in MMDet
2.25.1. Nevertheless, to reduce the standard deviation be-
tween the training runs and to be able to make more mean-
ingful comparisons, three runs were performed for each
data split. For training, four changes were made to the origi-
nal configurations. First, the batch size was reduced from 32
to 8 to allow a training with faster gradient descent. Second,
to reduce the oscillation of the metrics validation curve dur-
ing training, the learning rate was reduced to 5e-2. Third,
the number of epochs had to be doubled for training con-
vergence. Fourth and last, FP16 built-in training for faster
training and lower memory consumption is used.

4pytorch.org, Date 01/09/2023

Method Backbone Avg. Case 2
AP AP

YOLOv5 [17]

n6 53.52±21 25.86±8
s6 55.33±21 27.42±7
m6 59.53±17 37.44±2
l6 61.37±15 41.84±4
x6 62.19±14 43.34±0

TOOD [11]
ResNet50 66.14±11 50.42±2
ResNet101 67.03±12 51.95±4
ResNeXt101-64x4d 67.10±12 50.84±2

VFNet [46]
ResNet50 65.64±14 47.22±3
ResNet101 65.78±13 47.86±2
ResNeXt101-64x4d 67.75±12 50.28±3

Def. DETR [51] ResNet50 61.13±14 42.11±5

Table 2. Baseline results – Different backbone configurations for
each method are compared. For TOOD and VFNet, all configs
use Deformable Convolutions (DConvs) [8,50] and Multi-Scaling
as additional data augmentation strategy. The best result for each
configuration is highlighted in bold.

For all models, pre-trained COCO models are utilized.
The models were then fine-tuned with the fence inspection
dataset, whereby the resolution was adjusted to 768 pixels
on the longest image side. Tab. 2 provides the baseline re-
sults of the four methods.

The results indicate that TOOD and VFNet provide the
best results with 67.10% and AP 67.75% AP . YOLOv5
achieves worse outcomes with 62.19% AP , though still sur-
passing Deformable DETR by 2.06% points. One reason
for the poor accuracy of Deformable DETR could be the
limited training data, a general problem with transformers.
Since the efficiency of Deformable DETR is significantly
worse than YOLOv5 due to its transformer-based construc-
tion, the Deformable DETR method is not considered fur-
ther in the remainder of this paper. One reason for the
poorer results of YOLOv5 is the subpar generalization ca-
pability. Comparing the results for Case 2 in Tab. 2, it is ap-
parent that the anchor-free TOOD and VFNet methods gen-
eralize remarkably stronger to unseen data. Whether this
weakness of YOLOv5 remains despite the optimizations in
the further chapters is investigated in Sec. 4.6.

4.3. Regularization

After training the baseline, optimizations are made
for the three remaining methods. We have adjusted the
YOLOv5 implementation to enable training with rectangu-
lar images training in conjunction with random shuffling
and mosaic data augmentation [17]. Furthermore, differ-
ent hyperparameter settings proved beneficial for the m6,
l6, and x6 variants of YOLOv5 to achieve better conver-
gence toward the global optimum and prevent overfitting.
On the one hand, the OneCycle learning rate [33] is in-
creased from 1e-4 to 1e-3 to enable faster convergence of
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Backbone Params FLOPs Avg.
(M) (B) AP

n6 3.2 4.7 60.71±18
s6 12.6 17 62.36±15
m6 35.7 50.3 64.68±14
l6 76.8 111.8 66.05±14
x6 140.7 210.5 64.85±14

Table 3. YOLOv5 baseline optimization results – The best result
is highlighted in bold.

Method Experiment Avg. Case 1 Case 2 Case 3
AP AP AP AP

YOLOv5 [17]
Regularization 66.05±14 73.45±4 47.74±4 76.97±2
CLAHE 66.22±14 73.87±3 47.28±1 77.51±2
HistEqu 67.16±14 75.46±4 48.88±2 77.14±2

TOOD [11]
Baseline 67.10±12 73.24±4 50.84±2 77.24±2
CLAHE 64.52±14 72.07±4 45.86±5 75.63±3
HistEqu 67.62±11 73.33±4 52.31±1 77.22±2

VFNet [46]
Baseline 67.75±12 74.14±2 50.87±3 78.25±2
CLAHE 65.14±15 72.97±3 44.54±3 77.91±2
HistEqu 67.49±13 73.73±2 50.40±3 78.36±2

Table 4. HistEqu and CLAHE results – Results obtained with
the best configuration of methods. The first line of each block
indicates the best experiments so far on the original dataset. For
comparison, the best results of YOLOv5 were taken from Sec. 4.3
and for TOOD and VFNet from Sec. 4.2. The best results for each
DL method are highlighted in bold.

the deeper models m6, l6 and x6 and better exploit the hill
climbing properties in gradient optimization. Second, more
data augmentation is employed for enhanced regularization.
For this, the percentage of image scaling is increased from
[−50%,+50%] to [−90%,+90%]. In addition, MixUp [45]
is applied with a probability of 10%. Regarding TOOD and
VFNet, no significant enhancements were observed.

The optimized YOLOv5 results are presented in Tab. 3.
The results significantly surpass the baseline results. This
is attributed to the increased diversity of data during train-
ing through Mosaic Data Augmentation and further regu-
larization against overfitting introduced by shuffling. In to-
tal, these adjustments resulted in an improvement of 3.86%
points in AP when comparing the best configurations.
However, the best model is not the largest x6, but l6. The
x6 model tends to overfit and performs notably worse with
64.85% AP . Even the increased data augmentation and ad-
ditional regularization cannot compensate for this. There-
fore, YOLOv5l6 is used as the best model in the following.

4.4. Contrast Adjustment

The two contrast adjustment methods CLAHE and His-
tEqu are compared in Tab. 4. The results indicate supe-
rior performance of the global method HistEqu regardless
of the detection approach. One reason for this could be
the over-adjustment of CLAHE in certain regions. Espe-
cially worse results concerning the generalization Case 2
support this hypothesis. Since GH5 images already show

(a) Original (b) CLAHE (c) HistEqu

Figure 2. CLAHE vs. HistEqu – CLAHE leads to over-
adjustments compared to HistEqu. Due to the good contrast in the
original image, the contrast is lowered by HistEqu. Nevertheless,
the holes are clearly recognizable. In contrast, CLAHE results in
too bright areas. Similar to dark areas, the fence structure is diffi-
cult to recognize.

good contrast, an additional contrast adjustment leads to
over-adjustment. Fig. 2 visualizes the differences between
both methods for an image captured by the GH5 camera.
The CLAHE method, as shown in Fig. 2b, clearly over-
adjusts, compared to HistEqu, which is depicted in Fig. 2c.
These overfits occur in areas with a high difference between
light and dark pixels, such as trees and the sky. This leads to
a very unnatural appearance of the image. As a result, parts
of the fence structure are hardly recognizable.

4.5. Hyperparameter Optimization

The hyperparameters are optimized using HistEqu pre-
processing. Analogous to regularization, the MMDet im-
plementation methods TOOD and VFNet provide no sig-
nificantly improved results. As a result, hyperparameter op-
timization focuses on YOLOv5. We found that choosing a
learning rate of 5e-3 and applying image weighting turned
out to be beneficial. This manual hyperparameter optimiza-
tion increases the AP from 67.16% to 68.45%. Besides,
numerous settings freezing different stages of the backbone,
and the use of Adam [19] and AdamW [25] as the opti-
mizer were evaluated to achieve stronger regularization and
thereby a more stable training. We also evaluated several
settings regarding the affine transformations to achieve a
higher generalization. However, none of the mentioned ad-
justments led to significantly improved results.

Thereafter, an automatic hyperparameter tuning was per-
formed. First, all previous internal evaluations of all 12
LOOCV splits were used, and the Pearson Correlation Co-
efficient between the average AP across the splits and the
AP of each individual split was determined. Subsequently,
the split is identified that correlates most with the average
AP over all splits. This split is leveraged for automatic hy-
perparameter tuning.

We apply the Genetic Algorithm (GA) [32] implemented

314



Method Backbone DConv Param FLOPs COCO Avg.
(M) (B) AP AP

TOOD ResNet101 × 53.2 149.0 49.3 67.62±11
TOOD+ ConvNeXt-T × 35.7 154.2 44.9 65.86±13
TOOD ConvNeXt-T × 35.7 154.2 48.6 67.76±12
TOOD Res2Net101 × 51.7 220.1 45.2 62.05±9
TOOD Res2Net101 ✓ 54.5 187.4 50.9 65.13±9

VFNet ResNeXt101-32x4d ✓ 55.1 208.1 49.7 67.49±13
VFNet+ ConvNeXt-T × 36.5 161.1 44.5 66.63±13
VFNet ConvNeXt-T × 36.5 161.1 48.9 64.14±15
VFNet* Res2Net101 × 52.4 227.0 49.2 65.77±14
VFNet* Res2Net101 ✓ 54.9 187.5 51.1 68.09±12

Table 5. TOOD and VFNet results with new backbones – In
each case, the first line of a block represents the best training so
far of the methods from Tab. 4. Best Avg. AP (calculated on our
fence dataset) is marked bold. ∗Pre-trained weights used. +Uses
original configurations.

in YOLOv5 for automatic hyperparameter optimization in
the predefined configuration, except for a few changes.
Based on our previous findings, we reduce the defined
search space and exclude the affine transformations rota-
tion, shearing, perspective, and flipping since their use leads
to significant degradation. Finally, automatic hyperparame-
ter tuning is executed for 500 iterations with the remaining
21 hyperparameters. In each iteration, one or more hyperpa-
rameter adjustments are sampled according to the GA pol-
icy and then evaluated in a complete training run without
early stopping. The most significant effects were observed
in reducing the probability of Mosaic Data Augmentation
from 100% to 91.5%, since the network requires original
data to capture the inherent structure. Additionally, increas-
ing the variation of the saturation in ColorJitter augmen-
tation from [−70%,+70%] to [−89%,+89%] lead to no-
table improvement. In total, the optimized model achieves
69.09% in AP on average across all data splits.

4.6. Backbones

After hyperparameter tuning, modern SOTA backbones
are evaluated in conjunction with TOOD and VFNet. Be-
sides, the influence of using DConv within the Res2Net ar-
chitecture is examined. The results of the so-far best models
and the new pre-trained ones are given in Tab. 5. For each
training session, the AP of the pre-trained network on the
COCO dataset is presented in addition to the AP for our
dataset. In the case of TOOD, for instance, the best pre-
trained network on COCO is not necessarily the best net-
work on our dataset. This is because the classes and the
class semantics in the COCO dataset deviate considerably
from those in this work. However, it provides a rough in-
dication when further consideration of a backbone is not
promising. The findings indicate that TOOD in conjunction
with ConvNeXt achieves the highest accuracy. Regarding
VFNet, Res2Net as the backbone performs best. Despite
the significant improvement in accuracy with the new back-
bones, TOOD and VFNet do not surpass YOLOv5 in AP .

Damage Type Metric YOLOv5 ImprovementBaseline Hyp. Opt.

All

AP 62.19± 14 69.09± 12 +6.90
AP small 21.69± 14 26.80± 18 +5.11
APmedium 65.04± 11 70.75± 9 +5.71
AP large 68.52± 25 83.41± 10 +14.89

Climb over defect

AP 77.12± 12 86.53± 6 +9.41
AP small − − −
APmedium 80.80± 10 89.50± 4 +8.70
AP large 77.81± 12 86.80± 6 +8.99

Hole

AP 47.26± 18 51.66± 18 +4.40
AP small 21.69± 14 26.80± 18 +5.11
APmedium 50.90± 17 54.30± 18 +3.40
AP large 45.82± 41 74.88± 16 +29.06

Table 6. Defect results – Comparison between the different types
and sizes of damages. Results are given for baseline (see Sec. 4.2)
and the Hyp. Opt. (see Sec. 4.5) as the best training of YOLOv5.
The different ranges small, medium and large were defined as
follows: 0 < AP small ≤ 24,000 pixels, 24,000 pixels <
APmedium ≤ 100,000 pixels and 100,000 pixels < AP large.

Since YOLOv5 is also more resource efficient due to its de-
sign as a real-time object detector, YOLOv5 was selected as
the best model and is utilized in the remainder of this paper.

4.7. In-depth Analysis

So far, all analyses have been performed with the AP
across all types of failure. This showcased remarkable
progress over the baseline with 6.9% points. This section
thoroughly delves into the effects of the proposed optimiza-
tions to identify strengths and weaknesses of the system.
Types and area size of fence defects: Tab. 6 investigates
the results for each defect type and different sizes of dam-
ages for YOLOv5. For this purpose, the damages are di-
vided into three classes based on the covered area in pix-
els. Damage up to a size of 24,000 pixels is considered
small. Correspondingly, damage ranging from 24,000 pix-
els to 100,000 pixels and over 100,000 pixels as medium
or large, respectively. Thereby, 8% of all damages are
small, 77% medium and 15% small. In general, the AP
difference between the damage types decreases by the op-
timizations. However, the difference is still a considerable
24.87% points. The stronger detection of the climb-over-
protection defects can be explained by their characteristic
appearance and by the angle of view. Typically, the dam-
age is in front of the bright sky and, therefore, discriminates
well from the background, even under poor lighting condi-
tions (see Fig. 1). In contrast, the wire mesh exhibits poor
contrast. The next striking feature in the baseline is the very
high standard deviation of 41 for large holes. This finding
suggests unstable generalization capabilities and great de-
pendence from the training and validation data. One reason
for this is that in the AP large, the holes are nearly normally
distributed up to 500,000 pixels. Therefore, training splits
with few large boxes may exceed the generalization capabil-
ity of the baseline to evaluation splits with huge boxes. The
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Metric YOLOv5 ImprovementBaseline Hyp. Opt.

Class Error 0.44± 1 0.10± 0 −0.33
Localization Error 3.03± 3 0.80± 1 −2.23
As+Localization Error 0.03± 0 0± 0 −0.03
Duplicate Error 0.33± 0 0.26± 0 −0.07
Background Error 0.82± 1 1.55± 2 +0.73
Missing Error 5.78± 5 1.44± 1 −4.34

False Positive (FP) Rate 3.79± 3 4.06± 4 +0.27
False Negative (FN) Rate 7.83± 6 3.36± 3 −4.47

Table 7. YOLOv5 analysis – Comparison of YOLOv5 baseline
and optimized results. Metrics are calculated with the Toolbox for
Identifying Object Detection Errors (TIDE) library.

Metric YOLOv5 ImprovementBaseline Hyp. Opt.

AP 50 87.52± 10 91.73± 8 +4.21
AP 55 86.47± 11 90.17± 8 +3.60
AP 60 82.47± 11 87.23± 9 +4.76
AP 65 77.68± 15 82.79± 11 +5.11
AP 70 72.22± 18 76.94± 14 +4.72
AP 75 65.52± 19 71.27± 15 +5.75
AP 80 58.35± 18 65.77± 16 +7.42
AP 85 49.41± 19 59.39± 15 +9.98
AP 90 34.01± 16 45.66± 13 +11.65
AP 95 8.29± 7 20.15± 8 +11.86

Table 8. Influence of IoU threshold – Comparison of YOLOv5
APs for different IoU thresholds.

results for the optimized hyperparameters suggest greatly
improved generalization capabilities. This improvement
contributes to better results over all damages. The detec-
tion accuracy for the different damage sizes consistently
shows the expected behavior that larger objects are detected
more accurately than smaller objects. However, the dif-
ference in accuracy is very large in some cases. For in-
stance, the difference for the best model between AP small

and APmedium is 35.14% points. Even with a good con-
trast ratio, small holes caused by, e.g., minor cracks, are
difficult to separate from sound parts of the mesh. Interest-
ingly, medium-sized climb over defects are detected more
robustly than large ones, regardless of the approach. This
is due to a lack of training data depicting large climb over
defects. In general, it can be concluded that climb over de-
fects are easier to localize due to their position and larger
size. In total, a 34.87% points difference in AP between
such damages and holes is observed for the best model.
Error sources: So far, the analysis has been conducted
quantitatively via the AP . In this section, the TIDE [2]
library is utilized to break down the error sources. For this
purpose, different error types are presented in the upper part
of Tab. 7. The error types describe erroneous relationships
of GT BBox and predicted BBox, such as a deviating posi-
tion or even a missed prediction. The localization and the
missing of damages have improved more than average. The

ID Image Resolution Avg. Case 1 Case 2 Case 3
(pixels) AP AP AP AP

R1 288×384 57.2±19 68.00±4 31.72±7 71.88±2
R2 320×512 65.16±12 71.44±2 48.88±1 75.16±2
R3 416×640 67.26±11 72.61±2 52.34±2 76.83±2

R4 512×768 69.09±12 74.64±3 53.82±2 78.81±2

R5 624×960 70.78±9 74.96±2 58.63±2 78.75±1
R6 736×1152 70.86±10 75.49±1 58.09±2 78.99±1
R7 848×1344 70.98±11 76.83±1 56.21±1 79.91±1
R8 960×1536 70.64±11 76.44±3 55.62±2 79.87±1
R9 1136×1728 69.86±10 75.31±2 56.03±0 78.25±1

R10 1248×1920 69.86±12 75.62±3 54.58±4 79.39±1

Table 9. Influence of image resolution – Results of experiments
image resolution with the HistEqu dataset and YOLOv5. R4 was
used in the previous experiments.

improved ability to localize damages may lead to enhanced
generalization to other fence types or transfer the learned
features to new contexts. The significant reduction in local-
ization error is due to increased AP all Intersection Over
Unions (IoUs). The AP results with different IoUs, i.e.,
varying degrees of overlap with the ground truth BBoxes,
are shown in Tab. 8. Thus, for IoU of 0.90 and 0.95 in
each case over 11% improvement was obtained. However,
in the context of this work, the improvement of the missing
damages is more relevant. Exact recognition is not directly
necessary, but can of course help with generalization. Al-
though the false positive rate increased slightly by 0.27%
points compared to the baseline, it is still at a low of 4.06%.
This means there would not be too many false alarms in
real-world use. In principle, it is better to detect a few
too many holes, which can be rechecked digitally, than to
completely forget holes. The latter would jeopardize the
airport’s approval. The significant improvement in miss-
ing damage is accompanied by a decrease in FN rate. This
has improved by 4.47% points, implicating enhanced use-
fulness of the model for real-world fence inspection.

4.8. Image Resolution

Previous experiments have been carried out with a fixed
spatial resolution of input images. However, higher reso-
lution imagery provides more details, which may be ben-
eficial to the task. The results from various resolutions
are presented in Tab. 9. One can observe that the AP in-
creases the larger the images but drops again when the im-
age is larger than 848×1344 pixels (R7). The drop is due
to the pre-training with the COCO dataset in a resolution of
1280× 1280, which expects objects to have a specific size.

4.9. Inference time

For the use of the model on, e.g., mobile robots, it is
important to achieve a favorable tradeoff between accuracy
and computation time. Fig. 3 compares the inference times
of our best YOLOv5 model for different resolutions and
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Figure 3. Inference time – Comparison between inference time
and AP results for varying image resolutions. R1, R2, etc. refer
to the ID in Tab. 9. By using TensorRT, all resolutions except R10
are real-time capable. Also a significant acceleration of up to 20ms
could be achieved by TensorRT.

with and without the use of TensorRT 5 acceleration. The
closer the result to the top left corner, the better. Obviously,
TensorRT clearly outperforms PyTorch in inference time.
The best tradeoff between speed and accuracy is found for
resolution R5 with 624 × 960 pixels. Afterward, inference
time increases and accuracy decreases. Noticeably, up to
resolution R7, approximately the same inference time is
needed with PyTorch. This suggests a computational bot-
tleneck outside the GPU.

4.10. Generalization

As a last step, we evaluate the transferability of our
model to further fences, camera models, and weather con-
ditions to identify the strengths and also directions for fu-
ture research. For this purpose, it is applied to external,
freely available images of airport fences. Results are visu-
alized in Fig. 4. As shown in the figure, not all fences have
damage. For example, in Fig. 4a, new modules were added
to the fences to facilitate photographing through the fences
and avoid plane spotters from cutting holes in the fences.
Our method does not detect these holes as damages, i.e., it
works correctly. Large holes, which are bigger than those
included in the dataset, are also correctly detected, as shown
in Fig. 4c and Fig. 4b. Two holes are recognized instead of
one in Fig. 4c. However, this is no issue in real-world ap-
plications, as only the occurrence of damage in a specific
location is relevant. In contrast to the aforementioned ex-
amples, the hole depicted in Fig. 4e has a different shape
and, thus, is not detected by our approach. Future works
might consider more variation regarding the shapes of holes
included in the training dataset. Furthermore, only two out

5https://developer.nvidia.com/tensorrt/, Date: 01/09/2023

(a) spectator.sme.sk (b) wikimedia.org

(c) bild.de (d) taz.de

(e) geograph.org.uk

Figure 4. Generalization – YOLOv5 generalization results on
external fence images.

of three damages are detected in the snowy environment vi-
sualized in Fig. 4d. All in all, it can be concluded that the
model achieves strong generalization performance to novel
image sources. However, training data with increased di-
versity concerning the shape of damages and weather con-
ditions is required to address the existing weaknesses.

5. Conclusion

Within the scope of the work, the four DL methods
YOLOv5, TOOD, VFNet and Deformable DETR were
compared to investigate, as a first publication ever, new de-
sign rules for airport fence inspection on a small dataset.
In conclusion, Deformable DETR as a transformer-based
model does not offer any value due to the too-low data
volume and the significantly lower accuracy. TOOD and
VFNet could achieve higher accuracy with modern SOTA
backbones like ConvNeXt and Res2Net, but could not reach
the accuracy and the efficiency of YOLOv5. Furthermore,
we could show that YOLOv5 also provides good general-
ization capability on external data.

To improve the accuracy of fence analysis, it would
be beneficial to separate the fence from the surrounding
context. Although labeling such fine structures is time-
consuming, recording with stereo or RGB-D cameras can
provide additional information to separate the fence struc-
ture from the background. Additionally, a night vision cam-
era can be used for nocturnal inspections, e.g., an infrared
camera with higher contrast than its passive counterpart.
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