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Abstract

Face detectors are becoming a crucial component of
many applications, including surveillance, that often have
to run on edge devices with limited processing power and
memory. Therefore, there’s a pressing demand for compact
face detection models that can function efficiently across
resource-constrained devices. Over recent years, network
pruning techniques have attracted a lot of attention from
researchers. These methods haven’t been well examined in
the context of face detectors, despite their expanding popu-
larity. In this paper, we implement filter pruning on two al-
ready small and compact face detectors, named EXTD (Ex-
tremely Tiny Face Detector) and EResFD (Efficient ResNet
Face Detector). The main pruning algorithm that we utilize
is Filter Pruning via Geometric Median (FPGM), combined
with the Soft Filter Pruning (SFP) iterative procedure. We
also apply L1 Norm pruning, as a baseline to compare with
the proposed approach. The experimental evaluation on the
WIDER FACE dataset indicates that the proposed approach
has the potential to further reduce the model size of already
lightweight face detectors, with limited accuracy loss, or
even with small accuracy gain for low pruning rates.

1. Introduction

Face detection technology is the backbone of numerous
advanced applications, including but not limited to surveil-
lance [10]. It has undergone significant evolution in the past
decade. Especially with the rise of edge computing, where
computations are performed on local devices with minimum
computational power, efficient and compact face detectors
have become necessary. While there is a need for these
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models to be lightweight, so they can run on edge devices,
they shouldn’t compromise on accuracy.

Original model Pruned model

Figure 1. The proposed approach is used to prune EResFD (an
already very lightweight face detector) with 10% pruning rate. In
this example, we see that the pruned model not only is more com-
pact, but also detects faces, which were not detected with the orig-
inal model. This may be attributed to the regularization effects of
our approach for small pruning rates.

One promising avenue to achieve this balance is through
network pruning [21]. Network pruning is a technique
aimed at reducing the size of deep learning models with-
out a significant drop in their performance. Over the years,
various pruning techniques have been proposed and have
achieved considerable success in tasks like image classifi-
cation. Yet, their application and potential benefits in the
domain of face detection remain largely uncharted. Specif-
ically, to the best of our knowledge, only the method in
[14] utilizes a pruning approach to a face detection network.
However, in the above work a criterion is used to prune the
“least important” filters in the layer, which is not always
optimal [6].

Considering the above, this paper aims to examine the
application of network pruning to face detectors, especially
to the most lightweight architectures of them. Specifically,
we adapt the Filter Pruning via Geometric Median (FPGM)
[6] pruning algorithm and the Soft Filter Pruning (SFP) iter-
ative procedure [5] to prune two already compact and small,
in terms of parameters, face detectors, namely, EXTD (Ex-
tremely Tiny Face Detector) [25] and EResFD (Efficient
ResNet Face Detector) [9]. FPGM identifies and prunes
the filters with the “most redundancy”, a principle that has
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shown to provide improved performance over other prun-
ing algorithms in the literature. Additionally, as baseline
we compare with the widely used L1 Norm pruning crite-
rion [11], as representative of the “less important” pruning
principle. The experimental results on the WIDER FACE
dataset [24] shows that the proposed approach has the po-
tential to provide even more compact face detectors with
competitive detection performance, especially when small
pruning rates are used (e.g. see Figure 1).

In overall, we aim to provide a comparative analysis of
the above algorithms and determine which of them, if any,
offers a notable advantage in the face detection context.
Through our research, we aspire to lay the foundations for
more efficient and compact face detectors suitable for de-
ployment on edge device, thereby broadening the horizons
for real-time, resource constrained applications. In sum-
mary, we make the following contributions:

• We are the first to apply a redundancy-based pruning
algorithm (FPGM) in order to prune the most redun-
dant filters in lightweight face detection networks.

• The proposed approach yields a family of even more
lightweight face detection networks that achieve supe-
rior detection accuracy in comparison to the previous
state-of-the-art models of similar size.

The rest of the paper is structured as follows: The related
work and proposed methodology are presented in Sections
2 and 3, respectively. Experimental results are discussed in
Section 4 and conclusions are drawn in Section 5.

2. Related Work
2.1. Face Detection

In recent times, Convolutional Neural Networks (CNN)
and other deep learning architectures, such as Transformers,
have achieved notable success in a variety of computer vi-
sion tasks, including image classification, object detection
and semantic segmentation.

Face detection, a sub-task of object detection, simi-
larly benefits from the effectiveness of CNNs [1, 10]. Al-
though Transformer-based architectures have shown state-
of-the-art performance on object detection, the majority of
state-of-the-art face detectors are extensions of CNN-based
general-purpose object detectors [18]. PyramidBox [22] is
based on Single-Shot Detector (SSD) [15]. RetinaFace [2],
also based on SSD, is a robust single-stage face detector that
performs pixel-wise face localization on various scales by
leveraging both extra-supervised and self-supervised multi-
task learning. TinaFace [30] is treating face detection as a
one-class generic object detection and is using Deformable
Convolution, Intersection over Union (IoU) aware branches
and a Distance IoU Loss to enhance the model’s capability.

YOLO5Face [20] is based on a set of state-of-the-art ob-
ject detection models, named YOLO (You Only Look Once)
known for their real-time processing capabilities. S3FD
[27] is designed to efficiently detect faces across various
scales, especially small ones, and achieves it by employ-
ing a scale-equitable framework (using anchors on a wide
range of layers), a scale compensation anchor matching
strategy and a max-out background. Dual Shot Face Detec-
tor (DSFD) [13] addressed the challenges in face detection
through three main contributions: Feature Enhance Module,
Progressive Anchor Loss and Improved Anchor Matching.
Most of the above-discussed models are based on relatively
heavy ResNet-50 and VGG16 networks. Thus, they are
not suitable for resource-constrained environments, such as
edge devices.

2.2. Lightweight Face Detectors

Designing lightweight face detectors that can operate
on edge devices, and other resource-constrained environ-
ments, is an active research area. For instance, RetinaFace
[2] has provided a lightweight version, implemented us-
ing MobileNet [8] as a backbone. Multi-task convolutional
neural network (MTCNN) [23], used Multi-task Cascaded
Convolutional Networks and employed a three stage cas-
cade structure to predict face and landmark locations. Face-
boxes [26] is based on SSD [15]; it combines Rapidly Di-
gested Convolutional layers (RDCL) for swift input pro-
cessing and Multiple Scale Convolutional Layers (MSCL)
to handle faces of varying sizes. The authors in SCRFD
[4], utilizes Sample Redistribution to augment training sam-
ples and Computation Redistribution to reallocate computa-
tional resources across the model’s backbone and improve
the computational efficiency. In [7], an anchor-free one-
stage face detection method optimized for edge devices is
presented. EXTD, proposed in [25], is able to detect faces
at multiply scales by iteratively reusing a lightweight back-
bone network. In [9], EResFD emphasizes the effective-
ness of standard convolution for lightweight face detection.
That is, instead of using depthwise separable convolution
(as in e.g. [25]), it is demonstrated that a ResNet with sig-
nificantly reduced channels in combination with a standard
convolution can achieve similar results. While many of the
aforementioned detectors introduced novel techniques and
achieved competitive performance on the WIDER FACE
dataset [24], the latter two models have demonstrated supe-
rior performance in terms of a good trade-off between accu-
racy and model size. Consequently, in this study, we focus
on EXTD and EResFD since, to the best of our knowledge,
they offer the best accuracy-to-parameters-used trade-off.
Our aim is to derive even smaller and more compact mod-
els without a significant drop in performance.
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2.3. Network Pruning

Network pruning approaches can be roughly categorized
to structured and non-structured. The latter, remove single
weights, resulting in irregular weight sparsities, and thus
require the use of specialized software and hardware to al-
low the efficient deployment of the pruned models. On
the other hand, structured pruning methods remove entire
model components, such as filters, yielding models that can
be easily deployed. For this reason, structured pruning is
receiving greater attention in the community [12, 16].

Due to the advantages described above, in this work we
choose to perform structured pruning of very lightweight
face detectors, and more specifically filter pruning. While
filter pruning has been intensively investigated in several
image classification tasks, the pruning of face detectors is
a relatively unexplored topic. PruneFaceDet [14] is one of
the few approaches in this domain. It employs a L1 reqular-
ization penalty imposed on the scaling factors of the Batch
Normalization (BN) layers to perform structured pruning
on the EagleEye face detector [28]. Due to this fact, this
method can be only used on networks of specific structure,
i.e., a one-to-one association of convolutional and BN lay-
ers is required. Additionally, pushing the values of the BN
scaling factors towards zero, this approach is based on the
“least importance” pruning principle. In contrary, here we
use the FPGM pruning algorithm that formulates pruning
from a redundancy reduction perspective, which has shown
superior performance in several image classification tasks
[3, 6].

3. Proposed Methodology
Consider an individual convolutional layer in a face de-

tector with weight parameters,

F = [F1, . . . , Fn], (1)

where, Fj ∈ Rk×k×c is the jth filter with spatial size k × k
and depth c, and n is the total number of filters in the layer.
Based on the above formulation, the goal of the proposed
approach is: given a filter pruning rate θ (common for all
filters) prune the nθ filters in each layer of the face detector.

3.1. Backbone Networks

The first model that we choose to prune is the already
compact EXTD [25], a state-of-the-art multi-scale face de-
tector with an exceptionally small number of parameters.
Unlike traditional multi-scale face detection models that ex-
tract feature maps of varying scales from a single back-
bone network, EXTD generates these feature maps by it-
eratively reusing a shared lightweight and shallow back-
bone network. This iterative sharing significantly reduces
the model’s parameters and provides abstract image seman-
tics from higher network layers to the lower-level feature

map. The key innovation is the ability to share the net-
work in generating each feature map, which not only re-
duces the number of parameters but also enables the model
to use more layers for detecting small faces. The architec-
ture can be applied to both SSD and FPN (Feature Pyramid
Network) based detection structures. Through experiments,
it was demonstrated in [25] that this model can handle faces
of various scales and conditions.

The second model we choose to prune is EResFD [9].
Here, it is shown that the combination of reduced chan-
nels with standard convolution can achieve similar results.
EResFD consists of a modified ResNet backbone and fea-
ture enhancement modules: Separated Feature Pyramid
Network and Cascade Context Prediction Module. To the
best of our knowledge, this represents the face detector with
the fewest parameters currently available, approximately
90,000 parameters. Thus, further pruning poses a signifi-
cant challenge.

3.2. Pruning Algorithms

Redundancy-based pruning algorithms, i.e. algorithms
that identify and discard the filters in a layer with the most
similar characteristics, have shown superior performance
in comparison to other criteria in the literature [3, 6]. To
this end, we resort to the FPGM algorithm, which has been
successfully used to prune different types of backbone net-
works and for different applications [3, 6]. Additionally, for
comparison purposes, the well-known L1 Norm algorithm
is utilized as our baseline. Both algorithms are briefly de-
scribed in the following:

• L1 Norm: The L1 Norm pruning algorithm, as pro-
posed in [12] and applied on various problems, e.g.
[11], focuses on evaluating the significance of groups
of weights (such as filters) in convolutional layers
based on their L1 norm. It is based on the traditional
”smaller-norm-less-important” criterion. Given filter
Fj (1) its L1 norm is computed as:

norm(Fj , 1) =

ck2∑
i=1

|fi,j |, (2)

where, fi,j is the ith element of Fj . Filters with
smaller L1 norm values, which indicate lower overall
importance, are pruned. This methodology is inspired
by the intuition that smaller-norm weight filters con-
tribute less to the model’s final prediction.

• FPGM: This algorithm has been originally proposed
in [6]. It is based on the Geometric Median (GM), the
classic robust estimator of centrality for data in Eu-
clidean spaces, to prune redundant filters in a convo-
lutional layer. Contrary to the L1 Norm algorithm, it
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aims to identify filters that carry redundant informa-
tion. As defined in [6], the GM of a set of filters, de-
noted as xGM, is mathematically expressed as:

xGM = arg min
x∈Rk×k×c

∑
j′∈[1,n]

∥x− Fj′∥2, (3)

where, x represents a filter in a layer and is used as a
placeholder to denote any filter from the set of filters in
that layer. Subsequently, the filter in the layer closest
to this geometric median is given by:

Fj∗ = argmin
Fj′

∥Fj′ − xGM∥2, s.t. j′ ∈ [1, n]. (4)

To mitigate the computational cost of finding the GM,
the following algorithm that identifies the filter mini-
mizing the aggregate distance to all other ones is used:

Fx∗ = argmin
x

g(x), s.t. x ∈ {F1, . . . , Fn}, (5)

where the function g(x) is defined as:

g(x) =

n∑
j′=1

∥x− Fj′∥2. (6)

The filter Fx∗ that minimizes g(x) can be then pruned
with minimal impact on the network’s redundancy. Ex-
perimental results in [6] validate the efficacy of FPGM,
showing significant performance improvements on
CIFAR-10 and ILSVRC2012 datasets. While the
FPGM algorithm has been validated in several clas-
sification tasks (e.g. see [29], [3]), its utility in face
detection is yet to be explored.

3.3. Soft Filter Pruning

We combine the FPGM algorithm with the Soft Filter
Pruning (SFP) procedure [5] to prune the face detector in
an iterative manner. Contrary to other methods in the lit-
erature that permanently prune filters, SFP allows pruned
filters to be updated during subsequent model training. One
main advantage offered by this approach is that it retains
a larger model capacity since updating previously pruned
filters provides a broader optimization space compared to
permanently setting filters to zero. This larger optimization
space allows the network to better learn from training data.

4. Experiments
4.1. Dataset and Metrics

The dataset used for training and evaluation in this work
is the WIDER FACE dataset [24], a widely-used dataset for
face detection research. It contains 32,203 images and em-
braces a wide variety of challenges, including large varia-
tions in scale, pose and occlusion. It is structured based

on 60 event classes and the faces within it demonstrate sig-
nificant variability in appearance, making it a challenging
benchmark. Based on the the level of difficulty of the faces
to be detected, the images are categorized into three subsets:
Easy, Medium and Hard.

The performance evaluation is performed using the
Mean Average Precision (mAP). We should note that this
metric is typically used in conjunction with the WIDER
FACE dataset to evaluate the performance of the different
models across all three subsets.

4.2. Experimental Settings

Both EXTD [25] and EResFD [9], were evaluated us-
ing the following pruning rates θ = {0.1, 0.2, 0.3, 0.4, 0.5}.
The pruning rate refers to sparsity per pruned layer. All
convolutional layers of the models are chosen to be pruned,
except of those that are part of the detection head. The de-
tection head is the last component of the model and is re-
sponsible for predicting the final bounding boxes and the
classification of them - whether they contain a face or not;
it is a crucial part of the network, hence we decided against
pruning it.

The initial EXTD and EResFD models were created after
we trained EXTD and EResFD from scratch with the setups
that were described in their original papers. Subsequently,
the iterative process of SFP [5] combined with the pruning
algorithm (FPGM or L1 Norm) was conducted over 200
epochs to prune the different models. Specifically, a step
learning rate schedule was adopted, with an initial learning
rate of 1e-3. This was scaled down by a factor of 0.1 at
epochs 50 and 100. For optimizer selection in each experi-
ment, we strictly followed the configurations reported in the
original publications. That is, the Stochastic Gradient De-
scent (SGD) with momentum 0.9, and the Adam optimizer,
both with weight decay 5e-4 were used for the EXTD and
EResFD, respectively. Upon reaching epoch 200, the SFP
was halted, and further fine-tuning was conducted without
updating the pruned weights during backpropagation (i.e.
the pruned weights remained at zero). For this fine-tuning
step, the learning rate was reset to 1e-3 for 5 epochs, fol-
lowed by a decay to 1e-4 for the remaining 5 epochs of the
process.

All the models and algorithms were implemented in
PyTorch [19]. For the implementation of the FPGM
and L1 Norm algorithms the NNI library [17] functions
FPGMPruner and L1NormPruner were used, respec-
tively.

4.3. Results

The pruned models produced using the proposed prun-
ing approach are compared against the following methods
that represent the state-of-the-art in face detectors (espe-
cially in lightweight ones, although the comparison is not
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Figure 2. Model size and mAP across different face detectors on the Easy subset of WIDER FACE.

Figure 3. Model size and mAP across different face detectors on the Hard subset of WIDER FACE.

limited to lightweight models): RetinaFace (both with Mo-
bileNet and ResNet50 as backbone) [2], TinaFace [30],

Yolo5Face [20], LFFD [7], S3FD [27], Dual Shot Face De-
tector [13], MTCNN [23], FaceBoxes [26], PyramidBox
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Table 1. Comparative results on EXTD between the proposed pruning approach (FPGM-based) and our baseline.

Method Easy Medium Hard # of Parameters Real Sparsity

EXTD(original, from [25]) 0.9210 0.9110 0.8560
162,352 0%

EXTD (reproduced) 0.8961 0.8868 0.8268

FPGM 10% 0.8988 0.8828 0.8026
149,472 7.93%

L1 10% 0.8950 0.8766 0.7961

FPGM 20% 0.8931 0.8789 0.7992
136,296 16.05%

L1 20% 0.8921 0.8766 0.7923

FPGM 30% 0.8885 0.8588 0.7168
122,034 24.83%

L1 30% 0.8806 0.8522 0.6655

FPGM 40% 0.8539 0.8213 0.6915
108,858 32.95%

L1 40% 0.8427 0.8068 0.6544

FPGM 50% 0.8485 0.8118 0.6565
94,448 41.83%

L1 50% 0.8422 0.7971 0.6267

Table 2. Comparative results on EResFD between the proposed pruning approach (FPGM-based) and our baseline.

Method Easy Medium Hard # of Parameters Real Sparsity

EResFD(original, from [9]) 0.8902 0.8796 0.8041
92,208 0%

EResFD (reproduced) 0.8660 0.8555 0.7731

FPGM 10% 0.8728 0.8582 0.7757
87,368 5.25%

L1 10% 0.8470 0.8345 0.7410

FPGM 20% 0.8369 0.8201 0.7230
76,677 16.84%

L1 20% 0.8263 0.8038 0.6723

FPGM 30% 0.8311 0.8160 0.7175
69,746 24.36%

L1 30% 0.8218 0.8001 0.6663

FPGM 40% 0.8124 0.7952 0.6807
57,055 35.95%

L1 40% 0.7603 0.7349 0.5800

FPGM 50% 0.7103 0.6830 0.5254
47,284 48.72%

L1 50% 0.6992 0.6704 0.4824

[22], SCRDFD [4], EagleEye [28], PruneFaceDet [14], and
the original EXTD [25] and EResFD [9] models.

Figures 2 and 3 illustrate a comparative performance
analysis of our pruned models against the referenced ones
on the Easy and Hard WIDER FACE subsets, respec-
tively. We should note that in these figures, EXTD and
EResFD denote our reproduced results based on training
and evaluating the corresponding models, EXTD(original)
and EResFD(original) refer to the scores reported in the
original publications, and EXTDθ and EResFDθ refer to
the models produced by pruning them with rate θ% using
the proposed approach.

Tables 1 and 2 compare the proposed approach against
our baseline approach, i.e., the SFP procedure combined
with the L1 Norm pruning algorithm, across EXTD and
EResFD, and for the five different pruning rates. In these
tables, the Real Sparsity column reports the actual sparsity

achieved using a specific pruning rate with the respective
NNI pruner [17]. More specifically, the NNI pruner opti-
mally prunes filters within each layer to ensure that the over-
all model sparsity does not exceed the user-defined thresh-
old; this leads to real sparsity values being slightly lower
than the target sparsity values as defined with the pruning
rate input. On the other hand, the # of Parameters col-
umn provides the number of parameters of the model com-
puted using a custom PyTorch [19] based routine. These
tables, offer insights into the trade-off between model per-
formance, sparsity and number of parameters, providing an
overview of the effectiveness of the pruning strategies on
those face detectors.

Finally, Figures 4 and 5 provide illustrative face detec-
tion examples of the original EXDT and EResFD models
and the pruned models produced using the proposed ap-
proach with pruning rates 10% and 50%. From the obtained
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EXTD EXTD10 EXTD50

Figure 4. Visualisation of face detection examples using the original EXTD model (first column) and its pruned variants, EXTD10 (second
column) and EXTD50 (third column). We observe that for some examples, the model produced by the proposed approach with 10%
pruning rate provides improved face detection performance.

results we conclude the following:

i) The family of models produced by the proposed ap-
proach provide a competitive detection performance with
significantly reduced model size.

ii) Our pruned model with 10% sparsity exhibits a
slightly improved performance when compared to our re-
produced EXTD and EResFD. This improvement can be
attributed to the pruning process acting as a form of reg-
ularization.

iii) From the overall results in Tables 1 and 2 we ob-
serve the superiority of the proposed approach (based on
FPGM algorithm) over the baseline approach (based on the

L1 Norm algorithm), across all pruning rates.

iv) A similar conclusion to the above can be drawn by
observing the qualitative face detection results in the mid-
dle column of both Figures 4 and 5. Specifically, we see
that EXTD10 and EResFD10 are able to identify faces that
would otherwise have been missed by the original model.
Furthermore, our pruned model with 10% sparsity also
manages to exclude some of the false positives that the orig-
inal model produced, as it can be seen in the third row of
Figure 5.

v) In overall, from the presented results it is evident that
as sparsity increases, there is a pronounced decline in per-
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EResFD EResFD10 EResFD50

Figure 5. Visualisation of face detection examples using the original EResFD model (first column) and its pruned variants, EResFD10
(second column) and EResFD50 (third column). As with our EXTD examples (Figure 4), we see that in many cases, the model derived
using the proposed approach with 10% pruning rate outperforms the original one in terms of detection performance.

formance within the ’Hard’ subset. The drop in ’Easy’ and
’Medium’ subsets is more modest. By varying the prun-
ing rate, our approach yields a family of lightweight detec-
tion models that represent different compromises between
model size and detection accuracy. Furthermore, our find-
ings suggest that FPGM has the potential to enhance the
model’s accuracy when enforcing small pruning rates.

5. Conclusions
Face detection is a rapidly evolving domain, and the de-

mand for lightweight and efficient models that are suitable
for edge devices is high. In this paper, we explored the po-
tential of filter pruning techniques on two already compact
face detectors, namely EXTD [25] and EResFD [9]. Our

research focused on two pruning algorithms: L1 Norm and
Filter Pruning via Geometric Median (FPGM). Through ex-
periments, we showed the superiority of the FPGM over
the L1-Norm criterion. It is worth mentioning here, that
the EResFD pruned model with 10% sparsity showcased
a slight improvement in mAP, suggesting that the pruning
process can act as a form of regularization. However, as
sparsity increases, there is a notable decline in the mAP of
the pruned models. By varying the pruning rate, we gener-
ated a family of even more compact face detectors for use
in real-life applications where the model size is a critical
factor.
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