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Abstract

The rapidly increasing use of unmanned aerial vehicles
(UAVs) for surveillance has paved the way for advanced
image analysis techniques to enhance public safety. Among
many others, person re-identification (ReID) is a key task.
However, much of the current literature is centered on re-
search datasets, often overlooking the practical challenges
and unique requirements of UAV-based aerial datasets. We
close this gap by analyzing these challenges, such as view-
point variations and lack of annotations, and proposing a
framework for aerial person re-identification under unsu-
pervised setting. Our framework integrates three stages:
generative, contrastive, and clustering, designed to extract
view-invariant features for ReID without the need for labels.
Finally, we provide a detailed quantitative and qualitative
analysis on two UAV-based ReID datasets, and demonstrate
that our proposed model outperforms state-of-the-art meth-
ods with an improvement of up to 2% in rank-1 scores.

1. Introduction
Person Re-Identification (ReID) is a critical task in

the video surveillance, allowing for tracking individuals
through public facilities such as airports, shopping centers,
and public spaces. Although person ReID has been a fo-
cal point of extensive research, particularly with the ad-
vent of deep learning, the methods proposed [5, 34, 42, 50]
have primarily been applicable to standard ReID bench-
marks [24, 37, 51], where input images are captured via
static CCTV cameras.

Recently, Unmanned Aerial Vehicles (UAVs) are becom-
ing increasingly prevalent in the field of intelligent visual
surveillance, which is a necessary alternative for the tra-
ditional ground-based surveillance camera emplacements.
Although more and more efforts have been devoted into
such aerial-based computer vision tasks as object detec-
tion [49, 54], tracking [41], and segmentation [21], aerial-
based person ReID has received little attention due to two
main reasons. First, there is a limited number of UAV-
captured ReID datasets, in which only PRAI-1581 [48],

Figure 1. Visualization of challenges in aerial-based person ReID,
including occlusions, extreme viewpoints, and pose variations.
Samples are randomly selected from PRAI-1581 [48] dataset.

and P-DESTRE [19] are publicly available. Second, aerial-
based person ReID remains challenging due to occlusions,
low resolution, and viewpoint variations as illustrated in
Figure 1.

Current methods primarily adapt knowledge from
ground-based ReID datasets to aerial-based data via trans-
fer learning [30] or meta-learning [43], which requires large
amount of data from source domain for model’s generaliz-
ability. Other methods attempt to fine-tune deep learning
models as feature descriptors for drone-based ReID [26,48].
Soft biometric cues are explored for inter-class visual sim-
ilarities, which is then coupled with deep learning features
for individual matching [10, 43]. However, these methods
fail under large variations in camera angles and flight alti-
tudes. Moreover, they require supervision of labeled data,
which is costly for acquisition and annotation. Such short-
comings necessitate a robust framework for person ReID
given unlabeled drone-based input images, called Unsuper-
vised Aerial-based Person ReID (UAReID).

To this end, we propose a unified framework
“Generative, Contrastive, and Clustering for UAReID”
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(GCCReID). First, to enhance robustness of our ReID
model against viewpoint and pose variations found in aerial
images, we aim to expose it to these variations. Data aug-
mentation using generative models has shown effectiveness
in addressing the lack of ReID data to improve ReID learn-
ing [4, 45, 53]. Thus, to mitigate the viewpoint and pose
variation challenge, we propose the generative stage which
synthesizes images of diverse viewpoint and pose variations
found in the aerial data using a Generative Adversarial Net-
work (GAN) [9]. The generated samples are then fed as
online augmentation to the contrastive stage, in which con-
trastive learning is leveraged to extract view-invariant fea-
tures, thus minimize the intra-class and maximize the inter-
class gap under challenging camera angles like top-down
posed by drone-based images. Finally, we perform ag-
glomerative hierarchical clustering to learn a robust adap-
tive feature embedding prior to generating pseudo-labels
based on visual similarities in an iterative fashion. Experi-
ments on the two large-scale aerial-based PRAI-1581 [48]
and P-DESTRE [19] datasets demonstrate that our GC-
CReID framework outperforms state-of-the-art methods on
both datasets, with an improvement of up to 2% in rank-1
accuracy. These results indicate that our proposed frame-
work effectively addresses the challenges in unsupervised
ReID presented by aerial-based datasets. To the best of our
knowledge, our work is the first to solve person ReID prob-
lem in aerial data under an unsupervised setting.

Our contributions in this work can be summarized as:

1. We conduct a thorough study on person ReID task in
aerial imagery under an unsupervised setting.

2. We propose a novel three-stage “Generative,
Contrastive, and Clustering for UAReID” (GCCReID)
framework, capable of learning discriminative view-
invariant features for more accurate ReID in aerial
images captured by drones.

3. We conduct extensive experiments on two publicly
available aerial-based datasets, and show that our pro-
posed framework achieve state-of-the-art results on
both datasets.

2. Related work
2.1. Aerial-based Person ReID

Datasets. Nowadays, instead of relying solely on static
cameras, there is a trend toward using more dynamic and
mobile camera setups, including drones. These new cam-
era setups offer increased flexibility in capturing footage
from various angles, covering more ground, and improv-
ing surveillance capabilities. Several aerial-based datasets
[11, 19, 20, 23, 27, 31, 48] have been proposed for human
analysis tasks. A summary of these datasets is reported

Dataset #IDs #Bbox Height(m) Task

MRP [20] 28 4K - ReID
AVI [31] 5, 124 10K 2 ∼ 8 Act.Rec.

DRoneHIT [11] 101 40K 5 ∼ 25 ReID
PRAI-1581† [48] 1581 40K 20 ∼ 60 ReID
P-DESTRE† [19] 253 14.8M 5.5 ∼ 6.7 ReID
UAV-Human [23] 1, 144 40K 2 ∼ 37 Multi

AG-ReID [27] 388 20K 15 ∼ 45 ReID

Table 1. Summary of existing Aerial-based Human Understanding
datasets. † means the dataset is used for experiments in this paper.

in Table 1. MRP dataset proposed by Layne et al. [20]
was the first attempt to cope with aerial-based person ReID.
However, MRP is relatively small-scale with only 28 iden-
tities and around 4, 000 bounding boxes. AVI [31] con-
tains around 10, 000 bounding boxes captured by drones,
however, this dataset is annotated for action recognition
task. Ggrigorev et al. [11] proposed a medium-sized dataset
named DRoneHIT which contains 40, 000 images of 101
identities. PRAI-1581 [48] is a drone-based dataset origi-
nally proposed for detection and tracking purpose. Around
40, 000 images of a large number of 1581 identities were
captured by two flying drones at a high altitude ranging
from 20 to 60 meters, making it challenging for person
ReID. Kumar et al. [19] proposed P-DESTRE, a large-scale
pedestrian dataset which consists of more than 14.8 mil-
lion images of 253 identities. The drones flew between 5.5
and 6.7 meters in height, with the camera pitch angles vary-
ing between 45º to 90º. The data was recorded at 30fps,
with 4K spatial resolution (3, 840 × 2, 160). UAV-Human
[23] is a multipurpose human understanding dataset, which
contains 22, 263 annotated images of 1, 144 identities for
ReID task. Recently, AG-ReID [27] is proposed, in which
around 20, 000 images of 388 identities were captured. In
this work, we conduct experiments on PRAI-1581 and P-
DESTRE datasets.

Methods. Aerial-based person ReID has not been well
advanced in research due to two main reasons: (1)
the limited number of public aerial-based person ReID
datasets, and (2) unique challenges for person ReID aris-
ing from drone-based data like camera motion, occlusion,
and changes in lighting conditions. Grigorev et al [11] pro-
posed to tackle drone-based ReID using large-margin Gaus-
sian Mixture. Zhang et al. [48] utilized subspace pooling of
convolutional feature maps to generate a compact and dis-
criminative feature descriptor. Moritz et al. [26] examined
deep learning-based aerial person ReID by design choices
in backbone models, loss functions, and data augmentation
techniques to overcome the challenges in aerial imagery. It
was found that a combination of augmentations can im-
prove the robustness of the model against errors specific
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to drone images with diverse perspectives. Additionally, a
pose-based penalty for similarity calculation in the retrieval
stage of drone-based person ReID can increase perfor-
mance. Auxiliary attributes encoded as word embeddings
are used to enhance aerial image features in [10]. Nguyen et
al. [27] proposed an explainable transformers-based frame-
work, which also mines soft-biometric attributes for inter-
class visual similarities matching under extreme viewpoints
in aerial images. Xu et al. [44] employed an attention mech-
anism in the multi-granularity feature extractor to deal with
occlusions in drone-based ReID. A meta-transfer learning
strategy was proposed in [43] to further enhance the fea-
ture extraction of persons in aerial imagery. These methods
belong to supervised learning category, which suffers limi-
tation in their scalability in real world scenarios where col-
lecting and annotating data is expensive. In this work, we
propose to tackle aerial-based unsupervised person ReID,
which alleviates the need for costly manual annotation.

2.2. Unsupervised Person ReID

Unsupervised Domain Adaptation (UDA) Person ReID.
UDA person ReID methods transfer knowledge learned
from the labeled source domain to generalize on the unla-
beled target datasets. Several works [2, 33] attempted to
finetune the model trained on source domain by explor-
ing the similarity in soft attributes among unlabeled sam-
ples. A progressive domain adaptation strategy was pro-
posed in [15] to bridge the domain gap. Dai et al. [6] pro-
posed IDM which acts as an intermediate module between
source and target domain. Xiang et al. [40] proposed to re-
duce the influence of noisy samples by ranking unlabeled
samples using hierarchical confidence. GAN-based meth-
ods [8, 38, 47] utilize GANs as a data augmentation stage
to transfer texture information from source domain to tar-
get datasets. These methods assume the source and target
domains share the same identities, thus not applicable in an
open-world ReID environment. In this work, we deal with
the purely unsupervised aerial-based person ReID.

Purely Unsupervised Person ReID. Recently, many
studies have focused on solving person ReID problems us-
ing a fully unsupervised setting. These methods do not have
access to annotations, making it challenging to match in-
dividuals. Camera labels were leveraged for intra-camera
and inter-camera learning [22, 36, 39, 46], which addresses
the variations in images captured by cross-cameras. Li et
al. [22] proposed TAUDL framework, which jointly models
the within-camera tracklet discrimination and cross-camera
tracklet association. Similarly, Wu et al. [39] introduced an
unsupervised camera-aware similarity consistency mining
approach by exploring the relation of pairwise similarity be-
tween intra-camera matching and cross-camera matching.
Several works [17, 25, 28, 29, 35] adopt clustering methods

to estimate pseudo-labels for unlabeled samples. For ex-
ample Lin et al. [25] iteratively trained their model using
pseudo-labels generated by bottom-up clustering. Wang et
al. [35] generated quality pseudo labels based on similar-
ity computation and cycle consistency and then treated the
problem as a multi-classification task. These methods were
designed for ground-based ReID datasets, thus not appli-
cable in the challenging aerial-based person ReID task. In
this work, we propose a novel framework for unsupervised
aerial-based person ReID, which is pioneering in this real-
world ReID task.

3. The Proposed Framework
An overview of our proposed GCCReID framework is il-

lustrated in Figure 2. In the first stage, we construct the gen-
erative module, where we train the GAN model to generate
synthesized images of various poses and viewpoints. Then,
in the contrastive module, the synthesized images are uti-
lized to improve the feature learning of the model through
contrastive learning. Finally, we perform agglomerative hi-
erarchical clustering to generate pseudo labels.

3.1. Preliminary

Consider a training dataset with N images DTr =
{(Ii,yi)}Ni=1, where Ii denotes the person image and yi de-
notes its label. We learn a feature extraction function ϕ to
represent a given image I as a feature vector fI = ϕ(I).
During testing, we perform matching by retrieving from the
gallery set all possible images of the same identity as the
given probe image Ii by computing the similarity between
pair of feature vectors fIj and fIj .

3.2. Generative Module

The objective of our generative module is to synthesize
images of the same identity in different poses and view-
points. Given an input image Ii and a target image Ij , the
generator is designed to generate a new image of similar
identity with pose PIj specified by the target image Ij . The
generative module consists of two components, a Generator
GP and a Discriminator DP , which is typical of a GAN.
The image generator is trained to alter the person’s image
conditioned on the pose, while the discriminator is simulta-
neously trained to distinguish between actual and generated
data samples in an adverasial manner.

Pose estimation. Pose estimation is a crucial step in the
image generation process. It refers to the process of iden-
tifying and locating keypoints of a human body, such as
joints and limbs, and their spatial relationships in an im-
age. In our framework, the generative module takes as in-
put: the original input image and the target pose. To obtain
the target pose, we employ an off-the-self pose estimation
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Figure 2. An illustration of our GCCReID framework. First, we apply clustering to get the most common poses present in the dataset.
We then employ a GAN to synthesize images based on the most common poses. Then, a CNN backbone is trained in an unsupervised
and contrastive manner to extract the discriminative features of all images. Finally, new pseudo labels are estimated using hierarchical
clustering. Our framework is trained using contrastive and clustering-based optimization functions in an iterative fashion.

Figure 3. Visualization of the output of OpenPose model.

model called OpenPose [1]. This model detects and local-
izes 18 keypoints as well as their connections in COCO for-
mat, which accurately represent the human body’s orienta-
tion and posture. By obtaining the target pose, we are able
to condition the generator to produce an output image of the
same identity in that pose. We can use any random pose to
control the generated image. However, in this work, we pro-
pose to use pose clustering to generate five canonical poses,
which will be explained below. Figure 3 shows the output
of the pose estimation model.

Generator. The process of image generation involves tak-
ing an input person image Ii and generating a new image Îj
with a different pose Pj while still preserving the identity
of the person in image Ii. This is accomplished by training
the generator to replace the pose information in Ii with the
target pose Pj . The input to the generator is a concatena-

tion of Ii and Pj with the latter being treated as a three-
channel image. The generator GP is constructed using the
ResNet architecture with an encoder-decoder network. It
down-samples Ii to a bottleneck layer and then upsamples
it to generate Îj . An overview of the generator model is
shown in Figure 4.

The first objective of the generator is to minimize the dif-
ference between the generated image and the target image
in terms of pixel-wise distance. This is achieved by mini-
mizing the L1 loss between the generated image Îj and the
target image Ij :

LL1 = EIj∼pdata (Ij)

[∥∥∥Ij − Îj

∥∥∥
1

]
. (1)

Then, conditioning the generated image on the target pose
Pj is guided using an adversarial loss Ladv , formulated as:

Ladv = EIj∼pdata (Ij) {log (1−DP (GP (Ii,Pj)))} (2)

where GP is the generator and DP is the discriminator.
The overall objective function of the generator is the sum

of the adversarial and reconstruction loss:

LGP
= LGAN + λ · LL1 (3)

where λ is the weighting coefficient to balance the impor-
tance of each term.
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Figure 4. The complete GAN model architecture. The generator learns person features from the input image and reconstructs the person
into the target pose.
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Figure 5. The generative module takes in the most five common
poses as target poses for the generated images of the same identity,
which are then served as input for the contrastive learning module.

Discriminator. The discriminator network, denoted as
DP (·), is responsible for learning to distinguish between
real and fake images through classification. It takes as input
both the original image Ii and the generated output image
Îj , and its objective is to correctly classify whether the gen-
erated image is real or fake as shown in Figure 4. The train-
ing objective of the discriminator can be expressed mathe-
matically as maximizing the probability of correctly identi-
fying real images and minimizing the probability of falsely
classifying generated images as real. This helps improve
the generated images’ quality and make them more realis-
tic. The objective function of the discriminator model is
defined as:

LDP
= −LGAN (4)

Image Generation based on Pose Clustering. Once the
GAN model is trained to generate pedestrian images in var-
ious poses, the next step is identifying the optimal poses
that can synthesize images with viewpoint-invariant fea-
tures while minimizing the number of synthesized images.
To achieve this, clustering is applied to identify the most
representative poses in the dataset, offering an unsupervised
technique to organize the data samples and extract valuable
information about the distribution. This work implements
clustering on the pose vectors based on full-body. The K-
means algorithm is used to cluster the pose vectors into n
clusters by considering each vector as a unique data point.
The GAN model uses the resulting cluster centers as sample
poses for image generation. The five representative poses
obtained on P-DESTRE [19] are shown in Figure 5. Using
these poses, the generator will generate five images {Îj}5j=1

by substituting the original pose Pi in the image Ii with
each of the most common poses.

3.3. Contrastive Module

The synthesized images from the most frequent poses
in the dataset are then utilized as online augmentation
for training a Convolutional Neural Network (CNN) fθ(.)
which learns the discriminative visual representation fIi of
the input image Ii, given as:

fIi = fθ(Ii) , fIi ∈ Rd. (5)

Once the appearance features are extracted, we use con-
trastive learning to compute the similarity between synthe-
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sized and anchor images. Contrastive learning is a type of
unsupervised learning where the model learns to map simi-
lar examples close together in the feature space while push-
ing dissimilar examples apart. In this case, each synthe-
sized image is compared to the anchor image to determine
the similarity between their appearance features. Then, the
contrastive loss is used to encourage the appearance fea-
tures of the anchor image and the synthesized image of the
same identity to be closer together in the feature space than
those of different identities. This helps to learn viewpoint-
invariant appearance features by ensuring that the synthe-
sized images are similar to the anchor image in terms of
their appearance features, regardless of the viewpoint or
pose. Finally, the resulting feature vectors can be used for
re-identification, where the goal is to match a query image
to images of the same identity in a gallery set.

We define the view-invariant contrastive loss between the
anchor image and one synthesized image as follows:

Lc = − log
exp(sim(fIi , fÎj )/τ)∑M

k=1,k/∈P 1[k ̸=i] exp(sim(fIi , fIk)/τ)
(6)

where fIi is the anchor image feature vector, fÎj is the syn-
thesized image feature vector, 1[k ̸=i] is an indicator function
evaluating to 1 if k ̸= i and M is the batch size. τ is a tem-
perature parameter that controls the softness of probability
distribution over classes. The final loss is computed across
all positive pairs, including the anchor image and synthe-
sized images, formulated as follows:

Lcont =

|P |∑
j=1

Lc(fIi , fÎj ) (7)

where P is the number of synthesized images generated by
our GAN model for each anchor image.

3.4. Clustering Module

When training CNN models without manual annotation,
it is crucial to create a supervision signal. To achieve this,
following [16], we employ bottom-up hierarchical cluster-
ing. The similarity and diversity properties of the training
data are leveraged as supervision information. Since no
ground truth labels are available, each image is initially as-
signed to a unique cluster. This enables the network to learn
to recognize each training sample rather than the identities,
which maximizes diversity over each sample. Then, at each
training iteration, we merge a specific number of clusters
using the distance between them.

Formally, we formulate the proposed distance in UP-
GMA [32] (unweighted pair group method with arithmetic
mean) as follows:

Dab =
1

nanb

∑
i∈Ca,j∈Cb

D
(
Cai , Cbj

)
(8)

where D(.) denotes the euclidean distance. Cai , Cbj are
two samples in the clusters Ca, Cb, respectively. na, nb rep-
resent the number of samples in Ca, Cb. We minimize the
clustering-based loss function Lcl, formulated as:

Lcl = − log
exp(V T

c,i fIi/τ)∑C
j=1 exp(V

T
c,j fIi/τ)

(9)

where Vc is an external memory bank that stores the feature
vectors for each cluster, C is the number of clusters and τ
denotes a temperature parameter. At the first training stage,
C = N . The memory bank is iteratively updated as follows:

Vyi
(t)← 1

2
(Vyi

+ Vyi
(t− 1)) (10)

where Vyi
denotes the up-to-date yi-th column of the mem-

ory bank V.
To summarize, training the CNN encoder fθ(.) in our

GCCReID framework is supervised by the total loss:

L = Lcl + λLcont (11)

4. Experiment
4.1. Implementation Details

Training. We adopt ResNet-50 [13] without the last clas-
sification layer as the base neural network encoder with pre-
trained weights on ImageNet [7]. We use Adam [18] opti-
mizer to train both the GAN model and ReID networks with
a learning rate of 0.00025, β1 = 0.5, and a learning rate of
0.0003, β1 = 0.9, respectively. The dropout ratio is set as
0.5. The Kaiming-Normal initialization is used [13] for the
GAN model.

Pretrain GAN. Initially, we train the GAN in our pro-
posed generative module using the Market-1501 [52]
dataset in a supervised manner. The pretrained GAN is then
used to generate synthesized images belonging to K most
common poses in our aerial datasets P-DESTRE [19] and
PRAI-1581 [48] without any additional model training or
fine-tuning on these datasets. This approach is particularly
useful in scenarios where a pretrained model needs to be
deployed in a new environment, such as a different camera
network or dataset, without any modifications.

4.2. Comparison with the State-of-the-Art

To validate the effectiveness of our proposed method on
the image-based person ReID problem, we compare our
proposed method with three current state-of-the-art meth-
ods. Since we are the first ones to tackle aerial person
ReID under an unsupervised setting, we have trained and
tested these state-of-the-art methods on P-DESTRE and
PRAI-1581 using the published implementations. Two
ReID evaluation metrics mean Average Precision (mAP)
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Methods
P-DESTRE PRAI-1581

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

ICE [3] 21.32 48.58 55.12 58.4 24.7 30.9 45.2 52.4
HHCL [14] 16.4 42.1 49.35 51.12 22.1 25.5 37.9 44.3

Group Sampling [12] 18.44 44.84 51.34 54.08 22 27.3 38.5 44.4
GCCReID (Ours) 22.7 50.4 57.9 59.8 25.2 31.3 46.4 53.1

Table 2. Comparisons with the state-of-the-art person ReID methods on P-DESTRE and PRAI-1581.

and CMC scores at rank-k (R-k) are computed to compare
the performance of our proposed method with the state-
of-the-art. The quantitative results in Table 2 show that
our framework outperforms three state-of-the-art methods
HHCL [14], Group Sampling [12], and ICE [3] in terms of
mAP, rank-1, rank-5 and rank-10 scores on P-DESTRE and
PRAI-1581. This demonstrates our model’s effectiveness in
the aerial person ReID task under an unsupervised setting.

Poses
P-DESTRE PRAI-1581

mAP R-1 R-5 mAP R-1 R-5

One 14.3 33.2 45.1 10.3 19.5 28.7
Five 17.1 38.1 48.8 15.7 22.6 33.1
Ten 16.9 37.9 47.2 14.2 21.5 33.0

Table 3. Ablation study of the proposed model on P-DESTRE and
PRAI-1581 using random poses.

4.3. Ablation Study

Random poses. In addition to using the most common
poses in the dataset, we experimented with random poses
as input to the GAN model. To do this, we randomly se-
lected k images from the dataset and extracted their pose
information, which was then used to generate new images
with the GAN model. Next, we evaluate the results using
one, five, and ten random poses as input. This experiment
aims to explore the potential of the GAN model to generate
images that do not necessarily correspond to the most com-
mon poses in the dataset. Table 3 shows that using five ran-
dom poses achieves the highest ReID performance in both
mAP and CMC scores. This suggests that using a diverse
set of poses during training can improve the robustness and
generalization capabilities of the GAN model. It also high-
lights the importance of selecting an appropriate number of
poses to balance performance and computational efficiency.
However, increasing the number of random poses beyond
five yields no significant performance improvement.

Pose clustering. In Table 4, we report experimental re-
sults with different numbers of clusters (poses). It can be
seen that using five clusters is superior over using six or
seven clusters in both evaluation metrics. An optimal num-
ber of clusters is critical for synthesizing representative im-
ages. When the number of clusters is too large, there may be

Clusters
P-DESTRE PRAI-1581

mAP R-1 R-5 mAP R-1 R-5

Five 22.7 50.4 57.9 25.2 31.3 46.4
Six 21.9 48.7 56.1 24.6 30.3 45.6

Seven 20.3 48.2 55.8 23.3 29.8 45.1

Table 4. Ablation study of the number of clusters on P-DESTRE
and PRAI-1581.

Method
P-DESTRE PRAI-1581

mAP R-1 R-5 mAP R-1 R-5

Generation 22.7 50.4 57.9 25.2 31.3 46.4
Augmentation 20.2 48.5 56.7 23.1 29.2 45.4

Table 5. Ablation study of the proposed model on P-DESTRE and
PRAI-1581 using data generation and augmentation.

redundancy in the poses, and the synthesized images may
be too similar, leading to overfitting. Therefore, choosing
an appropriate number of clusters is essential to ensure the
quality of the synthesized images.

Data generation and data augmentation. An ablation
analysis is conducted in Table 5 to evaluate the effective-
ness of using the Generative Adversarial Network (GAN)
for image synthesis compared to traditional data augmen-
tation techniques. For this study, we used a data augmen-
tation combination of random cropping and flipping. The
study compared the performance of the proposed method
with and without GAN-generated images. It can be ob-
served that the proposed method with GAN-generated im-
ages outperforms the method with traditional data augmen-
tation, shown by an improvement of 2% in rank-1 accuracy.
This result demonstrates the effectiveness of our GCCReID
framework in addressing the ReID challenges presented by
aerial-based data. It also suggests that the synthesized im-
ages generated by the GAN can provide more diverse and
realistic views of the persons, thus enabling the model to
learn more robust and discriminative features for UAReID.

Qualitative Analysis. An illustration of ReID matching
results from the P-DESTRE dataset is shown in Figure 6.
For the first three query images, the true match is ranked
in the highest position. Despite variations in viewpoint, the
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Figure 6. Examples of ReID results on P-DESTRE dataset. Images in the first column are queries. The retrieved images are sorted
according to their similarity to the query. Green indicates the correct matching, and red indicates the wrong matching.

model consistently ranks the true match at the top, showcas-
ing its robustness in handling challenging scenarios. This
not only demonstrates the model’s ability to effectively han-
dle viewpoint variations but also highlights the importance
of leveraging GAN-generated images to augment the train-
ing data. However, in the last row of the results, the model
encounters a challenge in retrieving the target person due to
clothing similarity. To address this challenge, future work
could explore the integration of style GAN to learn not only
view-invariant but also appearance-invariant features.

5. Conclusion

In this work, we tackled the challenging unsupervised
aerial-based person ReID by proposing a novel unified
framework that leverages generative and contrastive learn-
ing. GAN is leveraged to generate images of the most
significant poses found in the dataset, serving as online
augmentation for the contrastive learning module. A con-
trastive loss is proposed to effectively mitigate the influ-
ence of viewpoint variations posed by aerial imagery, which
helps to maximize the intra-class similarities under extreme
camera angles. Extensive experiments on two recently re-
leased UAV-based datasets are conducted. Results showed
that our proposed framework outperforms the state-of-the-
art methods on both datasets with an improvement of up to
2% in rank-1 accuracy.
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