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Abstract

Person falls can result in severe injuries or fatalities. An
automatic fall detection system can potentially save lives
by promptly alerting others. Existing fall detection meth-
ods that employ physical sensors like accelerometers have
limitations. Current computer vision-based approaches,
trained on simple and unrealistic datasets, also lack effec-
tiveness. Creating a new dataset for traditional supervised
learning would require a significant amount of time to anno-
tate. To address this, we adopt weakly supervised methods
from Video Anomaly Detection (VAD) and curate a high-
quality and realistic dataset. Our proposed model, utilizing
Multiple Instance Learning, introduces a novel loss function
that outperforms state-of-the-art anomaly detection models
for fall detection. Furthermore, despite its simplicity, our
approach achieves competitive performance compared to
the current state of the art in UCF-Crime.

1. Introduction
A person falling could lead to severe injury and even

fatalities. Falling was the second leading cause of unin-
tentional injury deaths worldwide in 2020 [20]. Reports
from the USA [20] and EU [19] found that the older demo-
graphic is especially prone to suffer serious consequences
from falling.

The development and adoption of a reliable fall detection
system would have big financial, safety, and health benefits.
A reliable system reduces the amount of time staff needs to
check in on patients, making time for other duties or even
reducing the size of the staff needed. Such a system would
also result in faster response to fallen and potentially injured
patients which could help to reduce the severity of injuries
sustained. A brief online search reveals that the predomi-
nant methods for automatic fall detection in the healthcare
industry heavily rely on accelerometers123 and comparable

1www.medicalguardian.com
2www.lifeline.com/medical-alert-systems/fall-detection/
3www.ncoa.org

Figure 1. The Multiple Instance Learning illustrated. Features are
extracted from each video and each feature set (one set per video)
is made into the same length. Finally, one feature set is sampled
from each class and used as input to a classifier network that is
trained using our proposed loss function.

devices.
These devices could lead to discomfort and require indi-

vidual fitting. They might necessitate recharging and have a
limited range. In contrast, camera-based detection, aided by
existing hospital security cameras, offers easy deployment
without patient fitting or maintenance. Video systems allow
swift remote alarm verification and can function universally
across varied camera-equipped settings.

Anomaly Detection (AD) in videos or images involves
identifying events or patterns that deviate from the norm.
The definition of an anomaly is subjective and context-
dependent. AD offers an advantage by not necessitating ex-
amples of all potential anomalies, unlike methods like clas-
sification or action recognition, which demand extensive an-
notated data per class/action. Moreover, the AD approach
detects undefined classes, encompassing situations that re-
quire alarms, including circumstances posing challenges in
data collection.

One popular approach in VAD is unsupervised anomaly
detection. Here, the model exclusively learns from nor-
mal data, detecting anomalies via higher reconstruction er-
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rors for unseen cases. Typically, these unsupervised ap-
proaches are scene-dependent, trained and tested within a
single scene. Our goal is to create a scene-agnostic model,
applicable across diverse locations. While some scene-
agnostic, unsupervised AD models exist [7], they often rely
on multiple complex feature extractors, making deployment
impractical.

In this study, we investigate weakly supervised anomaly
detection, leveraging partial anomaly information during
training. We propose a cost-effective approach for detect-
ing person falls, distinct from conventional supervised tech-
niques like image classification or action recognition, which
demand extensive annotations. Our method significantly re-
duces data collection expenses. We employ the Multiple
Instance Learning (MIL) framework and introduce a novel
loss function utilizing rank statistics (topk and bottomk) to
distinguish normal and abnormal features in weakly labeled
videos. Our proposed loss function enhances the results
of the Multiple Instance Learning setup from [16] in both
the newly collected fall dataset and the widely-used UCF-
Crime anomaly detection dataset [16]. The topk function
has been previously employed in Multiple Instance Learn-
ing, notably in [17] and [12]. In [17], the Video Anomaly
Detection (VAD) model leverages the difference between
the topk abnormal snippets and topk hardest normal snip-
pets. The “Soft bag MIL” proposed in [12] employs a prob-
abilistic approach to define “soft bags” and trains an SVM
classifier to extract the top k instances in an image classifi-
cation task. In contrast, we calculate the disparity between
the two bags and utilize statistical rank functions to distin-
guish k instances within the abnormal bag from the rest (see
Sec. 4 for details).

Our contributions include:

• The Our+VFPK+UR dataset, a high-quality and real-
istic dataset for fall detection and anomaly detection
algorithms.

• A novel loss function for MIL in our model using zero-
padded TimeSformer features, outperforming SOTA
VAD models on fall detection and achieving competi-
tiveness on UCF-Crime.

• Demonstrating the efficacy of fixed-length zero-
padding for improved performance in Multiple In-
stance Learning with a proper feature extractor.

The rest of the paper is organized as follows. Section 2
outlines relevant prior research on Fall Detection and VAD.
Section 3 introduces our new dataset. Section 4 presents
Multiple Instance Learning and our novel loss function.
Section 5 elaborates on experiments and results. In Section
6, we discuss results and future prospects. Finally, section
7 concludes our research.

2. Related work
This section presents a review of prior research in vision-

based fall detection and the domain of Video Anomaly De-
tection.

2.1. Fall Detection

An et al. [3] compare multiple classifiers trained on the
two-class problem (fall and non-fall) and compare it to the
one-class approach where they trained only on frames dis-
playing falls. They test various classification networks for
both the two-class and one-class problems and find that the
models trained on both classes are slightly better at detect-
ing falls. Adhikari et al. [1] apply a 3-Dimensional CNN
to fall detection. They extract a human silhouette from the
raw RGB images, and use the CNN to detect its different
poses. They classify a fall as a sequence of poses that end
in a “lying” pose. Alanazi and Muhammad [2] explicitly in-
corporate temporal information in a multi-stream 3D CNN
architecture. Their model takes a stack of temporally fused
frames in each stream. They achieve very competitive per-
formance compared to other state-of-the-art fall detection
models and fine-tuned classification networks.

These approaches demand a substantial amount of la-
beled data, yet the datasets on which they are trained and
evaluated do not encompass scenes complex enough to thor-
oughly assess the real-world performance of each model. In
contrast, our method has the advantage of being capable of
learning from weakly labeled data. That makes the collec-
tion of a new, high-quality dataset for the development of a
dependable real-world fall detection system a considerably
more economical process.

2.2. Anomaly Detection

Sultani et al. [16] frame anomaly detection as a Mul-
tiple Instance Learning problem (MIL) (more on MIL in
Section 4). MIL relaxes the assumption of one label for
each instance of data, which means that we can train on
weakly labeled data. MIL in the case of anomaly detection
in videos means that one labels each video as either con-
taining an anomaly (positive) or not (negative), so the exact
instances that are anomalous are unknown. With this ap-
proach, the authors propose a simple architecture consisting
of a 3D CNN feature extractor, and a fully connected neu-
ral network trained on a special MIL ranking loss function
of their design. They show that their approach significantly
outperforms earlier anomaly detection algorithms on their
proposed dataset, UCF-Crime.

The MIL loss function proposed by Sultani et al. [16] is:

l(BA,BN ) = l1 + l2 + l3 (1)

l1(BA,BN ) = max(0, 1−max
i

f(V i
A)+max

i
f(V i

N )) (2)
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l2(BA,BN ) = λ1

n−1∑
i=1

(f(V i
A)− f(V i+1

A ))2 (3)

l3(BA,BN ) = λ2

n∑
i=1

f(V i
A) (4)

where f(·) is the MLP and V i
A denotes a clip with in-

dex i in BA. Similarly, V i
N denotes the clip with index i

in BN . λ1 and λ2 are hyperparameters. The first term in
l(BA,BN ), called the Hinge loss, aims to maximize the
activation of one of the clips in BA, presumably the clip
containing the anomalous event, and concurrently minimize
the highest activation in BN . The second term is a temporal
smoothness term, trying to enforce smooth activation of se-
quential video clips in BA. The last term is a sparsity term,
capturing the assumption that the majority of clips in the
abnormal video are actually normal. Our approach extends
this method by incorporating the top-k and bottom-k rank
functions, to capture the fact that an anomaly might not be
contained in a single clip.

The authors of [17] contend that MIL brings forth four
issues: 1) the highest anomaly score might not correspond
to an abnormal snippet, 2) simple fitting of normal data can
hinder training convergence, 3) videos with multiple ab-
normalities are underutilized, 4) employing a classification
score yields a weak training signal. To tackle these, they
devise a loss function that enhances the distinction between
normal and abnormal videos, by maximizing the separabil-
ity of magnitudes of the top-k snippet features. They name
this feature magnitude learning. This, together with a novel
method for extracting global temporal features using dilated
convolution, compromises their method Robust Temporal
Feature Magnitude learning (RFTM). RFTM reaches state-
of-the-art on a number of VAD datasets, including UCF-
Crime [16]. RFTM separates the magnitude of the features,
whereas our model is trained to separate normal and anoma-
lous clips based on the final anomaly score. Furthermore,
their approach uses a classifier with dilated convolutions,
which is more complicated and resource-hungry than our
simple neural network.

Wu et al. [21] propose a model they call self-supervised
sparse representation (S3R for short) that reached state-of-
the-art in UCF-Crime [16] and XD-Violence [22]. S3R
unifies dictionary learning and a reconstruction-based ap-
proach. S3R learns a normal-event dictionary and utilizes
two modules: en-Normal that aims to reconstruct the dic-
tionary features, and de-Normal that learns to filter out the
normal features from the snippets. Lv et al. [13] propose the
Weakly Supervised Anomaly Localization (WSAL) model
for precise anomaly localization in time series. WSAL es-
timates anomaly localization to inform a MIL margin func-
tion, utilizing feature differences between neighboring in-
stances. This expects abnormal videos exhibiting larger

Figure 2. Examples from the data collected by us.

maximal differences than normal ones. Additionally, they
introduce High-Order Context Encoding to capture seman-
tic features and encode temporal variations in videos.

Although S3R and WSAL exhibit strong VAD perfor-
mance, their complex architectures might hinder inference
speed and elevate hardware prerequisites, thereby increas-
ing costs. Our approach proves comparable or superior in
fall detection while maintaining a simpler design.

3. Dataset
A few vision-based public datasets for fall detection are

accessible online. However, these typically offer limited
scenes and subjects. Some Human Action Recognition
(HAR) datasets like [8], [10], and [14] include the “falling”
class. Yet, these often comprise YouTube or movie clips,
posing issues such as abrupt angle changes, multiple ac-
tions, camera shake, and non-human subjects [14]. Addi-
tionally, each video is trimmed to showcase only a single
action, rendering them unsuitable for anomaly detection. To
the best of our knowledge, no HAR dataset captures falls
through standard surveillance camera setups.

3.1. Our Our+VFPK+UR Dataset

As there are no suitable existing datasets for building a
functional fall detection model using the Anomaly Detec-
tion framework, we’ve gathered a new dataset designed for
fall and anomaly detection. This compilation includes nor-
mal surveillance videos and abnormal surveillance videos
containing falls, along with selected samples from VFPK
[3] and UR-Fall dataset [11].

The Vision-based fallen person dataset (VFPK) [3]
contains high-resolution videos emulating real CCTV clips
of people falling, or lying down, in public areas. It features
varied viewpoints, backgrounds, and lighting, yet many
videos have pronounced camera shake, or show individu-
als lying down rather than falling. By filtering out videos
with such issues, we’ve curated a small, relevant subset.

The UR-Fall detection dataset [11] dataset combines
depth and RGB images for fall detection. Its simplicity,
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with limited scene variety and individuals, enabled authors
to attain nearly 100% accuracy using a basic SVM classi-
fier trained on RGB + depth data. Notably, the dataset fea-
tures high-quality fall scenarios and camera setups, curated
within the Our+VFPK+UR dataset.

Our dataset consists of high-resolution videos (1080p)
captured indoors across various locations: a mock hospi-
tal room, a real hospital room, an office building’s waiting
room, and five corridors. Each location has a stationary
surveillance camera, except for the mock hospital room,
which has five cameras. The normal videos depict people
engaged in everyday activities such as walking, standing,
sitting, talking, and lying in bed. Atypical postures like
squatting and kneeling are also included. Abnormal videos
portray individuals falling in different scenarios, including
rolling off a bed or couch, falling from standing or sitting
positions, and rolling on the floor. The falls are evident,
lifelike, and prominently displayed. The dataset covers both
normal and low-light conditions. A total of 19 characters
are featured across the scenes, and all participants provided
consent for their involvement. Refer to Figure 2 for visual
examples from this collection.

Dataset Normal Videos Abnormal Videos

VFPK 0 6
UR-Fall 46 52
Our 97 46
Total 143 104

Table 1. Videos collected from the different sources used in the
Our+VFPK+UR dataset.

The resulting dataset comprises 143 normal videos and
104 anomaly videos. Refer to Table 1 for the video distribu-
tion across UR-Fall, VFPK, and our sources. All videos are
sampled at 30 frames per second. Each class’s videos were
randomly divided into training and test sets, aiming for a
balanced 75-25 split (147,230 frames for training, 54,560
for testing). Anomaly videos typically include one or two
anomalous events of varying durations. Figure 3 illustrates
the distribution of video lengths in the train/test sets and
anomaly lengths in the test set.

The dataset aligns with UCF-Crime’s format [16], allow-
ing weakly supervised Video Anomaly Detection (VAD) us-
ing video-level labels for training and frame-level annota-
tions for testing. Fall annotations are applied as soon as
falls become evident, ensuring rapid response for fall de-
tection systems. Annotations were carried out by a sin-
gle annotator. The anomaly event extends until the fallen
person stands up. To encompass the initial stages of fall
sequences (crucial for early detection), our annotator re-
annotated samples from the VFPK and UR-Fall Detection
datasets, which were initially annotated for frame-based

(a)

(b)

Figure 3. The distribution of (a) the video lengths in the
train/test sets and (b) the anomaly lengths in the test set in the
Our+UR+VFPK dataset. Most fall events (anomalies) last a few
dozen frames, equating to 1-2 seconds at a video frame rate of 30
frames per second.

methods.

4. Method
We adopt the approach by Sultani et al. [16], known as

MIL (Multiple Instance Learning). Each video is divided
into N segments/clips of fixed length. The segments from
both videos are then placed in two separate “bags”. BA de-
notes the bag containing the clips from the abnormal video,
and BN denotes the bag containing the clips from the nor-
mal video. Each bag contains N clips. A pretrained feature
extractor is used to extract features from the clips in the
bags. Specifically, we utilize a pre-trained action recogni-
tion feature extractor. The rationale behind this choice is
that the feature extractor is trained to extract features cru-
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cial for human action classification, which is assumed to be
important in learning to detect people falling in VAD set-
tings. Moreover, HAR feature extractors are trained using
uncropped frames, eliminating the need for an object detec-
tor.

During training, a mini-batch comprises a random se-
lection of 2M videos from the training data, including M
normal and M abnormal videos. The feature extractor de-
rives a feature set from each video. After resizing this set
to a fixed size of N , it is placed in either BA or BN , based
on the video’s class. For videos longer than N , features
are averaged using a non-overlapping window, determined
by the feature set and N , ensuring aligned consecutive fea-
tures. For videos shorter than N , features are duplicated to
reach the length N . The MIL approach is depicted in figure
1. To prevent feature compression or repetition, our study
also applies zero padding (see Sec. 5.2 for specifics).

Sultani et al.’s original method exhibits limitations. Their
hinge loss (Eq. (2)), employing the max(·) function, as-
sumes a single-instance anomaly, which may not be accu-
rate. To address this, we advocate employing the statistical
rank functions topk and bottomk to enable the model to
learn that anomalies could span multiple instances. These
functions are implemented into PyTorch in a differentiable
way [15]; during the forward pass the indices of the k
largest/smallest (topk/bottomk) are stored, and during the
backward pass the gradient is exclusively computed for
these indices only, effectively simplifying the operation to a
vector-matrix product.

We optimize by distinguishing between normal and ab-
normal videos. In training, we sample one video from each
class with uniform probability. Over numerous iterations,
each normal video is effectively paired with each abnormal
video, enabling the model to learn the distinctions between
them.

Our proposed loss function is then:

ldiff (BA,BN ) = lbot + ltop (5)

lbot = mean(bottomk1
[f(VN )− f(VA)]) (6)

ltop = mean(topk2 [f(VN )− f(VA)]) (7)

We call this the Difference-loss. The bottomk1
and topk2

are vectors of size k1 and k2 respectively, and mean(·) is
the arithmetic mean of the elements of the argument. lbot
and ltop are in the range of [-1, 1] (f(VA/N ) ∈ [0, 1] due
to a Softmax on the output of the last layer in the MLP).
The Difference-loss aims to separate the abnormal clips in
the abnormal videos from the rest of (the normal part of)
the abnormal video, as well as from the normal video. Intu-
itively, assuming the anomaly is contained in k1 instances in
BA, the term lbot ensures that k1 instances in BA stand out

from the instances in BN . ltop leads to k2 instances in BA

and BN get close to each other, i.e., close to zero. lbot and
ltop serve to guarantee the inclusion of both normal clips in
BN , normal clips in BA, as well as the anomalous clips in
BA during the training process. The complete loss function
inherits l2 and l3 from equation 1:

l′(BA,BN ) = max(0, ω + ldiff ) + l2 + l3 (8)

Top-k-Difference-Loss = l′(BA,BN ) + ∥wf∥ (9)

We use max(0, ·) together with a hyperparameter ω ∈ [0, 1]
to control the maximum contribution of ldiff ; a larger ω
means ldiff is contributing more to the final loss function
(Eq. (9)).

Taking the extremum (max/min) over the difference
f(VN )−f(VA) is not the same as taking the difference over
the extremum since the max/min (and similarly the topk and
bottomk) functions are not commutative. The original ap-
proach in [16] aims to maximize the response of the net-
work to a single segment in each of the anomalous videos
and minimize the response of the network to anything in the
normal videos. The intuition behind equation 8 is to maxi-
mize the difference of segments in BA from both the rest of
the anomalous video and the normal video.

The classifier we employ is identical to the one in [16]. It
comprises a three-layer MLP with Dropout. In their study,
[16] explored various depths and sizes, determining that the
three-layer deep MLP yielded optimal results.

5. Experiments
5.1. Zero-Shot HAR Baseline

The TimeSformer [4] with divided space-time attention
pre-trained on Kinetics-600 [5] is used as a baseline for
our dataset. The TimeSformer achieves an accuracy of
81.8% on the Kinetics-600 action recognition dataset. The
Kinetics-600 dataset has two classes describing a fall event:
“falling off bike” and “falling off chair”. This means that if
the TimeSformer predicts either of these classes, then it is
correct. The model will not be further trained and will only
be tested on the test set. It is expected to provide a weak
baseline for our new dataset.

5.2. Feature Extraction Study

We conduct a study to determine the best-performing
feature extractor on our dataset. The features are extracted
in sets of 16 consecutive frames (i.e., the step length is 1).
The feature set from each video is then resized to fit into
a bag of size 32, as described in Section 4. The model is
trained on our dataset using the proposed method. The re-
sults are listed in Table 2.

The experiment shows that the 3dResNet features per-
form the best, with a slight advantage over the TimeSformer
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Model dataset AUC Feature size

C3D [18] Kinetics-400 0.84 4096
TimeSformer [4] Kinetics-400 0.84 768
TimeSformer [4] Kinetics-600 0.86 768
3dResNet-152 [9] Kinetics-400 0.87 2048

Table 2. Results of using different feature extractors with features
of fixed size (=32) on the Our+VFPK+UR Dataset. The dataset is
the one it is pre-trained on.

Bag size Feature Extractor AUC

20 3dResNet 0.87
32 3dResNet 0.87
50 3dResNet 0.87
zero-pad 3dResNet 0.85
zero-pad TimeSformer 0.90

Table 3. The results of using different segment lengths and zero-
padding. Results obtained using Our+VFPK+UR Dataset.

that is pre-trained on Kinetics-600, while the C3D and the
TimeSformer pre-trained on the Kinetics-400 perform the
worst. The remaining results are obtained with the 3dRes-
Net features unless otherwise stated.

We further investigate how the performance varies with
different bag sizes. Many works only ever explore one bag
size. We examine the impact of varying bag sizes and the
use of zero padding to a fixed length on the performance
of the MLP classifier. Zero padding is motivated by the
use of padding in language transformer architecture to make
the input sequence the correct size. Without zero padding,
longer videos have their features averaged during bagging,
leading to a lower resolution. Conversely, shorter videos
have their features repeated. It is noted that zero padding
is both in the normal and abnormal bags, so the model is
expected to learn the relevant clips as normal (either in a
normal or abnormal video). The results are listed in Table
3. Table 3 shows that the bagging of the features does not
play a big role in the performance of the classifier. Sur-
prisingly, the size of the bags does not seem to matter at
all, and we found the bagging approach to be better than
zero padding for the 3dResNet features. We also found that
with the TimeSformer, the zero padding is better than both
the bagged 3dResNet and the bagged TimeSformer features
(see Table 2). Following the other works [16] [21], we stick
to a bag size of 32 for the 3dResNet features.

5.3. Fall Detection

This section contains the main experiment where we ex-
plore multiple VAD methods as fall detection systems using
the Our+VFPK+UR dataset presented in Section 3. The hy-

Method AUC % AP %

HAR baseline 51.13 34.86
WSAL [13] 84.29 31.26
S3R [21] 88.21 52.38
MIL [16] 83.87 40.83
Ours 87.24 45.86
Ours+zpTf 89.76 54.09

Table 4. Results on the Our+VFPK+UR dataset. The best result
is highlighted by bold numbers. Blue and red highlight the second
and third best, respectively.

perparameters for WSAL [13] and S3R [21] are the same
as those used to achieve the reported performance on UCF-
Crime [16] in their respective original works.

The results listed in Table 4 show that the HAR baseline
is indeed weak, performing only slightly better than ran-
dom. WSAL and the original MIL approach by [16] achieve
a score of 84.29% and 83.87% AUC, respectively. S3R is
the second best model in our testing with an AUC reaching
88.21% AUC and scoring 52.38% in AP on our dataset. Our
model, with k1 = 3, k2 = 2, λ1 = λ2 = 10−4, ω = 0.1,
and dropout rate = 0.6, performs the best when using the
zero-padded TimeSformer, in terms of both AUC (89.76%)
and AP (54.09%). When using the 3dResNet features, our
model ranks third in both AUC (87.24%) and AP (45.86%).

We conduct ablation studies to evaluate the effective-
ness of our novel loss functions, as outlined in equation
5. Keeping all other hyperparameters unchanged, the uti-
lization of only lbot results in decreased AUC (68.37%) and
AP (32.06%), while using solely ltop leads to reduced AUC
(86.47%) and AP (38.71%).

Figure 4 shows two qualitative examples of anomaly de-
tection using our model with TimeSformer feature extrac-
tion and zero padding.

5.4. Model Fit Study

We conduct experiments where each model is trained
and tested on the test set. This means that the model is
trained using weak labels and subsequently tested on the
same dataset. This is to investigate whether the weak labels
are enough for each model to learn the correct labels. How
well each model is able to fit the true labels only using the
“weak”/video-level labels gives an indication of how strong
the training signal in each model is.

All models reach a better AUC score in this experiment.
The gains in AUC are modest for WSAL (1.09%), MIL
(0.25%), and S3R (0.14%), whereas our method shows a
more significant performance gain with 3dResNet features
(2.48%), but only a small gain (0.54%) using the zero-
padded TimeSformer features. Furthermore, MIL, S3R and
our model with the zero-padded TimeSformer features all
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Normal video

Person fall

Figure 4. Anomaly detection in the UR-Fall dataset using our
model with TimeSFormer feature extraction and zero padding.
Each image shows an example: the starting frame of a 16-frame
clip (crosshatch bar). The histogram displays anomaly scores for
all clips in the video, with green bars indicating normal clips and
red bars indicating anomalies.

Method AUC % AP %

S3R 88.79 (88.21) 52.16 (52.38)
Ours 87.36 (87.24) 43.87 (45.86)
Ours+zpTf 89.39 (89.76) 55.00 (54.09)

Table 5. Results of adding more normal data to training. Values in
parentheses are the scores obtained with the original training set,
i.e. without additional training data. The best result is highlighted
by bold numbers and blue highlights the second best.

perform worse in AP, whilst our model with the 3dResNet
features gains 7.09 percentage points, and WSAL gains 4.90
percentage points. None of the models are able to overfit.

5.5. Performance Scaling With More Normal
Videos

Anomaly detection algorithm effectiveness should ide-
ally scale, to a certain extent, with the quantity of normal
training data. Particularly, an increase in normal data should
lead to a reduction in the false positive rate. Consequently,
we supplement the training dataset with 30 additional Nor-
mal Videos (33,910 frames) and evaluate the model’s per-
formance with and without this supplementary data. The re-
sultant dataset is approximately 22.3% larger than the orig-
inal. Table 5 illustrates the comparative performance of
S3R [21], our method, and their variations involving the ex-
tra normal data.

Method AUC % AP %

S3R [21] 84.05 6.89
MIL [16] 74.56 4.40
Our 81.62 7.69
Our+zpTf 90.78 38.95

Table 6. The outcomes of employing VAD models for fall action
detection. The best result is indicated in bold, with the second and
third best results highlighted in blue and red, respectively.

The results of using more normal data for training are
mixed. S3R gains 0.58% in AUC, but loses 0.22% in AP.
Our model with the 3dResNet features gains an insignificant
0.12% in AUC and loses 1.99% in AP. Our model with the
zero-padded TimeSformer features shows a small decrease
in AUC (0.37%) and an increase in AP (0.91%). This shows
that these methods are not able to properly utilize “free”
normal data. We hypothesize that their learning is limited
by the increased class imbalance in the dataset.

Increased normal data yield mixed training outcomes.
S3R sees a 0.58% AUC improvement but a 0.22% AP de-
crease. Our model with 3dResNet features gains a mere
0.12% AUC while losing 1.99% AP. Our model with zero-
padded TimeSformer features exhibits a slight AUC dip
of 0.37% and an AP increase of 0.91%. Evidently, these
methods struggle to leverage the surplus normal data effec-
tively, likely due to restricted learning imposed by height-
ened class imbalance.

5.6. Falling Action Detection

Alternatively, a fall detection system can exclusively tar-
get fall actions, excluding the identification of a person on
the ground. We revise the test set annotations, shortening
anomaly detection to 32 frames (approximately 1 second)
after the fall begins. Table 6 displays the outcomes of this
event-focused method. All results are derived with the same
hyperparameters fine-tuning as in Section 5.3.

S3R [21], MIL [16], and our 3dResNet-based model all
demonstrate notably low AP scores, underscoring their lim-
ited capacity to effectively capture the falling action. The
substantial decline in AP values outlined in Table 4 implies
that these models excel more in detecting the fallen person
than the actual falling action. In contrast, our model lever-
aging zero-padded TimeSformer features achieves the high-
est performance in both metrics, demonstrating its superior
capability in capturing the essence of a fall.

We also test the original MIL [16] and our model with
TimeSformer [4] features (without zero padding) with a bag
size of 32. MIL with the TimeSformer features is able to
achieve 84.63% AUC and 28.11% AP and our model got
83.28% AUC and 23.20% AP. This highlights the signifi-
cant role of the feature extractor in detecting the falling ac-
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Model FE AUC %

MIL [16] C3D 75.41
MIL [16] 3dResNet 82.00
MGFN [6] I3D 86.98
S3R [21] I3D 85.99
WSAL [13] TSN 85.38
RFTM [17] I3D 84.30
Ours 3dResNet 84.71

Table 7. Results on UCF-crime. The best result is highlighted by
bold numbers while blue and red highlight the second and third
best results, respectively.

tion. Additionally, our model’s performance benefits from
zero padding the features, as demonstrated by these results.

5.7. Performance on UCF-Crime

We evaluate the generality of our approach as an
anomaly detector using the renowned UCF-Crime dataset
[16]. This dataset features extensive untrimmed surveil-
lance videos encompassing 13 real-world scenarios, like
shoplifting, fighting, accidents, and arrests, all labeled
as anomalies. It comprises 1900 annotated videos from
the internet, half of which involve anomalies. Training
videos have video-level annotations while testing videos
have frame-level annotations.

We also conduct experiments on UCF-Crime [16], to
gauge the generality of the proposed method. We use the
3dResNet features with a fixed size of 32 segments to obtain
our results. Hyperparameters are k1 = k2 = 1, ω = 0.1,
λ1 = 2 · 10−4, λ2 = 2 · 10−3. During our model testing,
we reset the remaining frames to zero after division by 16,
following the dataset authors’ approach [16]. The results of
our approach, along with the state of the art, are presented
in Table 7. Our approach ranks among the top 4 according
to paperswithcode.com4.

Utilizing our identical model as presented in Table 7, we
assess it on the Our+VFPK+UR Dataset, yielding a modest
67.37% AUC and 32.63% AP. This underscores the critical
need for a new, superior-quality fall detection dataset.

6. Dicussion
In this paper, we collect a novel dataset comprising both

normal videos and those depicting a person falling. The
dataset is labeled with video-level annotations. Extending
the Multiple Instance Learning approach by [16], we in-
troduce an innovative loss function utilizing statistical rank
functions, namely topk and bottomk, for effective differ-
entiation between normal and abnormal video segments.

4https://paperswithcode.com/sota/anomaly-detection-in-surveillance-
videos-on

Our model, employing the zero-padded TimeSformer [4]
features, outperforms alternative models in ROC AUC and
AP metrics on our proposed fall detection dataset. Further-
more, our approach exhibits superior capability in detecting
the initiation of falling events compared to other techniques.
Notably, our method achieves a top-4 ranking in the widely-
used UCF-Crime anomaly detection dataset [16], under-
scoring its effectiveness, despite its simplicity.

Furthermore, it is noteworthy that in situations like com-
mon anomaly detection setups with notable class imbal-
ance, Average Precision should be prioritized over ROC
AUC for assessing model performance. This is due to the
abundance of negative samples. While a model with con-
sistently high false positives and low false negatives might
exhibit a high ROC AUC, its precision is likely to be low.

We highlight key findings from our study. Firstly, we en-
hance the basic MIL approach to fall detection, surpassing
Sultani et al.’s [16] model. By refining the feature extractor
and loss function, we elevate the AUC from 75.41% (UCF-
Crime [16]) to 84.72%. This uncomplicated method has the
potential for further performance improvements through the
exploration of supplementary features, classifiers, and vari-
ations of the suggested loss function detailed in this paper.
Secondly, we identify a vulnerability in the existing state-
of-the-art VAD models. Specifically, they fail to demon-
strate enhancement when introduced to supplementary nor-
mal data. Our proposed variant and the S3R model [21]
show no advancement in terms of AP and AUC even with
the inclusion of an extra ≈ 22% of normal data.

Future research can extend our study by investigating di-
verse classifier architectures, assessing our model’s ability
to detect novel anomalies, and utilizing annotations from
datasets like UR-Fall [11] for training with weak labels. To
reduce false positive rates and enhance recall, an alternative
strategy could involve an ensemble that combines our solu-
tion with a frame-based classification model trained on the
fall datasets referenced in this paper.

7. Conclusion

VAD techniques based on Multiple Instance Learning
and weakly supervised learning showed great promise in
accurate fall detection. Feature extractors and the loss func-
tions play a great role in the performance. However, striking
a balance between minimizing false alarms and effectively
detecting most falls remains a challenge for SOTA models.
Continued efforts are needed to enhance the performance of
these systems.
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