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Abstract
Existing single and multi-frame monocular depth esti-

mation (MDE) approaches lack depth estimation consis-
tency around object edges, while single-frame approaches
generate scale-ambiguous depth albeit at a lower compu-
tational complexity. We revisit the framework design to ad-
dress these limitations and propose a joint approach that in-
tertwines depth estimation and panoptic segmentation net-
works. We present an instance-aware patch-based con-
trastive loss to ensure depth consistency within an object
in feature space. This approach disentangles the embed-
ding triplet and independently refines anchor-positive and
anchor-negative pairs, providing coherent depth within ob-
jects. Leveraging the panoptic information, we propose
masking small objects during photometric loss computation
while extracting 6-DoF pose estimates for dynamic objects
in a piece-wise approach, thus facilitating depth estimation
in dynamic scenes. We demonstrate this mechanism to be
suited for single and multi-frame MDE. In addition, to en-
sure scale fidelity in single-frame MDE, we capitalize on the
inherent linear relationship between computed depth and
ground truth when using self-supervised photometric loss-
based MDE. For this, we propose using a multi-frame depth
estimation as a teacher network to inject geometric insight
into the student MDE via a global scaling factor, thus gen-
erating absolute depth. We further improve the teacher
network architecture by introducing a multi-scale feature
fusion mechanism that benefits scenarios with significant
camera motion. We perform a comprehensive evaluation to
validate the efficacy of the proposed mechanism and obtain
state-of-the-art performance on the KITTI dataset.

1. Introduction
MDE holds paramount significance across various

domains, encompassing autonomous vehicles, mobile
robotics, and aerial systems. At the forefront of current
advancements, convolutional neural networks (CNNs) have
propelled the field, operating within the confines of su-
pervised learning paradigms [1, 12, 45]. These networks
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Figure 1. Overview of the proposed mechanism to introduce scale
into student depth estimation network using multi-frame teacher
network. For simplicity we donot show internal mechanism which
is presented in Fig. 4.

learn the intricate mapping between input images and cor-
responding high-density ground truth. However, generat-
ing such ground truth for training and evaluation remains
unfeasible due to cost constraints, labor-intensive annota-
tions, and scene dynamics that lead to occlusion errors
when aggregating LIDAR-derived point clouds. To circum-
vent these limitations, self-supervised learning emerges as
a cost-effective alternative for training MDE networks, har-
nessing scene geometry as a guiding principle [21]. This
approach intertwines the joint estimation of depth and mo-
tion during training and then reconstructs original frames
using the derived estimates. The photometric loss comes to
the fore, compelling the alignment of reconstructed frames
with their originals, constituting the supervisory beacon for
network training. Despite its scalability to novel scenes,
such self-supervised strategies inadvertently introduce scale
ambiguity in-depth estimation [16, 21, 59], curtailing their
broader application. Additionally, the adoption of photo-
metric loss presupposes a static world, a premise violated
by dynamic objects, consequently destabilizing the training
process. These multifaceted challenges beckon innovative
solutions to enhance the accuracy and applicability of self-
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supervised MDE frameworks.
Efforts to surmount these inherent limitations have led to

many advancements, specifically directed at enhancing the
performance of self-supervised MDE algorithms. To ensure
the static world assumption holds, several strategies have
emerged, encompassing the utilization of semantic segmen-
tation [7,29], auto-masking [16], and optical flow [55] tech-
niques. Moreover, for obtaining absolute depth, a variety of
approaches have surfaced, with temporally aligned images
being seamlessly integrated into frameworks such as the
multi-view geometry paradigm, generating cost-volumes
[51], or adopting structure-from-motion (SfM) methodolo-
gies [18]. These endeavors have also incorporated supple-
mentary information, including car velocity [18], GPS loca-
tion [4], and IMU measurements [56]. Despite the collec-
tive progress, challenges persist, notably the performance
shortfall of MDE in edge-rich regions, coupled with the de-
livery of scale-ambiguous depth, all within the constraints
of a computationally efficient framework. These intricacies
underscore the ongoing pursuit of innovative solutions to
address these nuanced shortcomings and redefine state-of-
the-art MDE techniques.

To ensure edge consistent depth estimation, [29] pro-
posed utilizing semantic segmentation as an auxiliary signal
and used patch-based triplet loss to ensure features within
each object have similar depth. In contrast, those outside the
object have depth differences. However, the efficacy of such
a framework faces challenges in scenarios involving occlu-
sion, where the semantic map might need to improve dis-
tinguishing between discrete entities, leading to akin depth
values for distinct objects. We illustrate instances of such
scenarios in the supplementary Appendix-C, underscoring
the framework’s limitations. Moreover, the direct applica-
tion of the triplet loss exhibits suboptimal outcomes, as it
aims to maintain the distance between anchor-negative (d−)
greater than the distance between anchor-positive (d+) by
a predefined margin (m), i.e., d− > d+ + m. Notably,
this approach overlooks the concurrent objective of mini-
mizing d+ for consistent depth. To address this, we propose
an innovative sampling technique coupled with adjustments
to the original triplet loss, enabling independent optimiza-
tion of the distances. Furthermore, we pivot from seman-
tic segmentation to panoptic for scenarios demanding depth
consistency amidst occlusions. This allows us to identify
distinct objects, ensuring depth differences in case of occlu-
sion.

When adhering to the static scene assumption, the in-
tegrity of pose estimation emerges as a pivotal determi-
nant, crucially impacting the quality of depth estimation
outcomes. Notable strides have been made to tackle this is-
sue by prior endeavors such as [3,34] that diligently sought
to rectify this limitation by identifying and estimating the
motion of dynamic objects. However, comprehensive mo-

tion estimation for all objects proves computationally bur-
densome and less accurate for smaller objects. While previ-
ous approaches often resorted to auxiliary pose estimation
networks to determine the pose of objects, we take a novel
approach. Leveraging the panoptic segmentation results, we
reconfigure the pose estimation network to facilitate piece-
wise pose estimation for individual objects within the scene.
This involves identifying static objects via Intersection over
Union (IoU) comparison between instance masks produced
by the panoptic branch. Subsequently, we match tempo-
rally adjacent instances based on the highest overlap and
perform a piece-wise pose estimation. Finally, these poses
are aggregated and combined with depth estimation results
to generate an accurate warping while considering dynamic
objects. Through this novel methodology, we ensure that
dynamic scenes do not impede the training process.

Finally, addressing the critical issue of scale ambiguity,
our approach underscores the intrinsic linear relationship
between scale-ambiguous estimations in self-supervised
MDE and absolute depth. This paves the way for equip-
ping self-supervised MDE with the capability to yield ab-
solute depth predictions. To achieve this, we enact a crucial
modification in the depth encoder branch, introducing the
prediction of a scale factor (γ). To guide scale prediction,
we leverage computationally expensive multi-frame depth
estimation network [51] and use this as a distillation mech-
anism to inject geometric information into the student net-
work. We introduce a multi-scale feature fusion mecha-
nism to improve the quality of depth estimation generated
by the teacher network to ensure improved feature represen-
tation. This benefits the cost volume and subsequent feature
matching, overcoming challenges posed by significant cam-
era motion. We present this distillation pipeline in Fig. 1
and summarize our methodology as,

• To improve the impact of triplet loss, we propose a dis-
entangled version that independently optimizes posi-
tive and negative distances.

• To improve pose estimation in dynamic scenes, we
leverage the panoptic masks to estimate poses for dif-
ferent objects, which are subsequently assembled for
performing the warping.

• To obtain absolute depth using MDE, we propose the
integration of a global scale factor estimated via the
distillation of depth from a multi-frame teacher net-
work.

• To improve the feature quality for higher feature
matching, we propose a multi-scale feature fusion
mechanism within the teacher network.

2. Related Works
2.1. Single-Frame Monocular Depth Estimation

MDE is an ill-posed problem as multiple mappings exist
from 3D points to pixels within an image. However, su-
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Figure 2. Overview of the proposed framework for performing multi-frame self-supervised monocular depth estimation with panoptic
segmentation as an auxiliary task. We further use the panoptic labels to generate piece-wise instance pose estimation.

pervised learning-based approaches [12, 45] overcame this
by learning the mapping between an input image and out-
put depth map. However, the requirement of a high-quality
depth map for paired training is undesirable for fine-tuning
on new domains. To alleviate this, self-supervised ap-
proaches are preferred as they combine depth and motion
information to be utilized as a guidance signal during opti-
mization.

2.1.1 Architectural Modifications
Initial works [59] proposed an encoder-decoder-based ar-
chitecture following UNet [46] for extracting depth and
ego-motion information from a video. Subsequently, Mon-
odepth2 [17] proposed an encoder using ImageNet [9] pre-
trained Resnet [22], which was used as a baseline architec-
ture for subsequent works. [39] improved the feature utiliza-
tion by redesigning the skip connections such that features
from multiple scales are fused. To further boost perfor-
mance, [30] proposed a multi-task framework for joint pre-
diction of depth and semantic segmentation using a shared
encoder. To preserve features lost by downsampling and up-
sampling operations, [18] proposed 3D convolutions-based
packing and unpacking operations as their replacement. To
further improve performance, attention and transformer-
based models [5, 27, 44, 49, 53] are used to correlate fea-
tures from different regions of an image. However, these
methodologies increase the computational cost of the un-
derlying method. To reduce the computational cost, [52]
incorporated a CRF-based mechanism to fuse information
from multiple scales.

2.1.2 Enforcing Geometric Constraints
While architectural modifications within the underlying
depth estimation network demonstrated improved perfor-
mance, several works focusing on enforcing geometric con-
straints were also proposed. [25] proposed fusing multi-
scale features while [54] utilized virtual normals to esti-
mate 3D scenes robustly. Subsequently, [35] proposed joint
prediction of both depth and depth gradients, which are
subsequently fused to obtain a refined depth map. In the
same line, GeoNet [43] jointly predicts surface normals and
depths from a single image to further improve the perfor-
mance of MDE networks.

2.1.3 Multi-task Architectures
Several works have explored Multi-Task architectures with
the motivation of leveraging different scene features to im-
prove performance on the core task. Focusing on improv-
ing depth estimation performance, [57] proposed multi-task
learning to jointly perform semantic, depth, and surface nor-
mal estimation. To ensure feature sharing between these
tasks, the authors proposed pattern-affinitive propagation.
Sharing the same principle, [26] proposed a geometry-based
distillation of semantic features using a pre-trained segmen-
tation network. Recently [29] propose integration of seman-
tic information to improve depth estimation around edged
via a semantic segmentation branch and triplet loss.

2.2. Multi-Frame Monocular Depth Estimation
Despite significant advancements made there remains an

untapped potential in harnessing information from previous
frames during inference, a feature not explored by existing
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architectures. A notable work, [51], underscored the value
of leveraging multiple frames during test-time, casting the
problem as a multi-view stereo task. This insight led to the
computation of a cost volume using adjacent frames, yield-
ing metric depth estimations. Another notable development,
DepthFormer [37], introduced the integration of transform-
ers and grouped self-attention mechanisms to enhance the
robustness of outcomes. While our research shares the
foundational motivation of [51], our approach surmounts
certain limitations associated with dynamic scenes. By cap-
italizing on panoptic segmentation-based piece-wise pose
estimation and its amalgamation, we achieve superior out-
comes in the realm of multi-frame self-supervised depth es-
timation.

3. Methodology

We first elaborate upon the mechanisms that can improve
the performance of multi-frame and single-frame MDE ap-
proaches, i.e., improving the edge details via panoptic seg-
mentation, improving depth consistency within objects, and
handling dynamic objects. Subsequently, we delve into
the linear relationship between scale-invariant and absolute
depth and how it can be leveraged to ensure scale-aware
self-supervised single-frame depth estimation. Finally, we
elaborate upon the multi-scale feature fusion mechanism
to improve feature aggregation from temporally adjacent
frames for computing the cost volume.

3.1. Improving Edge Details

We address the limitations of previous approaches [7,29]
that aimed to enhance depth estimation by incorporating
semantic segmentation using a shared encoder. Although
this strategy can boost depth estimation, it fails to distin-
guish between occluded objects of the same category. Con-
sequently, depth consistency is maintained across objects,
irrespective of their true depth values. We introduce a novel
integration of a panoptic segmentation branch to rectify this
issue and achieve more accurate edge details while effec-
tively discriminating between occluded objects of identical
classes. Incorporating panoptic segmentation in a resource
and compute efficient manner, we adopt the innovative You
Only Segment Once (YOSO) approach [24], which syner-
gizes panoptic and semantic segmentation by learning a ker-
nel that discriminates unique objects or semantic categories.
We present a comprehensive overview of our proposed ar-
chitecture for multi-frame self-supervised depth estimation,
built upon the principles of [51], in Fig. 2. Further elabora-
tion on our framework can be found in Appendix-A whereas
we would redirect the readers to [17] and [51] for insights
into self-supervised and multi-frame self-supervised depth
estimation respectively.

3.2. Revisiting efficacy of Triplet Loss
We reevaluate the motivation behind the triplet loss [29]

with the availability of object instances within the scene.
Our motivation centers on ensuring the depth estimation
network accurately detects edges, which becomes evident
through depth discontinuities around object boundaries.
Specifically, our observation emphasizes that in occluded
scenarios, the inability to distinguish foreground and back-
ground pixels effectively obscures boundaries, as the photo-
metric loss equates background pixels with foreground due
to shared disparity. We provide a brief overview of the ap-
proach presented in [29], which outlines utilizing seman-
tic maps to enforce geometric constraints. This involves
partitioning a given semantic label into K × K patches
with a stride of 1. These patches’ centers serve as an-
chors, while same-class features function as positives and
others as negatives. The triplet loss is employed to maxi-
mize the distance between anchor-positive (d+) and anchor-
negative (d−) instances, governed by a margin (m). The
distances are computed as the mean Euclidean difference
of L2-normalized depth features [29]. Despite its perfor-
mance improvement, we spotlight two crucial drawbacks:
equal weighting of all negative pixels and joint optimization
of anchor-positive and anchor-negative samples, leading to
sub-optimal results. To overcome these issues, we leverage
panoptic masks to introduce a supervised contrastive loss
paradigm. Under this, pixels within the mask are classified
as positives, while those outside the mask serve as negatives
within the same patch. This approach supersedes the triplet
loss and employs the supervised contrastive loss [31] using
L2 distance (·), denoted as:

LConstrastive =∑
i∈I

−1

|P (i)

∑
p∈P (i)

log
exp(zi · zp/τ)∑

n∈N(i) exp(zi · zn/τ)
(1)

Here, P (i) and N(i) refer to indices of positive and neg-
ative features, respectively, while zi, zp, and zn represent
anchor, positive, and negative features. The temperature pa-
rameter τ is introduced to adjust the magnitude of distance
computation.

3.3. Piece-wise Pose Estimation
Prior approaches in self-supervised depth estimation

have commonly adopted an approach of masking out dy-
namic objects during training to ensure consistent warping.
However, this strategy inadvertently excludes dynamic ob-
jects from the optimization process, thereby deviating from
the desired goal of accounting for their presence. We under-
take a comprehensive rethinking of the global scene pose
estimation pipeline to rectify this limitation. Our solution
involves a novel proposition: instance-specific pose estima-
tion, which is made feasible by integrating panoptic labels.
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By utilizing panoptic segmentation information for
two consecutive frames, we initiate a matching process
grounded in the mean Intersection over Union (mIoU) met-
ric. Objects with pixel counts below a predefined thresh-
old (α%) of the image resolution) are excluded from con-
sideration, as they typically correspond to distant objects
prone to pose estimation errors. The scene’s global dynam-
ics encompass both static and dynamic objects. The static
elements encapsulate classes categorized as stuff, such as
road, sidewalk, building, wall, fence, pole, traffic light, traf-
fic sign, vegetation, terrain, and sky. In contrast, dynamic
objects pertain to things categories like person, rider, car,
truck, bus, train, motorcycle, and bicycle. As such, the over-
all scene dynamics can be represented as a fusion of global
poses for static objects and instance-wise poses for dynamic
elements. This piece-wise approach for capturing global
scene translation can be seamlessly integrated into prevail-
ing self-supervised depth estimation models, enabling their
application in dynamic scenes without the need for mask-
ing. To facilitate this formulation and its self-supervised
training, stuff labels are utilized to establish binary masks
for objects sharing the same pose. Consequently, in a pair
of temporally adjacent frames, a pose estimation network
is employed, with the masked static scene as input, to de-
duce a global pose. Similarly, instance-wise pose estimation
is computed employing the masked instance image. With
global and instance-wise pose estimations at hand, standard
self-supervised practices for forward and backward warping
are applied. The comprehensive framework is summarized
in Fig. 3.
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Figure 3. Overview of the proposed piece-wise pose estimation
using tracked instance and semantic labels.

3.4. Scale-Aware Single Frame MDE
Single-frame MDE networks offer computational effi-

ciency, yet their prediction of scale-invariant depth poses
limitations on their utility. Prior methods, such as [17], at-
tempted to address this limitation by estimating the scale

factor through the computation of a median value, align-
ing the predicted depth with LiDAR-generated ground truth.
However, this approach contradicts the essence of self-
supervised learning. As an alternative, we propose lever-
aging the benefits of multi-frame networks to calculate ab-
solute depth. This pseudo-absolute depth can then be har-
nessed to train a single global scale factor, effectively en-
abling the conversion of relative depth predictions to abso-
lute depth using a single-frame MDE (MDE) network. This
is particularly relevant in the context of monocular videos,
where a constant global scale factor can be assumed to pro-
vide absolute depth information. In light of this, we em-
bed the computation of depth scaling within the framework
of the single-frame MDE architecture. This involves utiliz-
ing four 3×3 convolutional layers on encoder-derived fea-
tures, followed by a global average pooling layer and a sig-
moid activation function. A visual overview of the proposed
single-frame MDE architecture is illustrated in Figure 4.

We follow the knowledge distillation framework, en-
forced via L1 loss, presented in Fig. 1 to leverage absolute
depth generated by multi-frame MDE and infuse geometric
constraints in form of global scaling factor in single-frame
MDE.
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Depth 
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Element Wise 
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Figure 4. Overview of the proposed framework for performing
scale aware single frame self-supervised MDE with panoptic seg-
mentation as an auxiliary task. We use different color maps to
highlight scale-invariant (magma) and absolute depth (jet)

3.5. Multi-Scale Feature Fusion
In the context of utilizing temporally adjacent frames for

image projection in feature matching, it becomes evident
that the scale of objects can undergo significant changes.
This phenomenon arises due to camera motion, introduc-
ing variations in object dimensions. Conventional convo-
lutional methods prove inadequate in capturing and repre-
senting such intricate scale variations, leading to subopti-
mal results. To address this challenge, we introduce a novel
multi-scale feature fusion mechanism. This mechanism is
designed to incorporate a range of multiscale features into
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the feature representation process, a crucial step utilized for
both feature matching and cost volume computation. The
proposed fusion approach is depicted in Fig. 5, while more
comprehensive insights are provided in Appendix-E of sup-
plementary material.

Feature 
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3x3 Convolution
Upsampling
3x3 Strided Convolution

Input Image
H x W x 3

H/2 x W/2 x C H/4 x W/4 x C’ H/8 x W/8 x C’’

1x1 Convolution H/4 x W/4 x C’

Figure 5. Overview of the proposed multi-scale feature fusion for
improving the feature representation quality for performing multi-
frame depth estimation.

4. Experimental Evaluation
4.1. Datasets and Evaluation Metrics

We use KITTI [14] dataset and filter the images follow-
ing [10] as well as removing static frames [59, 60] result-
ing in 39810 and 4424 training and validation image triplets
comprising frames at timestamp t, t − 1, t + 1. To convert
predictions by self-supervised methods (except our scale-
aware student network) containing scale information, we
use median ground truth scaling [16,59] and evaluate depth
up to 80m [10, 13, 15, 16]. For quantitative evaluation we
follow prior works to compute mean absolute error (Abs
Rel), squared relative error (Sq Rel), root mean squared er-
ror (RMSE), log root mean squared error (RMSE log) and
accuracy under threshold (δ < 1.25i, i = 1, 2, 3).

4.2. Implementation and Training Details
4.2.1 Pseudo Panoptic Labels

Since we integrate an auxiliary panoptic branch within both
single and multi-frame MDE, we require access to train-
ing labels.which are not available for KITTI [14] dataset.
Hence we use a cityscapes [8] pretrained YOSO [24] net-
work to generate pseudo labels which are then used to train
the panoptic segmentation branch in a supervised learning
mechanism. Since we jointly predict stuff and things we use
bipartite matching loss [2] for training the panoptic branch
with a weight of 0.1 when trained either with multi-frame
or single-frame MDE.

For integrating the pose estimation within depth estima-
tion and optimized via a weakly supervised mechanism we
use the same loss function as Mask2Former [6] comprising

of binary cross entropy loss (Lce), dice loss [40] (Ldice),
and classification loss (Lcls).

LPan = λcls ∗ Lcls + λdice ∗ Ldice + λce ∗ Lce (2)
where λcls, λcls, λcls are set to 5.0, 5.0 and 2.0 following

[6]. Furthermore when integrated into the depth estimation
branch we set the weight of λPan to 0.35.

4.2.2 Multi-frame MDE
We first train the multi-frame MDE to ensure generation
of absolute depth for distillation to single-frame MDE. We
conduct our experiments on a system with 4x 4090 GPU
using Pytorch [41] framework and keeping batch size fixed
to 12.

Following [17], we use color and flip augmentations and
use an input resolution of 640x192 and use images at in-
stance t, t− 1 to compute the cost volume. We use ADAM
[32] optimizer (β1 = 0.9 and β2 = 0.999) with a learning rate
of 0.0001 for 20 epochs and reduce the learning rate by 0.1
for the last 5 epochs. Since our construction of piece-wise
pose estimation is consistent with prior global pose estima-
tion we donot modify the aggregate loss function. In our
experiments we refer to this network as ManyDepth+. We
fix the value of α to 1 and include the parameter sweep in
Appendix-G of supplementary.

4.2.3 Single-frame MDE
We consider two versions of single-frame MDE based on
the final output i.e. scale invariant depth (Ours-Student-
I i.e. HRDepth+) and scale-aware (Ours-Student-II i.e.
HRDepth++). We follow the approach of monodepth2 [17]
to obtain the scaling factor for Ours-Student-I model. We
train the models for 20 Epochs with an initial learning rate
of 0.0001 at a resolution of 640 × 192 consistent with Mon-
odepth2 [17]. We optimize the network using Adam [32]
with β1 = 0.9 and β2 = 0.999. For enforcing knowledge
distillation to learn the global scaling factor, we use L1 loss
with a weight of 0.5. It should be noted that the introduction
of knowledge distillation results in increase of training time
from 7 to 12 hours on the aforementioned system configu-
ration.

4.3. Comparison with SoTA

We summarize the qualitative results of different SoTA
in Tab. 1 and Fig. 6 for an input resolution of 640 × 192.
The quantitative results for higher resolution i.e 1024 ×
320 and 960 × 320 for single-frame and multi-frame MDE
are included in Appendix-H of supplementary. Based on
the quantitative results we can conclude our framework to
achieve SoTA performance on all metrics at various input
resolutions. We emphasize that irrespective of the backbone
network (ResNet-18 (R-18) [22], HRNet-18 [50] or Swin-
Transformer (SwinL-w7-22k) [38]), our approach surpasses
the performance of prior works.
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Method Test Frame Backbone Semantic Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SfMLeaner [59] 1 R-18 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Monodepth2 [17] 1 R-18 0.114 0.864 4.817 0.192 0.875 0.959 0.981
Guizilini et al. [19] 1 R-18 ✓ 0.117 0.854 4.714 0.191 0.873 0.963 0.981
SGDepth [33] 1 R-18 ✓ 0.113 0.835 4.693 0.191 0.879 0.961 0.981
SAFENet [7] 1 R-18 ✓ 0.112 0.788 4.582 0.187 0.878 0.963 0.983
Mono-Uncertainty [42] 1 R-18 0.111 0.863 4.756 0.188 0.881 0.961 0.982
PackNet-SfM [18] 1 PackNet 0.111 0.785 4.601 0.189 0.878 0.960 0.982
HRDepth [39] 1 R-18 0.109 0.792 4.632 0.185 0.884 0.962 0.983
FSRE-Depth [29] 1 R-18 ✓ 0.105 0.722 4.547 0.182 0.886 0.964 0.984
Insta-DM [34] 1 R-18 ✓ 0.112 0.777 4.772 0.191 0.872 0.959 0.982
DiffNet [58] 1 HRNet-18 0.102 0.764 4.483 0.180 0.896 0.965 0.983
RA-Depth [23] 1 HRNet-18 0.096 0.632 4.216 0.171 0.903 0.968 0.985
Monodepth2 [17] 1 R-50 0.110 0.831 4.642 0.187 0.883 0.962 0.982
FeatDepth [48] 1 R-50 0.104 0.729 4.481 0.179 0.893 0.965 0.984
Guizilini et al. [19] 1 R-50 ✓ 0.113 0.831 4.663 0.189 0.878 0.971 0.983
Li et al. [36] 1 R-50 ✓ 0.103 0.709 4.471 0.180 0.892 0.966 0.984
SGDepth [33] 1 R-50 ✓ 0.112 0.833 4.688 0.190 0.884 0.961 0.981
Johnston et. al. [28] 1 R-101 0.106 0.861 4.699 0.185 0.889 0.962 0.982
ManyDepth [51] 2 (-1, 0) R-18 0.098 0.770 4.459 0.176 0.900 0.965 0.983
TC-Depth [47] 3 (-1, 0, +1) R-18 0.103 0.746 4.483 0.180 0.894 0.965 0.983
DepthFormer [37] 2 (-1, 0) SwinL-w7-22k 0.090 0.661 4.149 0.175 0.905 0.967 0.984
Dynamicdepth [11] 2 (-1, 0) ✓ 0.096 0.720 4.458 0.175 0.897 0.964 0.984
DRAFT [20] 2 (-1, 0) - 0.097 0.647 3.991 0.169 0.899 0.968 0.984
Ours-Student-I 1 HRNet-18 ✓ 0.093 0.667 4.287 0.172 0.907 0.966 0.985
Ours-Student-II 1 HRNet-18 ✓ 0.090 0.658 4.221 0.171 0.911 0.967 0.986
ManyDepth+ 2 (-1, 0) HRNet-18 ✓ 0.086 0.701 4.158 0.168 0.919 0.969 0.986

Table 1. Qualitative results of SoTA on KITTI-2015 Eigen Split trained using monocular videos with and without additional segmentation
priors for an input resolution of 640 × 192. For Abs Rel, Sq Rel, RMSE, and RMSE log, lower is better, whereas δ < 1.25, δ < 1.252,
δ < 1.253 highlights metrics where higher is better.

4.3.1 Single-Frame MDE

We first compare the performance with single-frame SoTA
algorithms wherein we observe (Ours-Student-I) to improve
the performance of baseline DiffNet without making ar-
chitectural modifications such as RA-Depth. Unlike RA-
Depth that utilized a specially designed HRDecoder to bet-
ter leverage multi-scale features, we proposed integration of
a panoptic segmentation head based on class and instance
specific kernel prediction. From ablation, we demonstrate
this to provide better results in depth estimation. We further
highlight a significant performance boost when compared
to prior work Insta-DM [34] that leverages similar concept
of instance-wise pose estimation using prior access to in-
stance labels. We highlight the prerequisites of Insta-DM
to make it a two stage network, whereas the proposed ap-
proach predicts panoptic labels simultaneously with depth
that enables refinement of both panoptic labels based on
depth features and vice-versa using contrastive loss. We
highlight this to be the primary reason for significant per-
formance boost. Another direction for performing self su-
pervised depth estimation while overcoming the restrictions
imposed by static-scene assumption is to perform optical
flow and scene flow [20]. However such approaches are
computationally expensive during both training and infer-
ence. Furthermore from the qualitative results we demon-
strate that we are able to achieve superior performance for

both the student and teacher networks.
We also compare the performance of the Student-I net-

work with prior works that leveraged additional semantic
information for improving the performance of depth estima-
tion such as Guizilini et al. [19], SGDepth [33], SafeNet [7],
FSRE-Depth [29], Insta-DM [34], Li. et al. [36]. Herein
we observe a significant performance boost across models
which we attribute from ablation to arise from better abil-
ity to distinguish different occluded objects and assigning
them different depths as should be the case. From quali-
tative results in Appendix-C we can also conclude that us-
ing segmentation branch results in poor occlusion handling
wherein the object boundaries are thicker.

4.3.2 Multi-Frame MDE
In case of multi-frame MDE, we highlight the proposed
teacher network to achieve SoTA performance. While the
original manydepth [51] was performace bound around
edges and in dynamic scenes this was subsequently ad-
dressed by Dynamicdepth [11] and DRAFT [20]. Dy-
namicdepth proposed construction of occlusion aware cost-
volume to overcome this issue whereas DRAFT performs
optical and scene flow to overcome these limitations. How-
ever in this work we overcome these limitations via con-
struction of instance wise pose estimation allowing to
model different dynamic objects thus aiding in image recon-
struction which in turn ensures accurate depth estimation.
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Figure 6. Qualitative comparison of SoTA self-supervised MDE algorithms alongside proposed Ours-Student-I. We highlight performance
around object boundaries by cyan colored boxes to demonstrate superior estimation performance. Additional qualitative results are pre-
sented in Appendix-F of supplementary.

5. Conclusion

In this work we tackle the inherent challenges associ-
ated with self-supervised MDE (MDE) algorithms, offer-
ing a viable alternative to supervised methods that rely
on high-density ground truth data. Existing single and
multi-frame MDE approaches exhibit certain limitations,
including imprecise depth estimations around object bound-
aries and scale-ambiguous depth in single-frame solutions,
albeit with lower computational demands. To surmount
these challenges, we propose a novel joint framework
that intertwines depth estimation and panoptic segmenta-
tion networks. Leveraging an instance-aware patch-based
contrastive loss, we ensure coherent depth representations
within individual objects, effectively disentangling embed-
ding triplets to independently refine anchor-positive and
anchor-negative pairs. Capitalizing on panoptic informa-
tion, we mask small objects during photometric loss com-
putation and facilitate the extraction of 6-DoF pose esti-
mates for dynamic objects in a piece-wise manner, thus
enhancing depth estimation in scenes with motion. No-
tably, our approach caters to both single and multi-frame

MDE paradigms. Additionally, to ensure scale consistency
in single-frame MDE, we leverage the intrinsic linear re-
lationship between computed depth and ground truth by in-
troducing self-supervised photometric loss-based MDE. We
propose using a multi-frame depth estimation network as
a teacher to impart geometric understanding to the student
MDE via a global scaling factor, ultimately achieving abso-
lute depth prediction. Furthermore, our enhancements ex-
tend to the teacher network’s architecture through the incor-
poration of a multi-scale feature fusion mechanism, a so-
lution particularly beneficial in scenarios characterized by
substantial camera motion. Rigorous evaluation substanti-
ates the efficacy of our proposed mechanisms, culminating
in state-of-the-art performance on the KITTI dataset. This
work not only pushes the frontiers of self-supervised MDE
but also addresses crucial aspects like scale fidelity and dy-
namic scene adaptability, thereby contributing significantly
to the advancement of computer vision in challenging real-
world scenarios.
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Gaidon. Learning optical flow, depth, and scene flow without
real-world labels. IEEE Robotics and Automation Letters,
7(2):3491–3498, 2022. 7

[21] Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,
2003. 1

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3, 6

[23] Mu He, Le Hui, Yikai Bian, Jian Ren, Jin Xie, and Jian Yang.
Ra-depth: Resolution adaptive self-supervised monocular
depth estimation. In European Conference on Computer Vi-
sion, pages 565–581. Springer, 2022. 7

[24] Jie Hu, Linyan Huang, Tianhe Ren, Shengchuan Zhang,
Rongrong Ji, and Liujuan Cao. You only segment once: To-
wards real-time panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17819–17829, 2023. 4, 6

[25] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani.
Revisiting single image depth estimation: Toward higher
resolution maps with accurate object boundaries. In 2019
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 1043–1051. IEEE, 2019. 3

[26] Jianbo Jiao, Yunchao Wei, Zequn Jie, Honghui Shi, Ryn-
son WH Lau, and Thomas S Huang. Geometry-aware distil-
lation for indoor semantic segmentation. In Proceedings of

239



the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2869–2878, 2019. 3

[27] Adrian Johnston and Gustavo Carneiro. Self-supervised
monocular trained depth estimation using self-attention and
discrete disparity volume. In Proceedings of the ieee/cvf con-
ference on computer vision and pattern recognition, pages
4756–4765, 2020. 3

[28] Adrian Johnston and G. Carneiro. Self-supervised monocu-
lar trained depth estimation using self-attention and discrete
disparity volume. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4755–4764,
2020. 7

[29] Hyunyoung Jung, Eunhyeok Park, and Sungjoo Yoo. Fine-
grained semantics-aware representation enhancement for
self-supervised monocular depth estimation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 12642–12652, 2021. 2, 3, 4, 7

[30] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491,
2018. 3

[31] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. Advances
in neural information processing systems, 33:18661–18673,
2020. 4

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[33] Marvin Klingner, Jan-Aike Termöhlen, Jonas Mikolajczyk,
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