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Abstract

Current weakly supervised video anomaly detection al-
gorithms mostly use multiple instance learning (MIL) or
their varieties. Almost all recent approaches focus on how
to select the correct snippets for training to improve per-
formance. They overlook or do not realize the power of
whole-video classification in improving the performance
of anomaly detection, particularly on negative videos. In
this paper, we study the power of whole-video classifica-
tion supervision explicitly using a BERT or LSTM. With this
BERT or LSTM, CNN features of all snippets of a video
can be aggregated into a single feature which can be used
for whole-video classification. This simple yet powerful
whole-video classification supervision, combined with the
MIL and RTFM framework, brings extraordinary perfor-
mance improvement on all three major video anomaly de-
tection datasets. Particularly it improves the mean average
precision (mAP) on the XD-Violence from SOTA 78.84% to
new 82.10%. These results demonstrate this video classi-
fication can be combined with other anomaly detection al-
gorithms to achieve better performance. The code is pub-
licly available at https://github.com/wjtan99/
BERT_Anomaly_Video_Classification.

1. Introduction

Surveillance cameras are widely used in public places
for safety purposes. Enpowered by machine learning and
artificial intelligence, surveillance cameras become smarter
using automatic object or event detection and recognition.
Video anomaly detection is to identify the time and space of
abnormal objects or events in videos. Examples include in-
dustrial anomaly detection and security anomaly detection,
and more.

Depending on the annotation of the training data and
the algorithms, anomaly detection is categorized into three

*The work was done when Tan was working for LinkSprite and
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types - unsupervised, supervised, and weakly supervised.
The unsupervised one learns only on normal videos assum-
ing the unseen anomalous videos have high reconstruction
errors. This approach’s performance is usually poor be-
cause it lacks knowledge of the abnormality in anomalous
videos and inability to learn the normal patterns in normal
videos. The supervised one is expect to have the best per-
formance. However, due to the fact that the frame-level
annotation is very time consuming to get and prone to hu-
man mistakes, it is less studied. In weakly supervised one,
since only video level annotation of if there is anomaly in a
video is needed, the dataset is a lot easier to get and robust
to human mistakes. It draws most attentions in the video
anomaly detection area.

In the weakly supervised anomaly detection, a multiple
instance learning (MIL) or its variety is typically used [21].
From a pair of abnormal and normal videos, a positive bag
of instances is formed on the abnormal video, and a neg-
ative bag of instances on the normal video. A pretrained
CNN network is used to extract a feature on a snippet of
video frames. A classification network is trained on all the
instances of these two bags. The one instance with the max-
imum classification score in a bag is chosen to represent the
bag. The MIL tries to maximize the separation between the
maximum scores of the positive bag and the negative bag.

In almost all follow-up studies, different approaches are
proposed on how to select the best quality snippets to train
the model. Some choose multiple snippets instead of one
out of a video [22], others choose a sequence of consecu-
tive snippets [14], [7]. Some of them use the snippet clas-
sification score to choose snippets, others use other metrics
including feature magnitude [22]. Some use GCN to im-
prove the quality of the chosen snippets [30].

However, almost all of them overlook or do not fully re-
alize the power of the video classification and its impact
on the anomaly detection performance. In anomaly de-
tection, the videos are classified to anomalous or normal
videos. This strong information has been overlooked ex-
cept in RTFM [22], [14], and [29]. In RTFM, the top-k
snippets with maximum feature magnitude are chosen per
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video, and the mean of their classification scores is used
as a video classification score in the binary cross entropy
(BCE) loss, even though the authors do not call it so.

In [29], a GCN is used to approximately model the video
classification, and a video classification BCE loss is used.
The work that is most relevant to ours is [14]. While we
are studying an explicit video classification using BERT [4],
[9], we find that they use a transformer to model the video
classification with a BCE loss. In addition to this video clas-
sification, the transformer is also used to refine the CNN
feature . They propose a multiple sequence learning (MSL)
finding consecutive snippets to improve the training, which
is claimed as their main contribution. However, in our work
we find that a BERT or a transformer does not necessarily
fulfill both tasks of video classification and feature refine-
ment at the same time. We find that it does not help the
feature refinement, so we solely study its role in video clas-
sification. With this simple single change, without MSL
or RTFM, we achieve superior performance on the UCF-
Crime [21] and the ShanghaiTech [16] datasets.

We go further to use this BERT video classification on
top of the RTFM. We combine their BCE loss and our pro-
posed BERT-enabled BCE loss, and achieve extraordinary
performance on the XD-Violence dataset. Based on these
results, we demonstrate the power of the video classifica-
tion supervision in anomaly detection. It can work alone or
combine other techniques like RTFM to boost the perfor-
mance of anomaly detection.

Our contributions are summarized as follows,

• We explicitly study the power of video classification
supervision in weakly supervised video anomaly de-
tection. This video classification is achieved with a
BERT on snippet CNN features. We find that the
BERT should only be used for the video classification,
but not for feature refinement. Our key contribution is
we find out the fact that the power of video classifica-
tion has been previously overlooked and now the gap is
filled in this work. As an ablation study, we implement
a simpler LSTM based video classifier. Even though
its complexity is a lot lower, its performance is almost
the same as the BERT.

• There are two inference modes of this proposed
scheme. The second online mode offers a very attrac-
tive low complexity option, even though it only gets
partial performance improvement from the video clas-
sification supervision.

• We study this algorithm alone in the standard MIL
framework on the UCF-Crime and the ShanghaiTech
datasets. We test RGB, Flow or RGB+Flow modal-
ity. This simple introduction of video classification
in anomaly detection brings superior performance im-
provement on every modality. On the RGB+flow

modality, we achieve the best ROC-AUC performance,
exceeding the SOTA by 1.5%.

• We study this algorithm on top of the RTFM [22] on
the UCF-Crime and the XD-Violence datasets. We
test the RGB modality only. While our algorithm
only achieves a marginal ROC-AUC performance im-
provement on the UCF-Crime dataset, it achieve nearly
3.51% AP performance improvement on the XD-
Violence dataset. This improvement demonstrates
that our proposed explicit video classification can
combine with many other video anomaly detection
algorithms where an explicit video classification is
not used.

2. Related Work
Unsupervised anomaly detection assume only normal

training data is available and solves this problem with
one-class classification using hand-crafted features or deep
learning features. Typical approaches use pre-trained CNN,
apply constraints on the latent space of normal manifold
to learn normality representation, or use data reconstruc-
tion error with generative models. There are very few work
on the supervised learning for anomaly detection since the
frame level annotation is very hard to get. Two examples
are [15] and [13]. For a review of video anomaly detection,
the readers are referred to [10] and [18].

Weakly supervised anomaly detection has shown sub-
stantially improved performance over the self supervised
approaches by leveraging the available video-level anno-
tations. These annotation only gives a binary label of ab-
normal or normal for a video. Sultani et al. [21] propose
the MIL framework using only video-level labels and in-
troduce the large-scale anomaly detection dataset, UCF-
Crime. This work inspires quite a few follow-up studies
[30], [17], [26], [28], [27], [7], [22], [14].

However, in the MIL-based methods, abnormal video la-
bels are not easy to be used effectively. Typically, the clas-
sification score is used to tell if a snippet is abnormal or
normal. This score is noisy in the positive bag, where a
normal snippet can be mistakenly taken as the top abnor-
mal event in an anomaly video. To deal with this problem,
Zhong et al. [30] treat this problem as a binary classification
under noisy label problem and use a graph convolution neu-
ral (GCN) network to clear the label noise. In [7], a mul-
tiple instance self-training framework (MIST) is proposed
to efficiently refine task-specific discriminative representa-
tions with a multiple instance pseudo label generator and
a self-guided attention boosted feature encoder. In [28],
a weakly-supervised spatio-temporal anomaly detection is
proposed to localize a spatio-temporal tube that encloses
the abnormal event. In [28], causal temporal cue and fea-
ture discrimination are explored. In [17], a high-order con-
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Figure 1. Block diagram of our anomaly detection with BERT
video classification, (a) training, (b) testing with video classifica-
tion, (c) testing without video classification.

text encoding model is used to to encode temporal varia-
tions as well as high-level semantic information for weak-
supervised anomaly detection.

In RTFM [22], a robust temporal feature magnitude
(RTFM) is used to select the most reliable abnormal snip-
pets from the abnormal videos and the normal videos. They
unify the representation learning and anomaly score learn-
ing by an temporal feature ranking loss, enabling better sep-
aration between normal and abnormal feature representa-
tions, improving the exploration of weak labels compared to
previous MIL methods. In [14] a multiple sequence learn-
ing (MSL) is used. The MSL uses a sequence of multiple
instances as the optimization unit instead of one single in-
stance in the MIL. In addition, a transformer is used to refine
the snippet features. A video classification is used with the
transformer classification token.

In [29], both video and audio signals are used to detect
anomaly in video with audio. They use a GCN to model the
long-term and local dependencies. At the same time, they
release so far the largest video anomaly detection dataset -
the XD-Violence dataset.

3. Proposed Methods

We propose to use the BERT as a video classifier for it
extraordinary capability to aggregate information with both
spatial and temporal attention. The diagrams of the training
and testing pipelines are shown in Figure 1. More details
will be given below.

Let’s first define some terms which may be confusing.
Video classification refers to classify every video to be nor-
mal (negative) or anomalous (or abnormal, positive). Snip-
pet is defined as a sequence of video frames of fixed length,
in this work, 16. Segment is defined as a sequence of snip-
pets. In this work we follow previous work to divide every
training and validation videos to equal length 32 segments.
In testing video, either snippet or segment can be used.

3.1. Introduction to BERT

The transformer first appeared in 2017 in a paper enti-
tled “Attention Is All You Need” [24]. It is a very success-
ful Natural Language Processing (NLP) model and has be-
come one of the break-through innovations in recent years.
Since then, the transformer has been extended to almost ev-
ery field of machine learning, including image classifica-
tion [5], object detection [1], and video understanding [8]
and many more. The transformer pay attention to every el-
ement of a sequence of input data in self-attention and ex-
tracts the traces of the entire data set.

Following the success of the transformer - a one di-
rectional model, the Bi-directional Encoder Representa-
tions from Transformers (BERT) [4] is a bidirectional self-
attention model, which has also been a big success in many
downstream NLP tasks. The bidirectional property en-
ables BERT to fuse the contextual information from both
directions. Moreover, BERT introduces challenging un-
supervised pre-training tasks which leads to useful repre-
sentations for many tasks. BERT is introduced in [9] for
video action recognition and achieves SOTA performance
on two major action recognition datasets, UCF-101 [20] and
JHMDB-51 [12]. We are inspired by the BERT, particularly
its application on action recognition [9].

In [9], the BERT is used as a late pooling function to
replace the previous widely used global average pooling
(GAP). The input to the BERT is the internal CNN fea-
ture map usually taken before the GAP and FC layers. To
preserve the positional information, a learned positional en-
coding is added to the extracted features. In order to per-
form classification, additional classification token xcls is
appended as in [4]. The classification is implemented with
the corresponding classification vector ycls, which is sent to
FC layers for classification prediction.

The general single head self-attention model of BERT is
formulated as:
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yi = PFFN

 1

N(x)

∑
j

g(xj)f(xi, xj)

 (1)

where xi values are the input vector including positional
encoding; i indicates the index of the target output tem-
poral position; j denotes all possible combinations; and
N(x) is a normalization term. The function g() is the lin-
ear projection inside the self-attention mechanism of BERT,
whereas function f() denotes the similarity between xi and
xj as f(xi, xj) = softmaxj(θ(xi)

Tϕ(xj)), where the
functions θ() and ϕ() are linear projections. The learn-
able functions g(), θ() and ϕ() try to project the feature
embedding vectors to a better space where the attention
mechanism works more efficiently. The outputs of g(),
θ() and ϕ() functions are usually called value, query and
key [24] . PFFN is position-wise feed-forward network
(PFFN) applied to all positions separately and identically as
PFFN(x) = W2GELU(W1x+b1)+b2, where GELU()
is the Gaussian Error Linear Unit (GELU) activation func-
tion [24]. The classification vector ycls takes similar form
as for yi,

ycls = PFFN

 1

N(x)

∑
j

g(xj)f(xcls, xj)

 (2)

In our work, since our focus is to study the impact of
the video classification, our main goal is to use the learned
classification embedding ycls which aggregates the tempo-
ral features of a video into a single feature for video classi-
fication. The input vector xi’s are the feature vectors of the
segments. The learned better subspace for feature represen-
tation yi’s are a plus if they work better than the original
features xi’s in anomaly MIL. However, we have a strong
motivation why we do not have to use it for application pur-
pose - to have a solution in inference mode that has low
complexity as the original MIL framework [21].

3.2. Proposed Training Process

Shown in Figure 1 are the block diagram of our proposed
anomaly detection with explicit video classification. We
call this proposed solution MIL-BERT.

Figure 1(a) is the training pipeline. First, given a video,
frames are extracted into snippets of 16 frames. A pre-
trained 3D CNN backbone network is used to extract CNN
feature. In the diagram we demonstrate a I3D network
[3], but other networks, C3D [23] and newer X3D [6], or
MoViNet [11] can also be used. This backbone network
keeps frozen and does not participate our training. The out-
put snippet features are denotes as fi, j = 1, 2, ..., N , where
N is the number of snippets of the video. These features are

divided equally into 32 segments xi, i = 1, 2, ..., 32. This
function is defined as,

xi = seg({fj , j = 1, 2, ..., N}) (3)

where seg() stands for the segmentation on snippets. Its
inverse function is denoted as seg−1().

The segmented features xi are sent to the BERT as input
temporal features. The output features yi in a different sub-
space and the classification feature ycls are output after all
the bidirectional attention mechanisms in BERT. The stan-
dard MIL anomaly detection framework can take the feature
xi or yi as input. We propose to send the video classifica-
tion ŷ out of the BERT to the MIL as an input. This similar
idea is also used in [14].

We keep using the MIL ranking loss function with the
smoothness and sparsity term as in [21]. We add the video
classification binary cross entropy (BCE) loss onto it. So
the overall loss function is defined as,

l =max(0, 1−max
i∈Ba

s(via) + max
i∈Bn

s(vin))

− yalog(p(ŷcls,a))− (1− yn)log(1− p(ŷcls,n)) (4)

where the subscript a and n denotes anomalous and normal
video, v is an input feature instance, which can be xi, yi,
fi in our work. Ba and Bn are the bags of segments in the
abnormal and normal video, s(.) is the predicted anomaly
scoring function in range of 0 and 1. The function max is
taken over all instances in a bag. It is expected that in the
positive bag, the highest-scored instance is a true abnormal
segment. The highest-scored instance in the negative bag
is the one most similar to the positive bag, but is actually a
negative instance. This makes the negative instance a hard
one and therefore benefits the discriminability in the model
training. In the BCE loss part, we only keep part of the stan-
dard form since ya = 1, yn = 0, p is the scoring function of
the video classifier. The smoothness and sparsity terms are
still used, even though they are not shown in this equation.

In Figure 1(a) we have the yi’s on a dashed line as an
optional input to the MIL block. We will study how the this
new feature work in anomaly detection.

3.3. Proposed Testing Process

In the training of BERT and the downstream MIL block,
the input features are always segmented into 32 segments.
This is required by both the standard implementation of the
BERT and the MIL block. However, this is not required in
the testing or inference mode.

In Figure 1(b) a testing pipeline is shown, where the
video classification score p(ŷcls) is combine with the MIL
snippet scores s(vi). So the final snippet anomaly score is,

score(vi) = s(vi)p(ŷcls). (5)
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This is called a score correction method in [14]. We con-
ceive this idea before we find the work in [14]. How-
ever, [14] uses the feature after the transformer, while in
our work, we use the original feature in the MIL block.

In Figure 1(b) we use the original feature fi as input to
the MIL block in an online mode, where features can go
into the MIL block for processing as they become available.
We can also use xi in an offline mode, where all the video
features are divided into 32 segments before they go into
the MIL block. This online mode is used in many previous
work’s implementation. However, the BERT block requires
to have 32 segment features, so Figure 1(b) can only actu-
ally work in an offline mode.

In Figure 1(c) we show a simplified testing mode, where
the video classification score is not used. In this mode, the
BERT is used in the training process but is not used at all at
testing time. This make this model very attractive since it
has very low complexity.

3.4. Combining with RTFM

The proposed method can work alone, or combine with
other anomaly detection methods. We use the RTFM [22] as
an example. In this case, the MIL ranking loss is replaced
with the feature magnitude based ranking loss of RTFM,
and our BCE loss is balanced with RTFM’s BCE loss. So
the total loss function is defined as,

l = βBCEBERT +(1−β)BCERTFM+RTFMranking
(6)

where the BERT BCE loss is defined in last line of Equation
(4), and the RTFM BCE loss and ranking loss can be found
in [22]. This proposed solution is called RTFM-BERT.

In RTFM, the BCE loss is defined on the top-k snip-
pets whose feature magnitudes are the largest in a video.
They call this classifier a snippet classifier. Since these top-
k snippets are selected per video, and their anomaly scores
are averaged to represent the video, this score actually rep-
resent the whole video class. After doing some analysis we
find that this is one of the key contributions of RTFM. When
we try to remove this BCE loss, or replace with a snippet
score ranking loss as in [21], the performance of RTFM be-
comes a lot worse. So the authors of RTFM may not realize
that they have put the power of video classification implic-
itly in their solution.

3.5. Discussion: Why is video classification impor-
tant

From Equation (5) we can see that the video classifica-
tion score (p(ŷcls)) helps the snippet prediction score s(vi).
For an anomalous snippet, the video classification score
does not have effect since if it is not used, then the snip-
pet score is simply s(vi). For a normal snippet, when the

video classification score is small (near 0), then the snippet
prediction score is suppressed further smaller. This helps to
reduce the chance that a normal snippet is mistakenly clas-
sified as an anomalous one.

In addition, even if the video classification score is not
used in Equation (5), the video classification also helps the
anomaly detection implicitly. In Equation (4), the video
classification is on the BERT output classification vector
ŷcls, which is a function of the input features vi. The video
classification is correct if the MIL selects the correct max-
scored instance in the anomalous and normal bags. So this
explicit video classification helps the MIL to select the cor-
rect instances.

4. Experiments
4.1. Datasets

We use three anomaly detection datasets: UCF-Crime
[21], ShanghaiTech [16], and newly released XDViolence
[29]. We do most of our ablation study on UCF-Crime.

UCF-Crime [21] is a large-scale anomaly detection
dataset that contains 1900 untrimmed videos with a total
duration of 128 hours from real-world street and indoor
surveillance cameras. UCF-Crime consists of complicated
and diverse backgrounds. Both training and testing sets
contain the same number of normal and abnormal videos.
The data set covers 13 classes of anomalies in 1,610 train-
ing videos with video-level labels and 290 test videos with
frame-level labels.

ShanghaiTech [16] is a medium-scale dataset from a
fixed street video surveillance camera. It has 13 different
background scenes and 437 videos, including 307 normal
videos and 130 anomaly videos. The original dataset is a
popular benchmark for the anomaly detection task that as-
sumes the availability of normal training data. Zhong et al.
[30] reorganised the data set by selecting a subset of anoma-
lous testing videos into training data to build a weakly su-
pervised training set, so that both training and testing sets
cover all 13 background scenes.

XD-Violence [29] is a recently proposed large-scale
multi-scene anomaly detection data set, collected from real
life movies, online videos, sport streaming, surveillance
cameras and CCTVs. The total duration of this data set
is over 217 hours, containing 4754 untrimmed videos with
video-level labels in the training set and frame-level labels
in the testing set. It is currently the largest publicly available
video anomaly detection data set.

4.2. Evaluation Metrics

We follow previous work [21], [22], [14] to use the
frame-level area under the ROC curve (AUC) as the eval-
uation metrics on the UCF-Crime and the Shanghai Tech
datasets. Following [29], we use average precision (AP) as

206



the evaluation metric on the the XD-Violence dataset.
Please note that there are two ways to evaluate the AUC

or AP performance on the testing dataset. Since the video
features are first in snippet, then divided to 32 segments,
there are also two ways to do the testing, where the snippet
or segment features are used as input to the MIL block, and
their performance differs. We use the better of these two
to benchmark previous and our work, unless specified oth-
erwise. In the first way where snippet feature is used, the
MIL score is mapped back to frame simply by repeating the
score 16 times. In the second way where the segment fea-
ture is used, we first do an inverse segmentation seg−1 as in
Equation (3) where each segment’s score is mapped back to
the original snippets, then every snippet’s score is repeated
16 times.

4.3. Implementation Details

We implement the BERT and MIL in PyTorch, the BERT
code is borrowed from [9]. The default BERT uses 2 layers
and 8 attention heads. An initial learning rate of 1E-4 is
used, and the training runs 100 epochs. After that some
manual fine tune may be used. Two dataset iterators, one
for the abnormal data and the other for the normal data, are
used. This way, the pairing of abnormal and normal data
is random, even when the numbers of abnormal and normal
samples are different. We use the Adam optimizer.

For the video snippet feature, we use two different I3D
network. In [22], the I3D with Resnet50 [25], whose fea-
ture dimension is 2048, is used. In [29] and [19], the
I3D with Resnet18 [2], whose feature dimension is 1024
is used. We use two sets of UCF-Crime and ShanghaiTech
pre-generated features we find online, one used in [19] and
the other used in in [22]. The first one has both RGB and op-
tical flow (simply called Flow hereafter) without multiple-
crop augmentation, the other one has RGB only with 10-
crop augmentation. On the UCF-Crime, we call the first fea-
ture set UCF-Crime, and the second on UCF-Crime-RTFM.
For the XD-Violence dataset, we use the 5-crop augmented
RGB feature generated by the author of the dataset [29].

For the evaluation of the combination of our BERT video
classification on top of RTFM, we use the code base of
RTFM and add BERT into it. As an ablation study, we add
one FC layer at the input of the snippet feature, when the
feature dimension is 2048. With this change the number
of total model parameter is reduced significantly while the
impact on performance is negligible.

4.4. Pre-study on Feature Sets

Since we use two sets of pre-generated feature sets on
UCF-Crime and ShanghaiTech, we first want to confirm the
consistency of these two feature sets. In addition to different
modality and crop, the first feature set is L2 normalized,
while the second feature set is not.

Feature Set L2-Norm? Segment Snippet
AUC(%) AUC(%)

[19] Yes 80.05 -
[22] No 80.03 79.22
[22] Yes 79.59 79.54

Table 1. Prestudy results of two UCF-Crime feature sets. Standard
MIL and RGB modality is used. One-crop is used in all cases. 32
segments are used in the testing mode.

Dataset Modality AUC(%) AUC-2(%)
UCF-Crime RGB 82.69 79.76
UCF-Crime Flow 85.56 80.64
UCF-Crime RGB+Flow 86.71 82.34
ShanghaiTech RGB 91.55 80.59
ShanghaiTech Flow 96.75 83.31
ShanghaiTech RGB+Flow 97.54 87.62

Table 2. BERT-MIL performance on UCF-Crime and Shang-
haiTech

In this experiment we test the standard MIL, RGB only,
and 1-crop only. The feature set [19] is already L2-
normalized and divided into 32 segments. For the RTFM
[22] feature set, we test both L2-norm and non-L2-norm.
In RTFM design, L2 is not used, while L2 normalization
is suggested in original MIL work [21]. We use the 32-
segments in the testing mode. The results are listed in Table
1. We see that the results are all very close to each other.
On the RTFM feature set, non- L2-norm performs slightly
better. So in our following comparison, we always use the
best result of every method. From this prestudy, we see
that these two different feature sets give about same perfor-
mance.

4.5. MIL-BERT on UCF-Crime and ShanghaiTech

In this study we use the UCF-Crime feature set pre-
generated in [19]. We use 32 segments in the testing mode.
These features do not use multiple cropping, and are L2-
normalized.

We first check the video classification only to look at
how accurate it is. For this purpose all MIL functions are
turned off. The accuracy results for the RGB, Flow, and
RGB+Flow are 83.45%,85.52%, 90.00%, respectively.

After that we turn the MIl functions back on, and the
MIL-BERT is trained end to end. For ablation study pur-
pose, we test a two-step training: first train the video classi-
fier, then freeze BERT and train MIL only. The performance
is same as the end to end training. The experiment results
are listed in Table 2. Note that in this table, AUC uses the
segment score defined in Equation (5), while AUC-2 do not
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Dataset FC? β AP or AP-2 or
AUC (%) AUC-2 (%)

XD-Violence No 0.5 82.10 77.77
XD-Violence No 0.7 79.00 74.40
UCF-Crime No 0.5 84.33 83.80
UCF-Crime No 0.7 83.84 83.08
UCF-Crime Yes 0.5 84.12 83.50

Table 3. RTFM-BERT on UCF-Crime and XD-Violence. RGB, 5-
crop, and snippet feature are used. FC denotes a FC layer is used
on input feature to reduce dimension to 1024. On UCF-Crime, the
metric is AUC.

Classifier Feature AUC (%)
BERT xi 86.71
BERT yi 83.75
LSTM xi 86.59

Table 4. Performance of using BERT features yi in MIL-BERT
on UCF-Crime RGB+Flow modality. Also included is an LSTM
based video classifier with feature xi.

use the video classification score p(ŷcls) in Equation (5).
The AUC and AUC-2 represent the testing mode in Fig-
ure 1(b) and 1(c), respectively. We find that the RGB is
the weakest modality in UCF-Crime, the Flow is better, and
RGB+Flow gives the best performance. We observe that
our best AUC with RGB+Flow modality is better than the
SOTA result.

We repeat the test on ShanghaiTech. Again we use the
feature set pre-generated in [19]. We use 32 segments in the
testing mode, one-crop, and L2-normalized features. The
experiment results are listed in Table 2. The trend is very
similar as on UCF-Crime. The RGB+Flow gives the best
AUC of 97.54%, exceeding the SOTA result already.

4.6. RTFM-BERT on UCF-Crime and XD-Violence

We choose to test RTFM-BERT on UCF-Crime [21] and
XD-Violence [29]. We add the BERT video classification
into the RTFM [22]. As one ablation study, we add a FC
layer at the input of RTFM to reduce the feature dimension
from 2048 to 1024 on the UCF-Crime. The dimension of
XD-Violence is 1024 already.

As in RTFM [22], we only use RGB modality, 10-
crop, non-L2-normalized pre-generated feature set on UCF-
Crime and RGB modality, 5-crop, non-L2-normalized pre-
generated feature set on XD-Violence. Snippet features are
used in the testing mode. We follow the same implementa-
tion details of RTFM. The results are listed in Table 3. Note
that in this table, AP and AUC uses the snippet score de-
fined in Equation (5), while AP-2 and AUC-2 do not use

the video classification score p(ŷcls) in Equation (5). The
AP-2 and AUC-2 represent the testing mode in Figure 1(c).

From the results, we observe that the BERT video classi-
fication does not bring much performance improvement on
UCF-Crime. Furthermore, the two APs are very close to
each other. β = 0.5 gives better results than β = 0.7.

However, on the XD-Violence dataset, the BERT video
classification brings surprising performance improvement.
This is perhaps due to different attribute of dataset and is
left for further study.

4.7. MIL Using BERT Features

Similar to [14], where a transformer is used for both
video classification and feature refinement, we test using
BERT refined feature in MIL block. We use the same
setting as in MIL-BERT on UCF-Crime using RGB+Flow
modality. The result is listed in Table 4. From the results
we notice that the performance of using yi is much worse.
So this feature is not refined, but deteriorated. No need to
mention that, we want an online testing mode shown in Fig-
ure 1(c) that offers a low complexity solution. The authors
of [14] might not have realized this effect. We predict that
if they implement the transformer as a video classifier only,
their performance might be even better.

4.8. LSTM Video Classifier

In the previous experiments, we also demonstrate that
the transformer based video classifier works very closely to
the BERT video classifier. As an ablation study, we imple-
ment a simpler LSTM based video classifier with two layers
and hidden layer dimension same as input dimension. Only
the feature xi is used in this classifier. The result is put in
the third panel of Table 3. From the result we observe that
its performance is almost identical to the BERT classifier,
even though its complexity is a lot smaller (about 1/4) than
the BERT. This proves the key contribution of this work, as
the title states, the overlooked power of video classification
is now implemented.

4.9. Comparison with SOTA

We compare our best results on UCF-Crime, Shang-
haiTech and XD-Violence with SOTA results in the liter-
aturem as shown in Table 5. We show our best AUC or
AP result on each dataset. Note that we only include best
results published in recent a few years. Older results a lot
worse than the SOTA results, including those of the unsu-
pervised ones, are not included.

From the results, we achieve new SOTA results on all
three datasets. Please note that on UCF-Crime and Shang-
haiTech, we use RGB+Flow modality while many previ-
ous works use RGB modality only [22], [14]. On the XD-
Violence, we use RGB modality and achieve AP %82.10, a
3.51% jump from previous
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Dataset Method Feature Crop AUC or AP(%)
UCF-Crime [30] I3D-RGB 10 82.12
UCF-Crime RTFM [22] I3D-RGB 10 84.30
UCF-Crime [28] I3D-RGB 10 84.30
UCF-Crime [17] I3D-RGB 10 85.38
UCF-Crime [14] VideoSwin-RGB 10 85.62
UCF-Crime Ours I3D-RGB+Flow 1 86.71
ShanghaiTech RTFM [22] I3D-RGB 10 97.21
ShanghaiTech [17] I3D-RGB 10 85.30
ShanghaiTech [7] I3D-RGB 1 94.83
ShanghaiTech [28] I3D-RGB 1 97.48
ShanghaiTech [14] VideoSwin-RGB 10 97.32
ShanghaiTech Ours I3D-RGB+Flow 1 97.54
XD-Violence RTFM [22] I3D-RGB 5 77.81
XD-Violence [29] I3D-RGB+audio 5 78.64
XD-Violence [28] I3D-RGB 1 75.90
XD-Violence [14] VideoSwin-RGB 5 78.59
XD-Violence Ours I3D-RGB 5 82.10

Table 5. Comparison with SOTA results on three datasets.

Figure 2. Visualization of anomaly score curves. The videos in the first row are from ShanghaiTech, and videos in the second row are from
the UCF-Crime.

4.10. Qualitative Analysis

Anomaly score curves of some examples videos are
shown Figure 2. We see that the BERT video classifica-
tion work very effectively to press down scores for normal
snippets. It may improve or degrade the scores for anoma-
lous snippets. With this video classification, the decision
threshold is lowered. The overall impact is reflected in the
AUC values.

5. Conclusion
Previously in video anomaly detection with the MIL

frameworks, almost all of them overlook or do not realize

enough the power of the video classification.

In this paper, we study the effect of the video classifi-
cation explicitly. We propose an video classification using
BERT or LSTM. This single change brings significant per-
formance gain. On the RGB+Flow on the UCF-Crime and
ShanghaiTech datasets, our proposed MIL-BERT achieves
ROC AUC exceeding SOTA results. On the XD-Violence
dataset, our proposed RTFM-BERT achieves AP exceeding
SOTA results by 3.51%. These experiment results demon-
strate the power of video classification. It can be combined
with other anomaly detection algorithms to get the best per-
formance.
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