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Abstract

In recent years, Federated Learning (FL) has emerged as
a promising solution for many computer vision applications
due to its effectiveness in handling data privacy and com-
munication overhead. However, when applying FL to ad-
vanced and computationally heavy tasks like video-based
action recognition, FL clients can struggle with the lack
of annotated data and model biases, thus negatively im-
pacting learning performance. Therefore, adopting Few-
Shot Learning (FSL) is essential, where the learned model
can adapt to unseen classes using limited labeled exam-
ples. Nonetheless, FSL has rarely been exploited for vision
tasks under FL settings. In this paper, we develop a Fed-
erated Few-Shot Learning framework, FedFSLAR, that col-
laboratively learns the classification model from multiple
FL clients to recognize unseen actions with a few labeled
video samples. Prior works in few-shot action recognition
mostly use 2D-CNNs as feature backbones and ineffectively
capture the temporal correlation between video frames. To
overcome this limitation and enable more robust represen-
tation, we integrate the spatiotemporal feature backbones
based on 3D-CNNs into a meta-learning paradigm, i.e.,
ProtoNet. Accordingly, we conduct extensive experiments
under practical FL settings, e.g., non-IID data, to evaluate
various 3D-CNN models alongside representative FL algo-
rithms, i.e., FedAvg and FedProx. Experimental results on
benchmark datasets validate the effectiveness of our FedF-
SLAR framework. Remarkably, our findings indicate that
combining feature backbones pre-trained on external data
with the FL setting can incredibly benefit FSL. Our frame-
work offers a viable path toward achieving notable progress
in FL and FSL for action recognition tasks.
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†Equal contribution

1. Introduction

Thanks to advanced Deep Learning (DL) architectures
and massive datasets, recent years have witnessed remark-
able progress in video-based human action recognition
(HAR) [17], which has many applications in intelligent
surveillance. For example, classifying human actions from
CCTV cameras is often crucial for security applications.
However, training action models to learn robust features
typically requires a lot of labeled video data collected from
numerous sources with substantial computing resources.
Current DL-based methods [5, 36] mainly rely on central-
ized training, which demands high storage costs and com-
munication overheads to transmit local data from the clients
to the central server, thus limiting their practical applicabil-
ity. Moreover, human bodies from action videos or CCTV
streams usually reveal much person-related information,
such as personal identity, gender, age, and motion patterns.
Such identifiable information can be easily exploited with-
out users’ consent for various analysis purposes, leading to
privacy breaches. Therefore, Federated Learning (FL) [19]
has emerged as an effective way to enable decentralized
training, where a shared model can be learned collabora-
tively while keeping the data on distributed devices. Specif-
ically, FL aggregates and coordinates the local models com-
puted on each device to train the globally shared model on
the central server. In this way, privacy protection and com-
munication efficiency are improved without sending sensi-
tive video data to the server. By effectively addressing pri-
vacy concerns, FL allows us to train the models using con-
siderably more varied and diverse datasets from heteroge-
neous devices, thereby learning more complex patterns.

Like centralized learning, FL requires a vast volume of
labeled data, e.g., hundreds of samples per class, to achieve
the desirable training performance of deep neural networks
[16]. However, manually annotating abundant videos is
highly expensive and tedious. Moreover, it is problematic
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for end users or organizations, e.g., airports, schools, banks,
and hospitals, to compile new video datasets whenever deal-
ing with new action classes. In many scenarios, novel ac-
tion classes corresponding to new tasks continuously appear
over time, and it is difficult to collect data with sufficient an-
notations to solve these tasks. Reasonable preparation of the
new training dataset is very inconvenient due to the diver-
sity of human actions. Also, FL frameworks are constructed
based on the assumption that each client must have enough
training data for specific tasks. In practice, video data from
heterogeneous devices is usually incomplete, drastically re-
stricting the applicability and scalability of FL. In addition,
some organizations might have only a few video samples
for specific classes, while others might own many more data
samples on their local machines. This can make FL struggle
with model bias and decrease generalizability. Therefore, to
overcome these limitations, Few-Shot Learning (FSL) [32]
has emerged as a promising solution to train machine learn-
ing models to recognize novel action classes with few sup-
port samples.

The typical approach to solving the FSL problem is to
use meta-learning, which aims to imitate the learning abil-
ity of humans by leveraging prior knowledge and experi-
ences gained from previous tasks. More precisely, meta-
knowledge is acquired by learning numerous action videos
from base classes and generalized to novel classes with
few labeled videos. It is important to note that base and
novel classes must be distinct. Current methods [39, 38]
mainly employ 2D-CNN backbones to extract frame-level
features and then adopt metric learning with temporal align-
ment techniques to measure the similarity between differ-
ent videos for classification. Although these methods have
achieved significant progress in few-shot video classifica-
tion, they are only suitable for centralized learning on a
single machine. Also, using frame-level features is inef-
fective in capturing the temporal correlation among video
frames. In contrast, we aim to design an FL framework to
meta-train robust spatiotemporal deep models using multi-
ple data sources on distributed devices. This problem can
be referred to as Federated Few-Shot Learning [8], which
takes advantage of FL to provide privacy protection and re-
duce communication costs while improving the practical-
ity of FL. However, performing FSL in FL environments is
challenging due to the discrepancy in task domains across
different types of clients.

In this paper, we propose a Federated Few-Shot
Learning for Action Recognition framework, namely FedF-
SLAR, for human action recognition tasks. Specifically,
given few-shot tasks generated from local videos, we first
train meta-learner on each client using an FSL algorithm,
Prototypical Networks [25]. Then, local models from dif-
ferent meta-learners are sent to the federated server to ag-
gregate and update the global model. Moreover, to over-

come the limitation of existing works based on 2D-CNN
feature backbones, we investigate the effectiveness of spa-
tiotemporal deep networks, e.g., 3D-CNN [5, 10], for fea-
ture embedding with the capability of exploring the tempo-
ral correlation among consecutive frames. A good feature
embedding can enable us to learn strong video representa-
tions to address the issue of different task domains across
heterogeneous clients. To the best of our knowledge, this is
the first study exploring Federated Few-Shot Learning for
video-based action recognition.

Using the FedFSLAR framework, we provide the bench-
mark to support more investigation into the field and en-
able fair comparison. The datasets used in our experiments
are divided into identical and independent distribution (IID)
and non-identical and independent distribution (non-IID)
to achieve realistic FL settings. Through extensive exper-
iments on benchmark datasets, we show that discrimina-
tive video representations, which can be transferred and
fine-tuned in new tasks with novel classes, effectively gen-
eralize meta-knowledge and reduce the gap between cen-
tralized learning and FL. Specifically, when feature back-
bones are pre-trained on the external data, FL can achieve
comparable or even higher accuracy than centralized learn-
ing for FSL tasks. However, training feature backbones
from scratch with random weights will result in a significant
drop in accuracy. These results indicate that several issues
warrant further investigation: robust representation learn-
ing demands effective designs of pre-training schemes for
few-shot action recognition; learning meta-knowledge from
video data with less variation is challenging, particularly in
the non-IID setting where clients have a few classes. These
issues open further research directions on FL and FSL, es-
pecially for action recognition tasks. Our main contribu-
tions are summarized as follows:

• We propose a unified FL framework for few-shot ac-
tion recognition.

• We comprehensively carry out an empirical study of
various 3D-CNNs as feature backbones. We especially
investigate the impact of pre-training on the federated
FSL performance.

• We systematically compare two popular FL algo-
rithms, e.g., FedAvg[22] and FedProx[19], under vari-
ous realistic settings for the federated FSL.

• Our benchmark reveals that combining pre-trained 3D-
CNNs with suitable FL settings can achieve state-of-
the-art performance on challenging datasets of few-
shot action recognition.

2. Related Works
2.1. Few-Shot Action Recognition

Few-shot action recognition is a task that recognizes
new actions from a few examples. The primary methods
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[38, 4, 24, 31] are metric-based meta-learning, which learns
a generalizable metric space to compare videos of differ-
ent actions. These methods typically employ 2D-CNNs to
extract frame-level features. Then, the distance between the
query and support videos is measured using these features to
assess similarity. For example, [38] proposed a compound
memory network, CMN, structure with multiple constituent
keys and a multi-saliency embedding algorithm. Cao et al.
introduced OTAM [4], an online temporal attentive module
that learns to select and align the most informative frames
from the support set. TRX [24] used CrossTransformers
to make class prototypes from relevant sub-sequences of
support videos and compare video tuples of different frame
numbers. Wang et al. [31] proposed HyRSM, a hybrid re-
lation score module combining two types of relation scores
based on global and local features.

Apart from using image-level extractors, several meth-
ods [33, 2, 21] employed spatiotemporal models to gen-
erate video-level features. For example, TSL [33] used
R(2+1)D [27] as the feature backbone and utilized label text
queries to retrieve additional videos to augment the sample
set data. TARN [2] and CMOT [21] used C3D [26] to ex-
tract features and compare variable-length videos with deep
distance. Other works [18, 12] attempted to create more
data samples by either data augmentation or generating new
samples by generative models. ProtoGAN [18] adopted a
conditional GAN to produce more samples for each class
in the support set. Diferently, AMeFu-Net [12] combined
depth and visual information using temporal asynchroniza-
tion augmentation. Despite the remarkable success, these
methods are solely centralized. None of them applied FL
for few-shot action recognition, hence inducing severe pri-
vacy concerns and communication costs. As a result, their
practicality is limited significantly.

2.2. Federated Action Recognition

Federated action recognition is pioneering privacy-
focused approaches in computer vision. It uses FL and dis-
tributed training to protect sensitive data. This paradigm
shift replaces centralized data accumulation with edge de-
vices or servers to maintain privacy while building a global
model. The decentralized method is crucial in privacy-
focused, bandwidth-limited contexts with limited band-
width and is widely used in surveillance, healthcare, and
other areas where privacy is a priority. Federated action
recognition significantly advances secure and efficient ac-
tion recognition models. For instance, distracted driver ac-
tivities were studied by [7, 37]. Zhang et al. [37] and
Doshi et al. in [7] researched the application of FedAvg
[22] with 2D-CNN models on video to detect distracted
driver activities. The latter work applied group knowledge
transfer algorithm FedGKT [14] additionally to minimize
resource usage on edge devices. Xiao et al. [34] researched

FL for wearable sensor-based human action recognition
(HAR). The authors developed a hybrid CNN, LSTM-based
attention algorithm for FedAvg with homomorphic encryp-
tion by outperforming existing HAR algorithms on differ-
ent datasets. Another work by [23] applied FL for HAR
application. Ouyang et al. proposed a clustering-based FL
system (ClusterFL) that utilizes the clustering relationship
among users’ data to enhance model accuracy and commu-
nication efficiency.

2.3. Federated Few-Shot Learning

Recently, few-shot learning (FSL) has been studied un-
der the FL settings to resolve the problem of limited an-
notated training data that participating clients own. Fan
et al. [8] first introduced this particular problem and pro-
posed formulating the training adversarially and optimiz-
ing the client models to produce a discriminative feature
space that can better represent unseen data samples. Next,
Wang et al. [29] proposed a novel federated few-shot learn-
ing (FedFSL) framework with two separately updated mod-
els and dedicated training strategies to reduce the adverse
impact of global data variance and local data insufficiency.
From the application perspective, Chen et al. [6] introduced
the FedMeta-FFD framework to enhance mechanical fault
diagnosis in the industrial Internet of Things. Cai et al.
[3] presented FeS, a framework that enables practical few-
shot NLP fine-tuning on federated mobile devices. Besides
that, Hoang et al. [15] designed a novel framework, termed
F2LCough, to solve the cough sound classification for di-
agnosing and treating respiratory diseases. Although these
works have studied FedFSL for several simple tasks with
different data modalities such as image, text, or audio, its
application to more advanced vision tasks like video-based
action recognition is still unexplored.

3. Methodology
3.1. Problem Definition and Overall Pipeline

Federated few-shot learning aims to recognize classes
with limited examples from a set of clients {Ck}Kk=1 and
a federated server S. In the client Ck, FSL divides classes
into two disjoint sets: base classes (X (k)

b ) used for training
with abundant labeled samples, and novel classes (X (k)

n )
with a few samples that the model has never encountered
before. Then, the meta-learning approach is formulated
as an episodic training, where episodes in the client Ck
are sampled from X (k)

b . Subsequently, each episode rel-
evant to a specific task consists of a support set S(k) =
{(xi, yi)}M×P

i=1 and a query set Q(k) = {xj}Lj=1. Here,
the support set contains labeled examples from M different
classes, with P samples per each class. The query set con-
tains L unlabeled samples used for classification within this
episode. The problem can be defined as M -way P -shot.
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Figure 1. Overall System Pipeline for Federated Few-shot Action Recognition.

Given an episode of the client Ck, the objective is to train
a model Θ(k) to classify the query set Q(k) using the infor-
mation provided in the support set S(k). This can be done
by minimizing the loss between the predicted labels of Q(k)

and the true labels. Under the FL setting, the local models
{Θ(k)} are transferred to the federated server for aggregat-
ing the global model {Θ}, which will then be broadcast to
clients in the subsequent rounds. During testing, we em-
ploy the learned model Θ to fine-tune new tasks in the novel
clients. The overall architecture of our proposed method is
illustrated in Fig. 1.

3.2. Few-shot Learning

Our FedFSLAR framework uses the Prototypical Net-
works (ProtoNet)[25] algorithms to perform meta-learning
on the base classes of multiple clients. ProtoNet aims to
compute a prototype representation for each base class (i.e.,
the mean of the feature vectors in the same class). As a
metric-based classifier, the model is trained to estimate the
similarity between examples from the support set and the
query during the meta-learning process. To simplify the no-
tation, we consider a single client in this subsection as the
meta-learning algorithm is identical for all federated clients.
Specifically, the ProtoNet takes an episode that contains a
support set S and an unlabeled query sample q and per-
forms the following steps.

First, the algorithm obtains the prototype representation
pc for each class c in the episode by averaging the feature
representations of the support samples from that class:

pc =
1

Nc

∑
(x,y)∈Sc

f(x)

Sc = {(x, y) ∈ S : y = c}
(1)

where Sc is the set of all the support samples for class c,

x is a sample, y is its corresponding class label, and f(·) is
the feature extractor model.

Next, a distance metric (e.g., Euclidean distance) is used
to calculate the similarity between q and pc.

d(q,pc) = ∥f(q)− pc∥ (2)

Finally, the algorithm applies the softmax function over
the negative distances between the query sample and the
prototypes to get the predicted class probability for a query
sample q belonging to class c:

P (y = c|f(q),S) = exp(−d(q,pc))∑
c′ exp(−d(q,pc′))

(3)

The ProtoNet predicts the class probabilities for each
query sample. These are used to train f with the cross-
entropy loss on base classes during the meta-training stage
or to evaluate the model on novel classes during the meta-
testing stage.

3.3. Federated Learning

In this work, we employ two popular FL algorithms to
facilitate thorough comparisons for few-shot action recog-
nition. These algorithms are described as follows.

FedAvg [22] is a foundational FL algorithm designed to
train a global model across decentralized edge devices while
preserving data privacy. The FL process begins by partition-
ing a large dataset among client devices, where each client
performs local model updates on its respective data partition
to minimize the local loss function. The updated models are
then sent to a central server, which uses a weighted average
to aggregate these local models. The update rule for every
client can be expressed as:

Θt+1 = Θt − η∇gt(Θt) (4)
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where Θt represents the model parameters at iteration t,
gt(Θt) is the local loss function, ∇ denotes the gradient
operator, and η represents the learning rate.

FedProx [19] is an extension of FedAvg that introduces
a proximal term to the optimization goal. The aim is to mit-
igate the impact of non-IID data distributions, which can
lead to slower convergence in FL. The proximal term is a
regularization component that causes the model parameters
to remain close to their previous values. The FedProx up-
date rule can be represented as follows:

Θt+1 = argmin
Θ

[
1

K

K∑
k=1

gi(Θ) +
µ

2
∥Θ−Θt∥2

]
(5)

where K is the number of clients, gi(Θ) is the local loss
function on the client k, µ is the proximal term weight, and
∥ · ∥ represents the Euclidean norm. The proximal term en-
sures that the updated model remains close to the previous
solution, promoting stability and convergence in scenarios
with non-IID data distributions.

3.4. Federated Few-shot Learning Framework

The procedure of our proposed FedFSLAR is summa-
rized in Algorithm 1. FedSLAR is an FL approach tailored
for learning tasks in a collaborative multi-client setting. Op-
erating over communication rounds, this algorithm orches-
trates the synchronized optimization of individual client
models. Each client begins by sampling episodes from its
local dataset. The clients then enhance their local models
using episodic training processes akin to ProtoNet. Follow-
ing these local model updates, client models are aggregated
to form a new global model by considering the proportion
of local data held by each client.

4. Experiments
4.1. Datasets

To evaluate the performance of our framework, we per-
form experiments on two benchmark datasets: Kinetics
[5] and Something-Something-V2 (SSv2)[13]. Something-
Something-V2 (SSv2) contains 100 classes divided into 64
non-overlapping classes for the meta-training set, 12 for
the meta-validation set, and 24 for the meta-testing set.
Moreover, we use a subset of the Kinetics dataset with 100
classes, namely Kinetics-100 (K100), presented in [38] to
assess the performance of few-shot action recognition mod-
els. Like SSv2, we select 64, 12, and 24 non-overlapping
classes for the meta-training, meta-validation, and meta-
testing, respectively.

4.2. 3D-CNN models

We employ three 3D-CNN models as feature backbones
for FedFSLAR, including R3D-18 [27], I3D [5], and Slow-

Algorithm 1: FedSLAR Algorithm
Input : Communication rounds T, Number

of clients K, Dataset (Xb,Xn),
Batch Size B, Local Epochs E, and
Learning Rate η

Output : Global Model Θ
Initialize : Θ0

for t←− T do
for each client k in parallel do

Θ
(k)
t ←− ClientUpdate(Θt)

end
Clients send model parameter {Θ(k)

t }Kk=1 to
server for aggregation:

Θt+1 =
∑K

k=1
|X (k)

b |
|Xb| Θ

(k)
t

end
Return Θt

ClientUpdate():
Input: global model from previous round Θt

Output: updated local model Θ(k)
t

Sample a set of episodes from X (k)
b :

Bk = {T1, .., Tm}
Optimize Θ

(k)
t using episodic training process

like ProtoNet
Return Θ

(k)
t

Fast [11]. For SlowFast, we particularly used a Slow path-
way with 8 frames as input. In our experiments, we use
the available codes of these models and their pre-trained
weights from Pytorchvideo [9] and Torchvision1. Note that
different from a majority of few-shot action recognition
methods whose feature backbones are 2D-CNNs or Vision
Transformer[20] and are pre-trained on ImageNet, our spa-
tiotemporal feature backbones are pre-trained on K400[5].

4.3. Implementation Details

4.3.1 FSL settings

We used the data augmentation and video preprocessing
strategy described in TSN [28] in our implementation.
8 frames were sampled in each video, each resized to
256×256 and cropped randomly to 224×224. We obtain
the feature vector from the convolutional layers right before
the final classification layer, as they encode detailed spatial
and temporal features. The Adam optimizer with a learn-
ing rate of 10−5 was used. We employed the 5-way N-shot
accuracies to assess the model’s performance. These met-
rics assess the model’s capacity to identify the correct class
from the five potential classes, each with a few examples per
class. The reported accuracies were derived by calculating
the mean accuracy over 10,000 randomly selected episodes

1https://pytorch.org/vision/stable/models/
video_resnet.html
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from the meta-testing set,
We consider two FSL settings to investigate the effect

of pre-training on the federated FSL performance. In the
first setting, we meta-train 3D-CNN models from scratch
with random weights. This setting allows us to understand
better the effectiveness of different feature backbones and
the meta-learning algorithm. In the second setting, we fol-
low the standard practice [39, 38] in the literature by uti-
lizing the pre-trained feature backbones. Specifically, in
our experiments, the weights of 3D-CNN models, which
are pre-trained on K400, are provided by Pytorchvideo and
Torchvision. Accordingly, for K100, we do not use pre-
training for any of the methods since applying K400 for
backbone models would violate the FSL assumption.

4.3.2 FL settings

We employed two FL algorithms, FedAvg and FedProx.
Our study encompassed using IID and non-IID datasets,
allowing for a comprehensive assessment of model perfor-
mance under varying data distribution scenarios. The exper-
iments were conducted with different numbers of clients, in-
cluding 2, 4, 8, 16, and 32 clients for training, while we kept
one novel client for testing. Each training session extended
over a duration of 100 to 200 rounds, with each round con-
sisting of 4 local epochs for every client. For FedProx, we
introduced a proximal regularization term with a proxima µ
parameter set to 0.001, enriching our exploration of algo-
rithmic behavior in the presence of this regularization. This
meticulously designed experimental framework facilitated
a thorough evaluation of the algorithms’ adaptability and
performance across various practical FL scenarios.

Data partitioning. To obtain IID datasets, we evenly dis-
tribute all classes among clients. This ensures each client
has all classes of the entire dataset. In contrast, for the non-
IID setting, we aim to create distinct and specialized data
partitions for each client. To achieve this, the number of
shared classes between clients is minimal, promoting diver-
sity and individuality in the data each client holds. This
strategy enhances the model’s ability to handle more com-
plex and diverse real-world scenarios by simulating data
distribution variations. Noteworthy, in the non-IID setup,
it’s imperative to allocate at least 5 distinct classes to each
client to support effective 5-way N-shot learning.

4.4. Result Analysis

4.4.1 Performance of different feature backbones

We report results in Tables 1 and 2 for three 3D-CNN back-
bones (R3D, I3D, and Slow) in different data distribution
scenarios (centralized, IID, and non-IID). In these exper-
iments, we use 4 clients for FL settings. Table 1 evalu-
ates models in 1-shot and 5-shot learning tasks on the K100
dataset without pre-training. We can observe that the Slow

backbone achieves the highest accuracy in most cases due
to its excellent ability to capture semantic information and
motion variation in video frames. Moreover, the accuracy
of all models decreases when we change the settings from
centralized to FL setting. This is because of data hetero-
geneity and the diversity of human actions across multiple
clients, which may hamper the FL performance in K100.
Also, for the FL scenario, all models perform better with
IID since the non-IID has an unbalanced class distribution.

Table 2 provides insights into the performance of three
pre-trained 3D-CNN models on the SSv2 dataset. Again,
Slow yields better performances than R3D and I3D in most
cases. Interestingly, with pre-training, the accuracy of FL
settings is even higher than that of the centralized setting.
In addition, the results of IID and non-IID are compara-
ble. The obtained results clearly show the advantages of FL
for FSL tasks, especially when combined with pre-trained
feature backbones. Pre-training models can help transfer
not only the semantic information from the external data
to subsequent steps in the training process but also meta-
knowledge among clients. Hence, the global model, meta-
trained by FL across clients, can adapt to new tasks more
effectively. In other words, combining the pre-training with
FL can significantly improve the generalization ability of
meta-learners to novel clients and alleviate the data hetero-
geneity issue among FL clients.

Using SSv2, we further investigate the impact of pre-
training on few-shot action recognition, where we employ
Slow with random weight initialization. We can see that
the accuracy in all settings drops significantly. The cen-
tralized accuracy is even close to the random guess on 5-
way tasks. Our centralized results are consistent with the
ones of other meta-learning methods reported in [39]. The
poor performance can be attributed to the characteristics of
SSv2. Unlike K100, which focuses on spatial appearance,
SSv2 requires more complex spatiotemporal reasoning [1].
Hence, it is challenging to learn discriminative representa-
tions when meta-training the feature backbone from scratch
on this dataset. Surprisingly, using FL settings, we can yield
much higher accuracy than that of the centralized counter-
part. With FL model aggregation in each round, the meta-
knowledge can be transferred among the clients and help the
model learn the spatiotemporal features more effectively.

4.4.2 Performance of different FL methods

Tables 3 and 4 present the results of an advanced Fed-
Prox [19] in our framework compared to FedAvg [22] on
the K100 and SSv2 datasets, respectively. Specifically, we
use Slow as the feature backbone and conduct experiments
in both IID and non-IID data settings with 4 clients. In
general, while FedProx shows inferior performance on the
K100 dataset, it brings considerable improvements on the
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Table 1. Comparisons of different 3D-CNN backbones on K100.
Centralized IID non-IID

Models 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
R3D 46.16% 48.94% 41.33% 46.68% 36.24% 45.26%
I3D 37.82% 47.78% 36.13% 44.44% 34.18% 42.12%
Slow 47.88% 59.16% 42.22% 54.28% 36.46% 44.16%

Table 2. Comparisons of different 3D-CNN backbones on SSv2.
Centralized IID non-IID

Models 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
R3D 30.54% 33.48% 38.40% 49.08% 38.52% 49.78%
I3D 41.12% 60.82% 43.36% 61.02% 42.26% 61.08%
Slow 44.44% 60.66% 45.90% 60.82% 45.48% 61.74%

Slow(Random) 23.28% 24.62% 32.90% 45.02% 35.88% 44.4%

Table 3. Comparisons of different FL methods on K100.
IID non-IID

FL algs 1 shot 5 shot 1 shot 5 shot
FedAvg 42.22% 54.28% 36.46% 44.16%
FedProx 40.98% 51.00% 35.10% 43.18%

Table 4. Comparisons on different FL methods on SSv2.
IID non-IID

FL algs 1 shot 5 shot 1 shot 5 shot
FedAvg 45.90% 60.82% 45.48% 61.74%
FedProx 47.24% 65.68% 46.66% 65.68%

SSv2 dataset compared to FedAvg. This observation indi-
cates the impact of pre-training not only on the performance
of 3D-CNN backbones but also on FL algorithms. More-
over, thanks to the proximal term, FedProx shows smaller
performance drops in non-IID cases than in IID cases.

4.4.3 Effect of different number of clients

We now investigate the impact of the number of clients in
our proposed benchmark under the non-IID setting. By
sequentially varying the number of participating clients in
data partitioning from 2 to 32, we simultaneously reduce
the data amount of each client, simulating cross-device sce-
narios. The general trend of both FedAvg and FedProx
is their performance significantly drops as the number of
clients increases. On SSv2 with model pre-training, both
FedAvg and FedProx outperform the centralized learning
(denoted by 1 client) with 2 and 4 clients. However, run-
ning these FL algorithms with more than 4 clients yields
inferior performance because the generalization ability of
the meta-learner is decreased if training data in each client
is insufficient. Looking deeper, FedProx shows its slight
effectiveness with less steep declines. These observations
raise a need for new FL algorithms for the action recogni-

(a) FedAvg (b) FedProx
Figure 2. Result of non-IID federated 1-shot learning on various
datasets. The bars indicate the centralized learning accuracy.
tion task in cross-device scenarios.

4.4.4 Comparison with state-of-the-art on few-shot ac-
tion recognition

In this section, we compare FedFSLAR with several state-
of-the-art methods of centralized few-shot action recogni-
tion. Here, we included five best-performing settings of
our method for comparison, each using Protonet as the
meta-learning algorithm and Slow as the backbone network,
which can be either centralized learning or one of the two
FL algorithms (FedAvg or FedProx) with 2 and 4 clients.
We compare our method with the baseline methods such as
Meta-Baseline [39], Baseline Plus [39], and also state-of-
the-art (SOTA) methods, including CMN [38], OTAM [4],
CMOT [21], TRX [24], HyRSM [31], SloshNet [35], and
TADRNet [30]. The results are shown in Table 5.

For a fair comparison on K100, the feature backbones
of competitors are initialized randomly, relevant to our first
FSL setting without pre-training. Here, the results of cor-
responding competitors are reported in [39]. We can see
that FedFSLAR outperforms the other methods in FSL set-
tings. Centralized learning has the highest accuracy among
our variants. Moreover, without pre-training, the spatiotem-
poral feature backbones, which are meta-trained by either
FL or centralized learning, are proven more effective than
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Table 5. Comparison with SOTA Few-Shot Action Recognition Methods.

Method Setting K100 SSv2
1 shot 5 shot 1 shot 5 shot

Meta-Baseline [39] Centralized Learning 42.46% 49.78% 33.6% 43.0%
Baseline Plus [39] Centralized Learning 46.24% 56.92% 46.04% 61.10%

CMN [38] Centralized Learning 40.37% 50.27% 34.4% 43.8%
OTAM [4] Centralized Learning 44.37% 50.07% 42.8% 52.3%
CMOT[21] Centralized Learning - - 46.8% 55.9%
TRX [24] Centralized Learning - - 42.0% 64.6%

HyRSM [31] Centralized Learning - - 54.3% 69.0%
SloshNet [35] Centralized Learning - - 46.5% 68.3%
TADRNet [30] Centralized Learning - - 43% 61.1%

FedFSLAR Centralized Learning 47.88% 59.16% 44.44% 60.66%
FedFSLAR FedAvg(2 clients, IID) 42.86% 57.42% 48.92% 66.02%
FedFSLAR FedProx(2 clients, IID) 42.26% 56.12% 48.06% 66.06%
FedFSLAR FedAvg(4 clients, IID) 42.22% 54.28% 45.90% 60.82%
FedFSLAR FedProx(4 clients, IID) 40.98% 51% 47.24% 65.68%

Note: Best and second-best results are denoted in bold and underlined, respectively.

Meta-Baseline, Baseline Plus, CMN, and OTAM, using
frame-level features. 3D-CNN models used in our work
can generate more discriminative representation, hence bet-
ter generalizing to new tasks.

For SSv2, we employ pre-trained Slow for evaluation.
Note that, among our competitors, CMOT adopted the spa-
tiotemporal backbone network (C3D) pre-trained on Sport-
1M, while other SOTA methods used the frame-level feature
backbones pre-trained on ImageNet. With SSv2, We can
observe that our FedFSLAR outperforms other methods ex-
cept for HyRSM and SloshNet (for a 5-shot setting). When
using FL with two clients, our method performs better than
its spatiotemporal counterpart (i.e., CMOT) by a large mar-
gin, while we yield a competitive performance with recent
SOTA methods like TRX, HyRSM, SloshNet, and TADR-
Net. Notably, our FedFSLAR has a simpler pipeline than
these methods, often involving complex attention mecha-
nisms or task-adaptive modules. Interestingly, some of our
FL variants achieve higher accuracy than the SOTA cen-
tralized methods. This suggests that FL can help improve
the generalization ability of the model by aggregating meta-
knowledge from multiple clients.

5. Conclusion and Future Work

In this paper, we introduce a novel framework, FedFS-
LAR, for studying the problem of few-shot video-based ac-
tion recognition under the FL settings. The proposed frame-
work comprises 3D-CNN models as feature backbones for
learning robust representation and a meta-learning algo-
rithm, i.e., ProtoNet [25], which allows us to recognize
unseen actions with a few video samples. FL algorithms,
i.e., FedAvg [22], and FedProx [19], are employed to en-
able privacy-preserving decentralized learning. Especially,

our framework provides the flexibility to adapt various ad-
vanced models and algorithms for each component. More-
over, extensive experimental results on standard datasets
under practical FL settings verify the effectiveness of FedF-
SLAR for solving the recognition task. Also, a range of
valuable insights are drawn and presented to promote this
research problem.

In the future, FedFSLAR will be straightforwardly ex-
tended with more diverse spatiotemporal models, meta-
learning algorithms, and FL algorithms. Besides the cur-
rent video-based approach, skeleton-based action recogni-
tion will also be explored in the FL scenario. To exploit
the massive collection of unlabeled data from heteroge-
neous user devices, we plan to develop a self-supervised
pre-training method under the FL scenario to train feature
backbone networks to extract helpful video representation.
Furthermore, in addition to the issue of limited training
data, the challenging domain shift issue should also be in-
vestigated due to its large significance.
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