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Abstract

Fine-grained vehicle classification describes the task of
estimating the make and the model of a vehicle based on
an image. It provides a useful tool for security authorities
to find suspects in surveillance cameras. However, most
research about fine-grained vehicle classification is only fo-
cused on a closed-set scenario which considers all possible
classes to be included in the training. This is not realis-
tic for real-world surveillance applications where the im-
ages fed into the classifier can be of arbitrary vehicle mod-
els and the large number of commercially available vehicle
models renders learning all models impossible. Thus, we
investigate fine-grained vehicle classification in an open-set
recognition scenario which includes unknown vehicle mod-
els in the test set and expects these samples to be rejected.
Our experiments highlight the importance of label smooth-
ing for open-set recognition performance. Nonetheless, it
lacks recognizing the different semantic distances between
vehicle models which result in largely different confusion
probabilities. Thus, we propose a knowledge-distillation-
based label smoothing approach which considers these dif-
ferent semantic similarities and thus, improves the closed-
set classification as well as the open-set recognition perfor-
mance.

1. Introduction

Searching getaway vehicles in surveillance cameras is a
common task for security authorities after serious criminal
offenses. While license plates provide a high specificity for
searching vehicles and are easily identifiable, they usually
get replaced before criminals commit an offense or the li-
cense plate number is unknown due to eyewitnesses usually
not remembering them well. In these cases, fine-grained
vehicle classification can be used to narrow down the possi-
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Figure 1. Top part: four different classes from the CompCars
Web [48] dataset. In fine-grained vehicle classification, the se-
mantic and visual difference between pairs of classes can vary
significantly. However, this is not considered by the regular
cross-entropy loss or by the label smooth loss. Our knowledge-
distillation-based label smoothing considers the semantic differ-
ence between classes to regularize the training procedure and to
reduce overconfidence of the network. The approximated con-
fusion probabilities show that assigning the same confidence to
all negative classes results in a harmed training process. In com-
parison, coarse-grained open-set recognition as symbolized on the
lower part of the image with examples from the widely used Tiny-
ImageNet [19, 34] is not affected to the same degree due to the
variation of semantic distances between classes being lower com-
pared to the overall distances between classes.
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ble search space significantly since eyewitnesses remember
the model of the vehicle easier than a license plate num-
ber. Thus, fine-grained vehicle classification is a widely
investigated topic. However, usually a closed-set scenario
is assumed in research while performing automatic vehicle
search in real-world surveillance scenarios requires identi-
fying unknown vehicle models due to the high number of
available vehicle models. Training a model that supports all
vehicle models which can occur in surveillance scenarios is
practically impossible. Thus, in real-world use-cases, we
have to handle an open-set scenario which is rarely inves-
tigated for fine-grained classification, particularly for fine-
grained vehicle classification. Thus, we investigate the task
of fine-grained open-set recognition for fine-grained vehicle
classification.

Fine-grained object classification describes the task of
image-based recognition of the class of an object on a fine-
grained level with all possible classes sharing a common
meta type. E.g., recognizing the make and model of a car
for fine-grained vehicle classification. One major challenge
of this task is the large number of possible classes. Thus, for
most fine-grained object recognition tasks it is impossible to
learn all possible classes. Such a scenario is called open-set
recognition which includes the usual task of distinguishing
known classes but additionally requires the evaluated algo-
rithm to recognize whether a sample is from a known class
or from a class that was not part of the training set. The
open-set recognition task is particularly difficult for fine-
grained classification tasks due to only subtle differences
distinguishing classes as can be seen in Fig. 1 which shows
examples from the CompCars Web [48] dataset compared
to examples from TinyImageNet [19]. This is further com-
plicated by the fact that the semantic difference between
classes can vary greatly. E.g., an Audi TTS Coupe and
an Audi TT Coupe are very difficult to distinguish due to
only minor differences separating both while an Audi TT
RS has a well distinguishable front end. Moreover, a Volvo
S80 looks drastically different compared to the other ve-
hicles and a confusion is highly unlikely. This highlights
the different semantic distances between classes. However,
as deep-learning models are traditionally trained with one-
hot encoding, all negative classes are forced to have a zero
confidence prediction. This is inappropriate for handling
fine-grained vehicle classification in an open-set scenario
since it leads to poorly-calibrated overconfident models due
to not considering the semantic differences between classes.
And, since calibration is highly important due to open-set
recognition usually being based on the confidence of the
model, this training procedure renders open-set recognition
rather difficult. This problem is partially addressed by label
smoothing [38] which adjusts the target labels by slightly
reducing the target confidence of the positive class by a cer-
tain value α and increasing the target confidence of negative

classes by a value of 1.0 − α
C−1 with C being the number

of total classes in training. This leads to the confidence of
the positive class not being fully maximized and the con-
fidences of the negative classes not being fully minimized
which better represents the true uncertainty of the model.
Because of limitations of the data (e.g., limited variety in
terms of rims and vehicle colors [46]), a model will never
be able to predict a class with 100% true certainty. This
insight should be considered during training.

We extend the idea of label smoothing by not just using
a fixed smoothing value α but instead incorporating class
confusion probabilities based on knowledge-distillation in
order to model the real visual and semantic distance be-
tween classes. Incorporating class confusion improves the
model calibration since it enables forcing the model to be
confident in cases where a confusion with other classes is
unlikely and forcing the model to have a lower confidence
when a confusion with another class in the training set is
likely due to them being highly similar. This idea is applied
to the smoothing of the label of the positive class as well as
the negative classes which are all adaptively adjusted based
on the likeliness of confusion. As a result, the better model
calibration improves the open-set recognition performance
while the reduction of overconfidence-induced overfitting
improves the classification performance. This leads to tar-
get labels being closer to the true confusion probabilities.
We illustrate this concept based on approximated confusion
probabilities in Fig. 1. Since this advancements only ad-
justs the training loss, it does not increase the number of
parameters of the model or its complexity during inference.

Our contributions can be summarized by: (1) we pro-
pose a knowledge-distillation-based label smoothing to im-
prove the performance of classifiers for open-set perfor-
mance without increasing the number of parameters or run-
time complexity, (2) we provide extensive experiments on
the impact of label smoothing on the open-set recognition
performance and show the importance of choosing its α pa-
rameter properly and (3) we investigate the impact of the
number of known classes on the open-set and closed-set
task difficulty, thereby contradicting the common assump-
tion that a higher openness [35] leads to a higher diffi-
culty [41] and showing that increasing the number of classes
is only slightly impacting the closed-set classification diffi-
culty.

2. Related Work
Open-set recognition. Approaches for open-set recog-

nition can be roughly divided into two categories. The
disrciminative-based approaches can be further divided
into softmax-based, distance-based, post-process-based and
norm-based approaches. The softmax-based approaches
use the confidence approximation by the softmax output
of deep learning networks [14]. However, they tend to
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suffer from poor calibration limiting the open-set classi-
fication performance [12]. Nonetheless, the more recent
Vision Transformer [7] architecture pre-trained on Ima-
geNet21k has shown better calibration [10]. Distance-
based approaches use the distance of features extracted
from the input image to reference feature for predicting
out-of-distribution samples. Different distance metrics have
been used for this purpose [3, 20]. Ren et al. [33] propose
a new relative Mahalanobis distance specifically tailored
for distance-based open-set recognition. Miller et al. [28]
propose a new loss that encourages a stronger separation
of classes in feature space to improve open-set recogni-
tion performance. Post-process-based approaches aim to
adjust the softmax scores without changing the model to
improve the calibration. A commonly applied approach is
ODIN [21] which uses temperature scaling and input per-
turbation. ODIN has been extended by GradNorm [17] by
utilizing gradients explicitly and Generalized ODIN [15] by
decomposing confidence scores and modifying input pre-
processing. Liu et al. [22] propose an energy score as an
alternative post-process optimization of confidence scores.
Norm-based approaches utilize the norm of feature vec-
tors or logits from the network prior to the softmax acti-
vation. Vaze et al. [41] found that the magnitude of the
logits provide a better metric for open-set recognition than
softmax scores. Wei et al. [43] normalize the vector norm
of the logits during training by an additional loss to re-
duce the overconfidence of the network. Generative-based
approaches generate new samples synthetically that sup-
port learning distinguishing kn won from unknown sam-
ples. Ge et al. [11] propose G-OpenMax which uses a GAN
to generate samples that are targeted to be of novel classes
by exploiting interpolation in the latent space of the GAN.
C2AE [29] uses an auto-encoder to perform open-set recog-
nition based on the reconstruction error of the query sam-
ple assuming that the reconstruction capability of unknown
classes is worse than for known classes.

Fine-grained open-set recognition. While a wide range
of research was done for open-set recognition, they mostly
focus on coarse-grained tasks with a high semantic differ-
ence between classes. Fine-grained open-set recognition,
e.g. performing open-set recognition for fine-grained ve-
hicle classification, has been rarely investigated. Vaze et
al. [42] propose the semantic shift benchmark for evaluat-
ing open-set recognition methods which incorporates three
fine-grained classification datasets for birds, aircrafts and
cars. However, each of these datasets do not contain more
than 200 classes, rendering it a relatively easy task. Other
studies in the field suffer from similar issues due to using
the same datasets for evaluation [37, 52]. To the best of our
knowledge, more complicated fine-grained open-set recog-
nition tasks have yet only been evaluated in the field of fungi
classification [9, 16, 30–32, 44, 45, 49].

3. Methodology

In this section, we first introduce the open-set scenario
formally and then, describe our classification architecture
with its open-set recognition strategy and its training proce-
dure. Finally, we describe our novel knowledge-distillation-
based label smoothing approach.

Open-set scenario. In an open-set scenario, the total
classes can be divided into known classes C with C = |C|
and unknown classes U . Based on this distinction, the train-
ing dataset Dtrain and testing dataset Dtest can be split into
two subsets each: the subset of samples from known classes
Ds-known = {(X, y) ∈ Ds|y ∈ C} and the subset of samples
from unknown classes Ds-unknown = {(X, y) ∈ Ds|y ∈ U}
for each s ∈ {train, test}. During training, only the subset
of samples of known classes Dtrain-known is used and the sam-
ples from unknown classes Dtrain-unknown are ignored. After-
wards, during evaluation, the classification algorithm has
to perform two tasks. The first task is to identify whether
a sample belongs to the known classes C or the unknown
classes U on the complete test set Dtest. The second task
is the usual closed-set classification, i.e. distinguishing the
known classes C on there corresponding subset of the train-
ing set Dtest-known. A good open-set recognition algorithm
should perform well on both tasks.

Architecture. We build our classification architecture
based on a modern Swin Transformer V2 [23] feature ex-
traction backbone combined with a linear classification
layer and a softmax activation function. The linear clas-
sifier outputs a logit vector with each element representing
an unnormalized confidence of the class. Afterwards, the
softmax activation function is applied on the logit vector to
normalize the cofidence scores. So, the final output of the
network is a vector of confidence scores between 0 and 1.

Open-set recognition. To perform an open-set recognition,
we have to perform a class-wise out-of-distribution detec-
tion. To achieve this, we use the softmax confidences from
the classification network. We identify a sample as an out-
of-distribution sample when the maximal softmax score is
below a certain threshold. We do not specify this thresh-
old for the experiments since the chosen metrics adjust the
threshold to compromise recall and precision of the out-of-
distribution detection. For deployment, a certain threshold
has to be chosen as a specific working point that achieves a
compromise well-suited for the task at hand. This can be a
higher focus on recall or a higher focus on precision.

Training procedure. The deep learning network is trained
by assigning a target vector and minimizing the difference
of the softmax layer output to the target vector by using a
cross-entropy loss function. The optimization is done by
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performing back propagation with the AdamW [26] algo-
rithm. Usually, the target vector p0(X) is built by using a
one-hot encoding as follows:

p0,i(X) =

{
1 if i = y

0 else
, (1)

with y being the target class of the input sample X.

Label smoothing. Our label assignment strategy is based
on label smoothing as proposed by Szegedy et al. [38]. La-
bel smoothing adjusts the one-hot encoded label by smooth-
ing between the positive class and the negative classes. I.e.,
the generated target vector has a value of 1− α for the ele-
ment of the ground truth class while the elements of all other
classes have a value of α

C−1 with α being a hyper parameter
and C being the total number of known classes. This means
that for a given one-hot encoded target vector p0(X), the
label smoothed target vector can be calculated by

p0(X)LS = p0(X) · (1−α) + (1−p0(X)) · α

C − 1
. (2)

Label smoothing regularizes the training by not forcing
overconfident predictions due to the smoothed target labels
not having the highest possible confidence. This in turn re-
sults in a more calibrated model that achieves a better open-
set recognition performance as shown in Sec. 4.

Knowledge-distillation-based label smoothing. Label
smoothing is assigning the same ground-truth confidence
to each non-negative softmaxed logit. This should prevent
overfitting since it prevents the training process from in-
centivizing overconfidence and thus, works as a method of
regularizing the network. However, for open-set recogni-
tion, a well-calibrated model is highly important to have
the model predict confidences which correspond to the ac-
tual accuracy of the model. In this regard, label smoothing
lacks taking the differences between classes into account.
Particularly for fine-grained classification, the semantic dif-
ference between classes can be largely different. E.g., for
fine-grained vehicle classification, a confusion with a ve-
hicle model of the same make is more likely than with a
model of a different make which should be considered in the
label assignment process. Thus, we propose a knowledge-
distillation-based label smoothing technique that assigns
class-confusion-aware labels.

First on, we need to find the probabilities of the confu-
sions. These should be in the form of a confusion matrix
Σ ∈ RC×C . Each entry Σi,j describes the probability that
class i is confused with class j. These entries could be ap-
proximated by the hierarchy of the dataset, e.g., similarity
in terms of make or other attributes. However, we propose
a more fine-grained approach based on knowledge distilla-
tion. We first train a model without label smoothing that we

use as teacher network to predict the probabilities of class
confusions. We evaluate the model on the train set and ex-
tract the logits before the softmax activation function. The
logit of the ground-truth label is then set to zero as we do
not want to adjust for confusion with the class itself. After-
wards, the adjusted logits are normalized by a softmax func-
tion and then averaged per class logit for each ground-truth
class. This results in the entries of our confusion matrix Σ.

Thereafter, we train our final model as a student network
using the confusion matrix as distilled knowledge from the
teacher network. Let p0(X) the one-hot encoded ground-
truth label. The student network get the target label

p0(X)KD-LS = p0(X) · (1− α) +Σk · α (3)

assigned with Σk being the k-th row of Σ which describes
the probability of confusion of class k with all other classes
and α being the smoothing value as also applied for label
smoothing. The impact of our knowledge-distillation-based
label smoothing on the target vector is illustrated in Fig. 2.

4. Evaluation

Dataset. For training and evaluation, we mainly use the
CompCars Web [48] dataset with a total of 136,725 images.
While the dataset contains annotations regarding the make,
model and year of the vehicle for each image, we perform
the classification on the level of the model to prevent that
some classes have too few images. Thus, in our setup, the
dataset has 1,716 classes. CompCars Web contains a high
diversity of images in terms of vehicle poses and photo
backgrounds. However, as Buzelle and Segation [4] and
Wolf et al. [46] highlighted, the default random train-test-
split is heavily biased leading to a split which can be easily
solved. Thus, we use a harder train-test-split which is based
on maximizing the feature distance of a ResNet-18 feature
extractor between the train and the test set [4]. The split has
a ratio of 70% train and 30% test samples. Since we evalu-
ate an open-set scenario, we split the total of 1,716 classes
into 858 known and 858 unknown classes. For training,
only the training images of the known classes are used. For
evaluation, metrics involving on the classification perfor-
mance are only evaluated on the images of the test set of the
known classes while metrics involving open-set recognition
performance also use the images of the unknown classes
from the test set. We choose 20% of the training set ran-
domly as validation set to choose the best model from each
training run. However, all reported metrics are from evalu-
ations on the test set.

We verify the effectiveness of our approach on the Com-
pCars Surveillance (SV) dataset [48]. CompCars SV co-
tains 44,481 images with a total of 281 classes. The pre-
processing is similar to CompCars Web. For the SV experi-
ments, we generate a harder train-test-split with the method
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0 - KIA Picanto
1 - Opel Adam

2 - Audi TT RS
3 - Audi A1

4 - Audi TT Coupe
5 - Audi TTS Coupe

6 - BMW 7
7 - FIAT 126P

8 - BMW X6
9 - KIA GT

Figure 2. Comparing different target label assignment strategies: traditional one-hot encoding (a), label smoothing (b) and our knowledge-
distillation-based label smoothing (c). Label smoothing prevents overfitting by not incentivizing overconfidence. However, assigning
the same label to all negative classes is inappropriate for modeling confidences of fine-grained classification where the semantic distance
between classes can vary significantly. Our knowledge-distillation-based label smoothing takes the fine-grained classification setting into
account to assign labels with a proper modeling of the probabilities of confusion.

of Buzelle and Segation [4] that gives a better approxima-
tion of real-world performance. The split has 70% train and
30% test ratio with 20% of the train samples used for val-
idation. 141 of the 281 vehicle models are used as known
classes with the remaining 140 being the unknown classes
for which no samples are available during training.

Metrics. To evaluate the classification performance, we
use the macro-averaged F1-score which is evaluated on the
images of the known classes of the test set. To evaluate
the open-set recognition performance, we use the area un-
der the receiver operating characteristic (AUROC) metric
which we evaluate on images of the test set as binary clas-
sification problem to distinguish the images of known from
images of the unknown classes. We also report the open-
set classification rate (OSCR) [6] which indicates both the
classification and the open-set recognition performance.

Evaluation setup. We train the models with AdamW [26],
a batch size of 32, an initial learning rate of 10−3, a weight
decay of 0.05 and a cosine annealing learning rate schedule
that reduces to learning rate to 1% of the initial learning
rate. We start the training with a warm-up phase of 2 epochs
with a linear learning rate increase from 10−3× to 1.0× of
the initial learning rate. The training is run for 200 epochs
in total with the best checkpoint being selected for testing
based on the F1 score on the validation set. All models are
pre-trained on the ImageNet1k [34] dataset.

During training, a random crop with the size of 8% to
100% of the original image is taken and resized to the net-

work input size. Afterwards, a random horizontal flip and
RandAugment [5] are applied with RandAugment using the
default set of policies but only one policy per sample, a total
level of 14, a magnitude level of 10 and no magnitude devi-
ation. Preliminary experiments have shown these settings to
be advantageous compared to the default settings. Finally,
the augmented image is normalized by the mean and stan-
dard deviation of CompCars Web. During evaluation, the
image is first resized to 114% of the network input size on
the shorter side and afterwards, a center crop with the net-
work input size is taken. Finally, the image is normalized
similar to the training. The network input size is 256×256
for Swin Transformer V2 and 224×224 for all other back-
bones due to architectural particularities of Swin Trans-
former V2. We refrain from employing CutMix [50] or
mixup [51] data augmentations even though they are widely
applied in recent training recipes [23–25, 40] since prelimi-
nary experiments have shown that it decreases the open-set
recognition performance which could not outweigh gains in
closed-set accuracy.

State-of-the-art open-set recognition. We compare our
knowledge-distillation-based label smoothing to recently
published improvements for open-set recognition like max-
imum logit score (MLS) [41] and out-of-distribution-
detection like energy score [22] and LogitNorm [43] on the
CompCars Web and the CompCars SV datasets. For a fair
comparison, all methods are evaluated with our tuned base-
line using a Swin Transformer V2 Small model, optimized
data augmentation and label smoothing with an adjusted α
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Dataset

Method
CompCars Web CompCars Surveillance

F1 AUROC OSCR F1 AUROC OSCR

Baseline 92.3 93.9 90.8 91.9 94.4 90.6

Maximum Logit Score 92.3 94.1 90.7 91.9 93.5 89.7
Energy-Score 92.3 93.8 90.3 91.9 93.2 89.4
LogitNorm (τ = 0.05) 92.1 87.3 84.6 92.9 94.6 90.7

Knowledge-Distillation-Based
Label Smoothing (ours)

93.3 94.0 91.2 92.1 95.0 91.1

Table 1. Comparing our knowledge-distillation-based label smoothing approach to other recently published approaches for open-set recog-
nition or model calibration in general. For a fair comparison, all approaches are applied to the same baseline including. For CompCars
Web the other evaluated approaches provide no advantage on top of the baseline apart from a slight increase in terms of AUROC with
maximum logit score. Our approach increases the performance, particularly the F1 score, significantly. On CompCars Surveillance, our
approach also provides an advantage over the baseline for all evaluated metrics.

value. Since maximum logit score and the energy score are
just adapting the post-training open-set recognition, the F1
score does not change compared to the baseline. Regard-
ing the open-set recognition performance as measured by
the AUROC score, MLS leads to a slight increase while the
energy score leads to a slight decrease for the CompCars
Web. However, both show a drop in terms of the mixed
performance as measured by the OSCR. On the CompCars
SV dataset, both methods show a significant drop in terms
of both AUROC and OSCR. The LogitNorm loss leads to
a slight reduction of closed-set accuracy and a large reduc-
tion in terms of open-set recognition performance and in
turn, leads to a strongly reduced OSCR score on the Com-
pCars Web. However, on the CompCars SV dataset, the
logit normalization can significantly improve the F1 score
and shows a slight increase in terms of open-set recogni-
tion performance in terms of AUROC and thus, also im-
proves the OSCR slightly. Our KD-LS approach shows an
improvement for all metrics with the largest one being on
the F1 score for the CompCars Web. Compared to the other
approaches, only the MLS can slightly outperform KD-LS
on the CompCars Web regarding the AUROC score and the
LogitNorm can outperform KD-LS on the CompCars SV
regarding the F1 score. Nonetheless, KD-LS shows a high
consistency with not falling behind heavily in any of the
metrics or datasets evaluated. Finding the exact reason for
partially strong drops of the other methods, e.g. LogitNorm
dropping by about 6 percentage points regarding OSCR on
CompCars Web compared to the baseline, is up to future
research. It might be related due to LogitNorm being more
sensitive to hyper parameters. The drops of MLS and en-
ergy score in regards to the AUROC and OSCR scores on
the CompCars SV seem to be specific to this dataset. How-
ever, particularly for open-set recognition, consistency is
highly important due to the openness of the task rendering

Method α F1 AUROC OSCR

Baseline - 92.6 91.2 88.8

Label Smoothing
10−1 91.9 82.3 80.2
10−2 92.3 93.9 90.8
10−3 92.0 93.1 90.2

Knowledge-
Distillation-Based
Label Smoothing

10−1 92.2 88.9 86.2
10−2 93.3 94.0 91.2
10−3 92.2 91.4 88.8

Table 2. Evaluating our knowledge-distillation-based label
smoothing approach for open-set recognition on the fine-grained
vehicle classification dataset CompCars Web. While label smooth-
ing shows a strong increase in the AUROC score as indicator
for the open-set recognition performance, it slightly degrades the
F1 classification score. Our knowledge-distillation-based label
smoothing approach is slightly increasing the AUROC score fur-
ther but its main advantage is a significant increase for the F1
classification score which in turn leads to an increased combined
OSCR score.

sophisticated evaluation on real-world scenarios difficult.

Knowledge-distillation-based label smoothing. We eval-
uate our knowledge-distillation-based label smoothing ap-
proach in more detail and show the results in Table 2. First
on, we run evaluations on the CompCars Web dataset re-
garding static label smoothing which is indifferent to class
confusion. A crucial hyper parameter for label smoothing is
α which describes the confidence set as target for negative
classes during training. A value of α = 0 corresponds to
not employing label smoothing at all. We compare no label
smoothing to values of α ∈ {10−1, 10−2, 10−3}. While all
evaluated values reduce the F1-Score indicating closed set
classification performance compared to no label smoothing,
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Figure 3. Evaluation of the different metrics on the Comp-
Cars Surveillance dataset for a model trained with knowledge-
distillation-based label smoothing with different values for α. La-
bel smoothing has a significant advantage for the classification and
open-set recognition performance as long as the value of α is cho-
sen carefully. Choosing a value too large can degrade the perfor-
mance of the model beyond training without label smoothing.

the AUROC score measuring open-set recognition perfor-
mance achieves its optimum at α = 10−2 with 2.7 points
over the baseline without label smoothing. However, using
10−1 degrades the AUROC by 8.9 points compared to not
using label smoothing. This highlights the impact of the
value of α and the requirement to choose it carefully.

We analyze the impact of α for knowledge-distillation-
based label smoothing in more detail for the CompCars SV
dataset in Figure 3. It can be seen that the impact rises with
an in creasing α value as expected. A value of 10−4 results
in only a slight increase in terms of F1, AUROC and OSCR.
With a value of 10−3 the results clearly peak for the AU-
ROC and the OSCR. Increasing α further brings these two
metrics close to the initial value without any label smooth-
ing at 10−2 and showing a heavy degradation with an even
higher value of 10−1. In contrast, the closed-set metrics F1
and accuracy do not show a clear tendency. F1 shows an
increase when increasing α from 0 to 10−4 but only shows
slight variations for higher values. This highlights the im-
portance of properly choosing α for open-set recognition
performance. Particularly, the optimal value is dependent
on the dataset and thus, it should be chosen independently
for each dataset.

Model architectures. Model architectures is a heavily re-
searched field. A wide range of architectures have been in-
vented which are either general-purpose architectures de-
signed for overall better generalization or are designed for
specific purposes like fine-grained classification. We eval-
uate different size variants of ResNet [13], ResNeXt [47],
ConvNeXt [25], Swin Transformer [24] and Swin Trans-
former V2 [23] which are general-purpose architectures and

86 87 88 89 90 91 92
F1-Score
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ResNet101
ResNeXt50
ResNeXt101
ConvNeXt-Tiny
ConvNeXt-Small
ConvNeXt-Base
SwinV1-Tiny
SwinV1-Small
SwinV1-Base
SwinV2-Tiny
SwinV2-Small
SwinV2-Base
API-Net

Figure 4. The figure shows different classification architecture
with their open-set recognition performance in terms of AUROC
compared to the classification performance in terms of F1 score.

we evaluate API-Net [53] as an architecture optimized for
fine-grained classification. The models are evaluated with
only basic data augmentation (horizontal flip) and without
label smoothing. The results are shown in Figure 4. As
expected, there is a clear tendency that more modern back-
bones are achieving a better F1 score. While larger model
are mostly performing better than their smaller counter-
parts, at least for ConvNeXt and Swin V2, the Base vari-
ants are showing a worse performance than the Small vari-
ants. This is a sign of overfitting and more regularization
like data augmentation or label smoothing might be needed
to make the Base models perform better. Interestingly, there
is a strong correlation between the F1 score and the AUROC
score. These findings are in line with the findings by Vaze
et al. [41] who state that the open-set performance is closely
related to the closed-set performance. This shows that either
better model calibration is necessary for better closed-set
performance or vice versa. However, some models are off
the average ratio between AUROC and F1 score. The Swin
V1 models show an AUROC score which is significantly
below what is to be expected based on its F1 score. And the
API-Net, optimized for fine-grained classification, is signif-
icantly above the average ratio showing a high open-set per-
formance compared to its closed-set performance. Nonethe-
less, due to it having the lowest F1-score in the comparison,
it it not achieving the best AUROC score.

Impact of number of classes and samples. A wide range
of datasets for fine-grained vehicle classification [2, 18, 27,
36, 39, 48] has been proposed with different number of
classes and different sample sizes. However, there is a lack
of systematic investigation regarding the impact of the num-
ber of classes and the sample sizes on the difficulty of the
task and the achieved classification performance, particu-
larly for open-set scenarios. Thus, we evaluate our approach
for subsets of CompCars Web that are either reduced by the
number of samples per class, the number of total known
classes or both. We hypothesize that (1) a higher number
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Training
samples

Number of known classes

25% 50% 100%

214
25%

429
50%

858
100%

2581 Samples
F1: 68.2

AUROC: 73.6

5051 Samples
F1: 67.1

AUROC: 74.5

9967 Samples
F1: 64.8

AUROC: 74.5

5043 Samples
F1: 83.4

AUROC: 85.8

9880 Samples
F1: 84.8

AUROC: 86.0

19527 Samples
F1: 84.6

AUROC: 86.3

9964 Samples
F1: 91.2

AUROC: 90.8

19545 Samples
F1: 93.4

AUROC: 91.9

38619 Samples
F1: 92.6

AUROC: 91.2

Figure 5. The figure shows results of evaluations executed on sub-
sets of the CompCars Web. We reduce the number of classes and
the number of samples per class systematically to investigate the
impact of these two factors. In contrast to our expectation, a higher
number of classes is not rendering the closed-set classification task
significantly more difficult. By far more important is the number
of samples per class. Also in contrast to our expectation, a higher
number of classes is not increasing the open-set recognition per-
formance. Again, most important is the number of classes per
sample.

of classes leads to a worse closed-set classification perfor-
mance for the same number of samples per class and (2) the
open-set performance will improve for an increasing num-
ber of known classes for the same number of samples per
class. We assume hypothesis (1) since more classes will re-
duce the probability of choosing the correct classes when
only choosing randomly. So, a random guessing classifier
will perform worse and a real algorithm has to achieve a
higher relative performance compared to the random guess-
ing classifier in order to achieve the same classification ac-
curacy than with a lower number of classes. And without
having more samples available per class, the ability to dis-
tinguish classes should not improve. This means that the
task should get more difficult with more classes. We assume
hypothesis (2) since more classes should provide a feature
space that is generalizing better to distinguish any vehicle
classes and so, also new classes. Thus, the new feature
space should provide a better representation for distinguish-
ing unknown classes from any of the known classes. Addi-
tionally, this hypothesis is supported by the openness [35]
metric which assigns a task an openness score based on the
ratio of the number of unknown classes to the number of
known classes. The openness score is a common metric for
estimating the difficulty of open-set recognition tasks.

For the evaluations, we use our baseline with a Swin
Transformer V2 backbone and optimized data augmentation
but without label smoothing. The results of the experiment
are shown in Fig. 5. Regarding hypothesis (1), as expected,
we see a drop in terms of F1 score when we increase the
number of classes from 25% to 50% and to 100% of the

total number of known classes when using 25% of the to-
tal number of samples per class. However, with 50% or
100% of the total samples, the differences in terms of F1
score between the different number of classes evaluated be-
come insignificant considering that the classes and thus, the
samples in the test set change between the evaluations. So,
we can conclude that as long as the number of samples is
not becoming too low, we can reject the hypothesis and the
number of classes is not significant for the closed-set clas-
sification performance for the range of evaluated number
of classes. This insight opens space for future research for
the reason behind this unexpected behavior and the limits
of the new hypothesis. The reason our hypothesis does not
hold might be that the generalization of the total number
of samples which increase with more classes as long as the
number of samples per class is kept the same outweighs the
increased difficulty. This is supported by the fact that when
looking at the results with the total number of samples be-
ing the same while increasing the number of classes, i.e. the
results with a common color in the figure, the F1 shows a
drastic drop in performance.

Regarding hypothesis (2), the results do not reflect the
expected behavior with the results showing an AUROC
score being largely independent of the number of known
classes in training considering that the train and test sets be-
ing not exactly the same due to the changing classes. This
holds true as long as the number of samples per classes are
kept the same. As soon as the number of samples per class
increases, the AUROC score also increases significantly. A
reason for the unexpected behavior might be the strong cor-
relation of open-set recognition and closed-set classification
performance with the last one also not changing signifi-
cantly with the number of classes. The observed behavior
contradicts the use of the openness metric [35] as a measure
for open-set recognition difficulty.

5. Conclusion
We investigate the open-set recognition scenario in the

context of fine-grained vehicle classification. This is par-
ticularly important for real-world surveillance applications
due to them not being controllable in terms of vehicle mod-
els shown to the classification model. We show that re-
cent state-of-the-art deep learning models already achieve
a good performance for both the closed-set classification
as well as the open-set recognition. Nonetheless, both can
still be improved with our proposed knowledge-distillation-
based label smoothing. We execute additional experiments
which show that the drop in classification accuracy is in-
significant with increasing number of classes as long as the
number of samples can be kept the same. Additionally, we
show that the number of samples per class is crucial for
the open-set recognition performance while the number of
classes has a negligible impact.
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