Iterative Scale-Up ExpansionIoU and Deep Features Association for Multi-Object Tracking in Sports Supplementary Material

1. Pseudocode of DeepEIoU

Algorithm 1: Pseudocode of DeepEIoU
Data: Video sequence \mathcal{V} ; detector \mathcal{D} ; detection score threshold
$ au$; total number of iteration for scale-up process t_{total}
Result: Tracks \mathcal{T}
1 Initialization: $\mathcal{T} \leftarrow \emptyset$;
2 for frame $f_k, k \leftarrow 1 : K$ do
3 // Step 1: Predict detection and appearance feature
4 $D_{\mathbf{k}} \leftarrow \mathcal{D}(f_t);$
5 $D_{\text{high}} \leftarrow \emptyset$;
$6 \qquad D_{\text{low}} \leftarrow \emptyset;$
7 for d in D_k do
s if $d.score > \tau$ then
9 $ D_{high} \leftarrow D_{high} \cup \{d\}$
10 end
11 else
12 $ D_{\text{low}} \leftarrow D_{\text{low}} \cup \{d\}$
13 end
14 end
15 // Step 2: Iterative scale-up association for high score
detections
16 Initialization: $\mathcal{T}_{\text{matched}} \leftarrow \emptyset$
17 for $t \leftarrow 0$: t_{total} do
18 Calculate Expansion scale E_t for current iteration
19 Associate \mathcal{T} and D_{high} using appearance and EIoU $\mathcal{T} \leftarrow \mathcal{T}$) metabolic form summation
20 $\mathcal{T} \leftarrow \mathcal{T} \setminus$ matched tracks from current iteration
21 $D_{\text{high}} \leftarrow D_{\text{high}} \setminus \text{matched detections from current}$ iteration
22 $\mathcal{T}_{matched} \leftarrow \mathcal{T}_{matched} \cup matched tracks from current$
iteration
23 end
24 $\mathcal{T}_{unmatched} \leftarrow unmatched tracks after step 2$
25 $\mathcal{D}_{unmatched} \leftarrow unmatched detections after step 2$
26 // Step 3: Association for low score detections
Associate $\mathcal{T}_{unmatched}$ and D_{low} using EIoU
28 $\mathcal{T}_{\text{matched}} \leftarrow \text{matched tracks in step 3}$
29 $\mathcal{T}_{unmatched} \leftarrow unmatched tracks after step 3$
30 // Step 4: Association for unmatched tracks
Associate $\mathcal{T}_{unmatched}$ and $D_{unmatched}$ using EIoU
32 $\mathcal{T}_{\text{matched}} \leftarrow \text{matched tracks in step 4}$
33 $D_{\text{unmatched}} \leftarrow \text{unmatched detections after step 4}$
34 // Step 5: Create new tracks and delete unmatched tracks
for d in $D_{unmatched}$ do
36 $\mathcal{T}_{new} \leftarrow d$
37 end
$38 \mid \mathcal{T} \leftarrow \{\mathcal{T}_{\text{matched}}, \mathcal{T}_{\text{new}}\}$
39 end

Note that the Expansion scale E_t in step 2 is different for each iteration, while for step 3 and step 4, the Expansion scale is a constant. More details regarding the tracking parameter setting can be found in the paper's Section 4.4. For simplicity, the track reactivate mechanism [1, 2] is not shown in our pseudocode. Due to the file size limitation, we can not include the demo videos in our submit file. Please refer to drive for more demo videos and visualization results.

References

- Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), pages 3464–3468, 2016.
- [2] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by associating every detection box, 2021. arXiv preprint arXiv:2110.06864.