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Figure 1. Performance of the proposed method compared to SoTA
self-supervised algorithms. The proposed method demonstrates
higher fidelity and sharper estimations around edges than SoTA.
Red boxes in segmentation results highlight improved areas, while
cyan-colored boxes highlight increased fidelity within estimated
disparity.

1. Appendix-A
We follow the same architecture as that of HR Depth [8]

in constructing the Depth estimation model while including
YOSO [5] head for panoptic segmentation using the same
encoder.

2. Appendix-C
We include qualitative results in Fig. 1 to demonstrate

the effect of using segmentation branch results in poor oc-
clusion handling wherein the object boundaries are thicker.

3. Appendix-F
We follow an incremental approach to perform ablation

studies to determine different mechanisms’ effects. Specif-
ically, we first identify the effect of modifying the encoder
network and summarize the performance of different back-
bone networks in Tab. 1. For our ablation, we vary the en-
coder within the Monodepth2 [3] network from lightweight
MobileNetv3 [4] to heavy ResNet101. We measure the
computational complexity (GMACs) and the total number

of parameters to evaluate the performance of different en-
coders. For computing GMACs, we used the input size
as 640 × 192. We observe that utilizing networks that
tend to achieve higher performance on image classification
tasks does not translate to higher performance on depth es-
timation. We validate this based on the observation that
MobileNetv3 provides better performance to DenseNet-121
and ResNet-18 at a lower computational complexity. Fur-
thermore, we also validate our initial motivation of using
HRNet as an encoder, i.e., models designed for coarse pre-
diction tasks cannot provide the necessary fidelity for dense
prediction due to the loss of spatial correlation between pix-
els. Finally, we summarize that the high-performance gain
achieved by HRNet is due to its architectural design of cor-
relating features between different scales to ensure high-
quality semantic features with good spatial properties.

4. Appendix-G
We include the ablation results of scale-Distillation pa-

rameter (α) sweep, Panoptic and Triplet Loss in Tab. 2.

5. Appendix-H
We include the ablation for single-frame and multi-frame

MDE in Tab. 3.

6. Appendix-I
We include ablation on integration of panoptic segmen-

tation branch in Tab. 2.
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Table 1. Ablation studies on KITTI-2015 Eigen Split to examine the effect of varying the encoder architecture within the depth estimation
network. We observe models having higher prediction accuracy for image classification to necessarily translate into higher performance
for dense prediction tasks.

Backbone Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253 GMACs Params
ResNet-18 0.114 0.864 4.817 0.192 0.875 0.959 0.981 8.042 14.84
ResNet-50 0.110 0.831 4.642 0.187 0.883 0.962 0.982 16.643 34.57

SEResNet50 [6] 0.114 0.908 4.868 0.191 0.878 0.960 0.981 16.646 35.05
ResNest-14d [10] 0.113 0.860 4.738 0.189 0.878 0.960 0.982 13.339 17.57
ResNext-101 [9] 0.111 0.906 4.797 0.189 0.884 0.961 0.981 26.368 51.53

HRNet-30 0.105 0.877 4.736 0.185 0.892 0.963 0.982 22.622 32.46
DenseNet-121 [7] 0.111 0.883 4.866 0.191 0.882 0.960 0.981 13.251 13.60
Mobilenetv3 [4] 0.112 0.916 4.889 0.191 0.879 0.959 0.981 3.299 6.68

Table 2. Ablation studies on KITTI-2015 Eigen Split to examine the effect of varying different components within the decoder of the depth
estimation network. The networks are trained using inputs of resolution 640 × 192.

α Triplet Loss Panoptic Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

ResNet18 as Encoder
1 0.114 0.864 4.817 0.192 0.875 0.959 0.981
2 0.5 0.112 0.916 4.889 0.191 0.879 0.959 0.981
3 1.0 0.109 0.862 4.809 0.190 0.890 0.962 0.982
4 1.0 ✓ 0.106 0.854 4.650 0.187 0.883 0.961 0.982
5 1.0 ✓ ✓ 0.104 0.821 4.678 0.185 0.895 0.963 0.982

HRNet as Encoder
6 0.105 0.877 4.736 0.185 0.892 0.963 0.982
7 0.5 0.104 0.859 4.678 0.185 0.895 0.963 0.982
8 1.0 0.101 0.801 4.599 0.184 0.885 0.964 0.982
9 1.0 ✓ 0.100 0.793 4.544 0.184 0.885 0.966 0.984
10 1.0 ✓ ✓ 0.098 0.713 4.397 0.181 0.899 0.966 0.984

Table 3. Qualitative results of SoTA on the NuScenes dataset.

Method Res. Backbone Sem. Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [3] 640 × 192 ResNet-18 0.187 1.865 8.322 0.303 0.722 0.882 0.939
HRDepth [8] 640 × 192 ResNet-18 0.179 1.801 7.977 0.289 0.735 0.889 0.947
SAFENet [2] 640 × 192 ResNet-18 ✓ 0.172 1.652 7.776 0.277 0.752 0.895 0.950
Ours 640 × 192 HRNet 0.176 1.800 7.919 0.282 0.740 0.891 0.950
Ours 640 × 192 HRNet ✓ 0.169 1.591 7.596 0.268 0.760 0.903 0.951
SAFENet [2] 1024 × 320 ResNet-18 ✓ 0.175 1.667 7.533 0.274 0.750 0.902 0.951
Ours 1024 × 320 HRNet 0.164 1.548 7.677 0.291 0.773 0.895 0.950
Ours 1024 × 320 HRNet ✓ 0.149 1.299 5.914 0.195 0.874 0.939 0.980
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