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Abstract

Recently, there have been significant advances in video
super-resolution (VSR) techniques under blind and practi-
cal degradation settings. These techniques restore the fine
details of each video frame while maintaining the tempo-
ral consistency between frames for a smooth motion. Un-
fortunately, many attempts still fall short in the case of
real-world videos. When diverse and complex in-the-wild
degradation is introduced, the task becomes non-trivial and
challenging. As a result, VSR techniques perform poorly
in general. We argue that there is more space to improve
the performance of VSR methods, as current methods are
only trained on image-level degradation settings, leading to
a restoration quality that may be sub-optimal for real-world
degradation that varies pixel-wise within an image. To this
end, we propose RealPixVSR which leverages the pixel-
level representations to improve the pixel-level sensitivity
to degradation. The pixel-level content-invariant degrada-
tion representation is learned in a self-supervised manner
using the contrastive learning network referred to as the
Pixel-Degradation-Representation-Network (PDRN). And
the learned visual representation is merged with the clean-
ing and restoration networks using the Pixel-Degradation-
Informed-Block (PDIB). Through experiments, we show
that our network outperforms the latest state-of-the-art VSR
models for real-world video.

1. Introduction

Video super-resolution(VSR) is the task of reconstruct-
ing high-resolution videos from low-quality videos contain-
ing degradations. It leverages the long-term information
from neighboring frames to restore each frame in a given
video. Two frameworks are mostly employed for the ag-
gregation of frame information. Sliding-windows frame-
work [14, 36, 41] is a branch of approach that uses the fea-
tures in images within a short temporal window. Recur-

rent framework [3, 4, 33] is another approach that exploits
long-term dependency where through recurrence the latent
features are propagated and aggregated. Recently, [3] pro-
poses a basic but powerful recurrent architecture that allows
an easy extension.

The VSR task may become very challenging depending
on the degradation in videos. If the goal is to deal with
all real-world videos containing a complex combination of
degradations, designing a dataset for the training itself be-
comes almost prohibitive as we must collect LR videos con-
taining all combinations of different degradations and their
corresponding HR videos. Hence, early classical degra-
dation models [1, 12, 26, 28] assume a simplified degrada-
tion process to super-resolve videos under mild degrada-
tions. Although they achieved some success, the perfor-
mance drop is significant with real images. Later, practi-
cal models [40, 53] designed a more complex high-order
degradation process to increase their performance on real
images but still, some performance gap exists. In [4], the
authors extend [3] with a cleaning module and achieved
some improvement over practical models in super-resolving
real-world videos.

Contrastive learning is a method for unsupervised learn-
ing of visual representation which has achieved remarkable
success in transfer performance recently. Its objective is
to learn hidden representations by contrasting positive pairs
with negative ones. Some research efforts [24, 43, 46, 51]
have been conducted to apply contrastive learning to single
image super-resolution (SISR). For instance, [24] applied
contrastive learning to learn degradation representation to
distinguish the latent degradation from one another without
any explicit degradation assumption. The learned degra-
dation representation is then passed to a degradation-aware
network(DASR) with flexible adaptation to various degra-
dations to super-resolve an HR image.

Although these methods show the effectiveness of con-
trastive learning on SISR tasks, they impose a strong as-
sumption that the degradation representation is fixed at the
image level. This assumption may lead to a restoration qual-
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ity that is sub-optimal for processing real-world degrada-
tion that also varies pixel-wise within an image. When the
degradation representation is fixed at the image level, the
discrepancy between image and pixel level representation
induces some quality loss in the image reconstruction. For
VSR tasks, the representation error propagates during the
temporal aggregation of features and may result in an accu-
mulated quality loss in the reconstructed video.

In this paper, we propose a recurrent method for video
super-resolution of real videos that leverages the degra-
dation representation learned through unsupervised pixel-
level contrastive learning. We relax the assumption of
image-level representation and extend the degradation rep-
resentation to pixel-level to enforce the spatial sensitivity
that we think benefits the reconstruction process. The over-
all architecture of our work (RealPixVSR) is depicted in
Fig. 1. It is composed of three main components: the
pixel degradation representation network (PDRN), the pixel
degradation informed cleaning network (PDICN) and the
pixel degradation informed VSR network (PDIVSR). The
contributions of our work can be summarized as follows:

• We propose a novel recurrent structure for the propa-
gation of pixel-level degradation representation. Our
model predicts the degradation representation at the
pixel level and demonstrates improved restoration of
real images

• Compared to previous state-of-the-art methods, our ex-
periments show that our method achieves better per-
formance on real-world videos while preserving image
details.

2. Related Work
Single Image Super-Resolution Given a low resolu-
tion(LR) image x, single-image super-resolution (SISR)
method predicts approximation image y′ of a high-
resolution(HR) image y, by

y′ = fsr(x, θ) (1)

where fsr denotes the super-resolution model and θ is the
corresponding parameter set. Generally, the LR image x is
synthetically computed from HR image y by

x = fdeg(y, τ) (2)

where fdeg denotes a degradation process, and τ its param-
eters. fdeg may be composed of several degradation fac-
tors such as blurring, downsampling, noise injection, com-
pression artifacts, anisotropic degradations, sensor noise,
speckle noise, and more.
Non-blind, Blind, Practical vs Real-world SR Super-
resolution can be classified into different categories based
on the assumptions made about the degradation process.

Figure 1. The overall architecture of RealPixVSR

Non-blind super-resolution models, such as [13, 15, 18], as-
sume that fdeg and parameter τ in equation (2) are fixed.
These models usually use a bicubic downsampling kernel
as fdeg and do not consider other degradation factors. This
assumption is too simple to reflect real-world degradation.
Blind super-resolution [12, 38, 40, 54] mimics more closely
to real degradation by setting degradation parameters τ
vary. For example, classical degradation models, define the
whole degradation process as

x = (y ⊗ k) ↓s +n (3)

where k denotes the blur kernel, ⊗ the convolution, ↓s the
down-sampling operations(s is scaling factor) and n the
noise restricted to simple cases. While more relaxed than
non-blind models, this approach still handles only a limited
range of degradation types.
Practical super-resolution models handle complex degrada-
tion processes, often expressed as a combination of multi-
ple factors such as blur, sensor noise, sharpening artifacts,
JPEG compression, etc. This requires high-order degrada-
tion models, like the one introduced in [52], which shuf-
fles and applies multiple degradation types to HR images to
generate a more realistic LR image.
Real-world super-resolution shifts the focus from synthetic
to real images. [23] shows how the performance of SISR
methods trained on synthetic data degrade due to the do-
main gap between synthetic and real-world data. Much re-
search is being conducted on topics involving real-world
dataset collection, SR models for real-world images, and
SR result assessment.
Video Super-Resolution Video Super-Resolution (VSR)
aims to generate high-resolution detailed video frames from
a given set of low-resolution video frames. Frame-wise the
task is similar to SISR, but VSR also leverages visual in-
formation available from a frame’s neighbors. To use the
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information from a neighbor frame, VSR methods exploit
the temporal consistency with the neighbor frames during
the reconstruction of HR frame to guarantee a smooth mo-
tion. Recurrent framework [3, 4, 33] is popularly used for
feature aggregation in VSR models since it can process in-
puts of arbitrary length through weight sharing while han-
dling long-range dependency among pixels. The sliding-
windows framework [14, 36, 41] is also popularly used but
it is known that for the sliding-windows method, the perfor-
mance drops for smaller windows sizes. Either framework
needs an alignment module to find the correspondence be-
tween pixels of an image and its neighbor to align neigh-
bor frames through back-warping to the given image. The
optical flow method, such as [32], is an efficient way to
implement an alignment module. Deformable Alignment
method [37,41] is superior in performance and many recent
works adopt it for feature alignment.
Contrastive Learning Contrastive learning [9, 17, 34, 47,
49, 55] is a method of unsupervised representation learn-
ing in a dataset without the need for labels. It works by
maximizing the similarity between positive pairs and max-
imizing the difference between negative pairs, generated
through data augmentation methods like image transforma-
tions [6, 16, 47], cropped sub-images [17, 39], or multiple
views [35]. This approach mimics the way humans learn
by grouping common attributes and discriminating unique
ones. By reducing the need for labeling, contrastive learn-
ing can guide deep models to learn intrinsic representa-
tions in the data. Recent studies have shown that con-
trastive learning can outperform supervised methods on var-
ious downstream tasks, with MOCO [16] achieving superior
transfer performance.

Some studies [43,44,46,51] applied contrastive learning
to image restoration and showed its effectiveness. DARS
[40] developed an unsupervised degradation representation
learning scheme for blind super-resolution (SR) without es-
timating the degradation process, by learning abstract repre-
sentations of various image-level degradations. AirNet [24],
accomplishes a different task of restoring multiple types of
degradation using a contrastive network that knows the rep-
resentation of different types of degradations (rainy, cloudy,
..etc) and guides the SR network to do the proper restoration
regardless of the difference in degradation types.
Pixel-level contrastive learning in videos Previous re-
search on image restoration [24, 40] assumed that degra-
dation is consistent across the entire image, which may
limit the algorithm’s ability to handle real-world images
with varying degradation at the pixel level. In video
super-resolution, image-level and pixel-level differences
can propagate during temporal aggregation of frame fea-
tures. Pixel-level contrastive learning may help, but iden-
tifying positive pairs in videos with repetitive pixels in
multiple frames can be challenging. Some prior works

[19, 21, 25, 42] addressed this by using weak cycle consis-
tency checks between forward and backward associations
among pixels. In contrast, [48] provides a method to com-
pute the ground-truth pixel-level correspondence directly
from different views of a single image while gracefully
combining pixel-level and instance-level representations.
Our approach follows their work, computing both instance-
level and pixel-level representations. For clarity, we use the
term image-level representation instead of instance-level
representation to distinguish it from pixel-level representa-
tion.

3. Proposed Method
In this section, we describe in detail our proposed

method. The overall architecture is illustrated in Fig. 1. It
is composed of three main components: the pixel degrada-
tion representation network NPDRN , the pixel degradation
informed cleaning network NPDICN and the pixel degrada-
tion informed VSR network NPDIV SR. Given video frame
sequences xt, t=1,...,N , the pixel degradation representation
network NPDRN computes the pixel-level latent represen-
tations

zt = NPDRN (xt), t=1,...,N . (4)

Then, xt and zt are fed into the pixel degradation informed
cleaning network NPDICN to produce the clean image se-
quences

ct = NPDICN (xt, zt), t=1,...,N . (5)

Finally, ct and zt is fed into the pixel degradation informed
VSR network NPDIV SR to produce the super-resolved
frame sequences

y′t = NPDIV SR(ct, zt), t=1,...,N . (6)

In our work, we adopt the recurrent structure similar to Ba-
sicVSR [3] with modified feature aggregation blocks.

3.1. Pixel Degradation Representation Network

The objective of PDRN is to generate a pixel-level degra-
dation representation zt in each frame. This representation
is utilized to improve the quality of image reconstruction
in later stages by providing detailed information about the
degradation at the pixel level.

PDRN comprises a ResNet-based encoder and three pro-
jection heads, as illustrated in Fig. 2(b). The first projec-
tion head calculates the pixel-level degradation representa-
tion zt, while the second and third projection heads are em-
ployed for pixel-level and image-level contrastive learning,
respectively.
Learning pixel-level representation We use pixel-level
contrastive learning make RealPixVSR better at noticing
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Figure 2. Model architecture of the proposed RealPixVSR. (a) Pixel Degradation informed cleaning network (PDICN) (b) Pixel Degra-
dation Representation Network (PDRN) (c) Pixel Degradation Informed VSR Network (PDIVSR) (d) Pixel Degradation Informed Block
(PDIB)

differences in pixel contents when there are various types
of degradation present. This module selects two different
views, V1 and V2, from a low-resolution (LR) image. This is
achieved by randomly cropping patches from the image and
resizing them back to their original size. One of these views
is processed by an encoder network E and the other by a
momentum encoder network Ẽ to compute two different
feature maps hV1 and hV2 , respectively. Similar to [48], we
then calculate the normalized distance dist(p, q) between
pixel pairs p ∈ V1 and q ∈ V2 that takes into account the
scale differences. We use a distance threshold, ϵ = 0.7,
to determine positive and negative pixel pairs, where pixels
with a distance of less than or equal to ϵ are considered pos-
itive, and those with a distance greater than ϵ are considered
negative.

Considering each pixel p as an instance, a contrastive
loss Lpixel can be defined as follows:

Lpixel(p) = −log

∑
q∈Ψ

+
p

ecos(h
V1
p ,h

V2
q )/τ

∑
q∈Ψ

+
p

ecos(h
V1
p ,h

V2
q )/τ+

∑
q∈Ψ

−
p

ecos(h
V1
p ,h

V2
q )/τ

(7)

where hV1
p and hV2

q denote the feature vectors at pixel p ∈
V1 and q ∈ V2, respectively. The sets Ψ+

p and Ψ−
p represent

the positive and negative samples of pixel p ∈ V1 in view
V2.

Image-level representation is also employed to comple-
ment pixel-level representation, as seen in Xie et al. [48].
Different projection heads are used to learn image-level
and pixel-level representations separately, and features are

aggregated using average pooling before projection is ap-
plied. The image-level contrastive loss Limg is computed
using positive samples from the same frame and negative
samples from different frames. The overall contrastive
loss Lcont combines both pixel-level and image-level con-
trastive losses, as shown in Eq. (8), where αcont represents
a multiplicative factor that weights the image-level con-
trastive loss.

Lcont = Lpixel + αcontLimg. (8)

Contrastive learning primarily enhances the acquisition
of detailed pixel-level representations, focusing less on rep-
resentations related to degradation. Nevertheless, the rep-
resentation zt derived from PDRN is incorporated into
PDICN and PDIVSR, both responsible for cleaning and
reconstructing high-resolution (HR) images. This entire
network is then trained end-to-end. Consequently, zt is
induced to capture the pixel-level degradation in images.
Thus, the pixel-level contrast loss serves as a directive for
PDRN to extract more intricate pixel-level representations
of degradations. The effectiveness of this design is dis-
cussed in Sec. 5.2.3.

3.2. Pixel Degradation Informed Block

Pixel Degradation Informed Block (PDIB) is the pri-
mary component used to aggregate features in the cleaning
and propagation layers. The structure of PDIB is shown in
Fig. 2(d). The purpose of PDIB is utilizing pixel-level rep-
resentation to make a detailed image features. To achieve
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this, PDIB takes in two inputs: the image feature map hk
t

and the pixel-level representation gkt . In contrast to prior
research [24], we also update the pixel-level representation
to generate a fine-grained representation and propagate it to
the next PDIB block. To ensure training stability, we update
residual features, as depicted in Eq. (9)

hk+1
t = hk

t +NH(hk
t , g

k
t )

gk+1
t = gkt +NG(h

k
t , g

k
t ),

(9)

where NH and NG are the network for extracting image
feature and pixel-level representation, respectively.

NH is composed of a Deformable Convolution (DConv)
layer [8] and a Spatial Feature Transform (SFT) layer [45]
in order to effectively handle complex degradations. De-
formable convolution has the ability to dynamically adjust
the receptive field by adding 2D offsets ∆p and a modu-
lation mask ∆m to the regular grid sampling locations in
the standard convolution. The offsets are learned from the
feature maps hk

t and gkt via additional convolution layers.
Real-world images often suffer from complex degradations
that can vary from pixel to pixel. The DConv layer aims to
find the optimal convolution settings within an image at the
pixel level using pixel-level degradation information pro-
vided by gkt .

Both NH and NG utilize SFT, which can alter the dis-
tributions of hk

t based on the value of gkt provided. This is
achieved through convolution networks dedicated to com-
puting and producing modulation parameters, α and β. This
process effectively modifies the discrepancy in degradation
distribution among individual pixels.

3.3. Pixel Degradation Informed Cleaning Network

The goal of PDICN is to reduce the impact of degrada-
tion on real images before they are processed by the VSR
network, in order to minimize the influence of noise on
downstream tasks. Previous research [4] has shown that if
not handled properly, noise and artifacts can be amplified
during the long-term aggregation of features. To address
this issue, we propose an architecture that includes a pre-
cleaning network that adopts pixel-level degradation repre-
sentation, as shown in Fig. 2(a).

PDICN consists a stack of Nc PDIBs to output the
cleaned image. Given an input image xt, the first convo-
lution layer extracts the initial image features h0

t for PDIB,
and zt from PDRN is used for the initial pixel represen-
tation for PDIB, i.e. g0t = zt. A last convolution layer
generate the clean image ct from the last image feature hNc

t

from PDIB. The loss for image cleaning Lclean is calculated
from the difference between the output ct and the bicubic-
downsampled GT image yt,↓4

. We use Charbonnier loss [5]
known to improve accuracy over L2 loss.

3.4. Pixel Degradation Informed VSR Network

The PDIVSR is the main network where the super-
resolution task is completed (Fig. 2(c)). It receives a clean
input ct from PDICN, and the pixel-level degradation rep-
resentation zt from PDRN. Given ct and zt, t=1,...,.N , PDI-
VSR processes clean LR image sequences to create super-
resolved video frame sequences. We have used the frame-
work proposed by [3] as a baseline and modified the struc-
ture to include the representations of pixel-level degrada-
tion. PDIVSR is composed of layers for backward and for-
ward propagation, which propagate features in their respec-
tive directions. The upsampling layer located at the end of
PDIVSR merges the output features from both propagation
layers to generate the super-resolved image.
Propagation layers The proposed model implements a bi-
directional propagation module for feature aggregation for
a long-time leveraging of temporal information. The archi-
tecture of a propagation layer (forward or backward) con-
sists of an initial convolution layer followed by a stack of
PDIBs as shown in Fig. 2(c). For a backward propagation
layer at time t, the inputs comprise of four components:
the clean image ct, the pixel-level degradation representa-
tion zt, the recurrent feature map hb

t+1, and the recurrent
pixel-degradation feature map gbt+1. The feature maps hb

t+1

and gbt+1 pass through the alignment module to line up the
feature map at time t + 1 to input ct and zt at the current
time. Once aligned, all four elements are concatenated and
fed into the initial convolution layer. The output feature
map is then split into two feature maps h0

t and g0t , and they
pass through Np PDIB blocks to compute the feature maps
hb
t = h

Np

t and gbt = g
Np

t . In summary, the feature propaga-
tion in both directions can be formulated as

hb
t , g

b
t = Fb(ct, h

b
t+1, zt, g

b
t+1),

hf
t , g

f
t = Ff (ct, h

f
t−1, zt, g

f
t−1),

(10)

where Fb and Ff denote the backward and forward propa-
gation layers, respectively.
Loss Function The entire network is trained end-to-end
with two steps. For the first training step, we define the loss
function as follows:

Lstep1 = Lrecon + Lclean + Lcont. (11)

The reconstruction loss Lrecon is computed as the differ-
ence between the ground truth yt and the reconstructed im-
age y′t. Charbonnier loss [5] is also used for the reconstruc-
tion loss, like Lclean.

For the second training step, we fine-tune the network
by adding the perceptual loss Lgen [20] and adversarial loss
Ldisc [10]:

Lstep2 = Lstep1 + λgenLgen + λdiscLdisc. (12)
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4. Training Details
In this section, we describe the dataset used in training,

the loss functions, and the details of the training.
Dataset For training, we use REDS [31] as the HR dataset.
The LR degradation dataset is generated by a two-step pro-
cess. First, the method from Real-ESRGAN [44] is applied,
and then the video compression follows [4]. Specifically,
for the first step, we adopt the second-order degradation
process [44]. We compute two iterations of a degradation
process for each given frame. The degradation process at
each iteration consists of a series of the random blur, resize,
noise, and JPEG compression, with settings following [44].
Random blur is applied either isotropically or anisotropi-
cally using gaussian, generalized gaussian, or plateau bi-
variate kernels. For resize operations, the area, bilinear, or
bicubic interpolation is applied. For random noise genera-
tion, the gaussian or Poisson kernel is used.

In contrast to single-image SR, the temporal dependency
between frames must also be considered. As most videos
on the internet are stored and streamed with compressed im-
ages at varying quality levels, video compression is applied
at the last stage of the degradation sequence to append the
spatio-temporal degradations related to compression algo-
rithms. Following [4], we use FFmpeg with codecs selected
at random among h264, libx264, and mpeg4, to compress
the JPEG-compressed frames with the bit rate coefficient
selected uniformly in between 104 and 105.
Training Details The training patch size of the HR image
is set to 256 × 256 which is degraded into an LR image
of size 64 × 64. We load 15 frames in each iteration and
by using the stochastic degradation scheme [4] we double
the frames in each batch to 30 temporal frame sequences to
reduce the CPU bottleneck in loading images and increasing
the training time while maintaining comparable accuracy.

For the data augmentation used in the PDRN, follow-
ing the strategy in [11], two 32 × 32 patches are randomly
cropped from each frame and resized to 64 × 64 followed
by random horizontal flip, color distortion, Gaussian blur,
and solarization.

The training is a two-step process. First, RealPixVSR is
trained for 230K iterations. A total of 16 batches with each
batch containing 30 temporal frames is used. Adam opti-
mizer [22] is used with a learning rate fixed to 10−4. To
warm up, only the PDRN is trained first for 100 iterations
using the contrastive loss Lcont. Next, we finetune the net-
work for 80K iterations using the weights from the first step.
The reduced batch size of 8 is used. The learning rates are
set to 2.5× 10−5 and 10−4 for generator and discriminator,
respectively. The scale parameters are set to λgen = 1 and
λdisc = 5× 10−2.

Regarding the contrastive loss, the mixing coefficient
αcont is set to 0.1, and the scalar temperature hyper-
parameter τ is set to 0.3 following previous work [48]. The

number of PDIB blocks for PDICN (Nc) and PDIVSR (Np)
are set to 19 and 18, respectively. All experiments were con-
ducted in PyTorch on NVIDIA A100 GPUs.

5. Experiments
In this section, we describe the dataset used for experi-

ments, the evaluation metrics, and the experiment results.

5.1. Datasets and Metrics

Experiment Dataset We use VideoLQ dataset [4] to as-
sess the performance of RealPixVSR. Real-world dataset is
hard to design and there is still a short amount of real-world
datasets where many of them consist of a small amount of
LR-HR pairs. VideoLQ consists of only real LR videos
collected from various video-hosting sites with a Creative
Common license. They selected videos of different res-
olutions and diverse contents to cover different types of
degradation. Each video focuses only on one scene. The
VideoLQ contains 50 short videos of 100 frames each with
the exception of videos 30 to 33 containing less than 100
frames. We use UDM10 [50] for the validation test of
our model. UDM consists of 10 short clips containing 32
frames each clip. It contains diverse scenes and relatively
high-resolution frames.
Experiment Metrics Since the ground-truth HR videos for
the VideoLQ dataset are not available, PSNR and SSIM
cannot be computed for the VideoLQ dataset. Hence, we
adopt the non-reference image quality assessment (IQA)
metrics including NIQE [30], BRISQUE [29], NRQM [27]
and PI [2] for quantitative evaluation.

5.2. Experiment Results

5.2.1 Quantitative Comparison

Tab. 1 presents the results of a quantitative comparison us-
ing no-reference IQA metrics on the VideoLQ dataset. Our
proposed model, RealPixVSR, achieve the state-of-the-art
performance on these metrics except for NIQE. All results
for other models are taken from [4]. We evaluate each video
by extracting its first, middle, and last frames and computed
the IQA metrics on the Y-channel. We also reproduced the
result of RealBasicVSR [4] using their official code [7] and
checkpoint, but we got a slightly different result from theirs;
in our experiment, RealPixVSR gave a better result even on
NIQE.

Tab. 2 shows the results of the no-reference IQA metric
on the UDM10 [50] dataset. Our method outperforms Real-
BasicVSR in all metrics, and the standard deviation of IQA
values among frames is much smaller, indicating a consis-
tent quality of the reconstructed frames. This suggests that
our proposed recurrence structure is effective in accurately
propagating features and representation maps. Compar-
ing the computational complexity of the model, our model
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Table 1. Quantitavie evaluation on VideoLQ [4] A quantitative comparison using no-reference image quality assessment(IQA) metrics
is shown. RealPixVSR achieves the best performance except for NIQE. Red and blue denote the best and second, respectively. Results for
other models are from [4]. All metrics were computed on the Y-channel. For each video, three images were selected (first, middle, and
last)

IQA Bicubic RealVSR DAN DBVSR BSRGAN R-ESRGSN RealSR RealBasicVSR∗ RealPixVSR

NRQM [27]↑ 2.8016 2.4958 3.3346 3.4097 5.7172 5.7108 5.6187 6.0477(6.0233) 6.1517
NIQE [30]]↓ 8.0049 8.0606 7.1230 6.7866 4.2460 4.2091 4.1482 3.7662(3.8559) 3.8228
PI [2]↓ 7.6017 7.7824 6.8942 5.9856 4.2644 4.2492 4.2648 3.8593(3.9163) 3.8438
BRISQUE [29]↓ 54.899 54.988 51.563 50.936 30.213 32.103 30.542 29.030(30.1201) 28.5566

∗Values in parentheses indicate the result calculated using their official code [7] and checkpoint under the same setting as RealPixVSR.

(a) Referenced from top row of [4] Figure 11. (b) RealPixVSR result with on clip 43, frame 99.

(c) Referenced from the bottom row of [4] Figure 11. (d) RealPixVSR result on clip 25, frame 50.

Figure 3. Qualitative evaluation on VideoLQ [4]. The proposed RealPixVSR effectively uses the pixel-level degradation representation
and its recurrent propagation to super-resolve images with more detail compared to other methods. (a) and (c) Quantitative result referenced
from the current SOTA model [4] Figure 11 top and bottom, respectively, for a direct comparison. (b) [clip-43, frame-99]. To compare
how other buildings in the image are restored we extended the view to the right. RealPixVSR restores better the details of the building and
windows (pointed by the yellow box) compared to RealBasicVSR. (d)[clip-25, frame-50] To compare how neighboring texts are restored
we extended the view around the word ”hobby” for comparison. RealPixVSR restores the sentence in a way that is more readable than
RealBasicVSR. More comparisons can be found on supplementary material.

achieve better result with a smaller computational load of
less than 80%.

5.2.2 Qualitative Comparison

Fig. 3 shows the qualitative comparison of RealPixVSR
with other methods on the VideoLQ dataset. We referenced
the super-resolution results of existing models from ( [4] -
Figure 11). We chose to borrow their results to focus more
on comparing our results with RealBasicVSR, which is the
current SOTA model. Fig. 3(b) shows the super-resolution
result on frame 99 of the 43rd clip. To compare how other
buildings in the image are restored, we have extended the
view around the selected building for comparison. If we
look at the buildings, we can see that RealPixVSR restores
the windows and other details better than RealBasicVSR.
As another example, in Fig. 3(d) we show the result of
frame 50 of the 25th clip. To compare how other text in
the image is restored, we have extended the view to include
the word ”hobby”. RealPixVSR restores the sentence in a
more readable way than RealBasicVSR.

Fig. 4 shows the qualitative comparison of our model

with RealBasicVSR [4] on the UDM10 [50] dataset. We
found that RealBasicVSR eliminates many details in im-
ages when reconstructing LR videos. It eliminates details
on the wall (Fig. 4(a)), the waves on the lake (Fig. 4(b)),
the grain on the wood (Fig. 4(c)), and the folds on the foot-
ball jersey (Fig. 4(d)). this reduction in detail could be con-
sidered a characteristics of RealBasicVSR, and a smoother
image might got a higher IQA score. On the other hand, Re-
alPixVSR tries to preserve as much detail as possible. We
believe that the pixel-level degradation representation en-
coder provides sufficient sensitivity to preserve detail rather
than smoothing it.

5.2.3 Ablation Study

In this section, we verify the effectiveness of the proposed
methods. Three different configurations are considered to
distinguish the impact of each approach. The first config-
uration tests the presence of PDIB. This experiment is in-
tended to verify the effectiveness of PDIB. Conventional
residual blocks are used in the experiment without PDIB.
The second configuration relates to the use of pixel-level
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IQA RealBasicVSR RealPixVSR
mean ± std mean ± std

NRQM [27]↑ 6.631 ± 0.056 6.843 ± 0.036
NIQE [30]]↓ 4.1275 ± 0.065 4.0056 ± 0.044
PI [2]↓ 3.7483 ± 0.057 3.5813 ± 0.035
BRISQUE [29]↓ 29.3493 ± 0.946 27.1635 ± 0.614

GFLOPs/Frame 26.5 20.5
Params(M) 6.3 6.9

Table 2. Quantitative evaluation on UDM10 [50] A quantitative
comparison using no-reference image quality assessment(IQA)
metrics is shown. RealPixVSR achieves better performance on all
metrics. In terms of computational complexity, our model requires
fewer FLOPs than RealBasicVSR for processing a frame. The std
value denotes the standard deviation of IQA values among the 32
frames of 10 video clips in UDM10.

(a) (b) (c) (d) (e)

Repr. None xt zt zt zt
PDIB ✓ ✓ ✓
Lpixel ✓ ✓

NIQE↓ 7.0790 7.2767 7.0307 6.9968 6.9303

Table 3. Ablation results Repr. indicates the pixel-level repre-
sentation used for PDICN and PDIVSR. Contrastive loss is not
considered for (a) and (b) as zt is not used. (a) RealBasicVSR.
None of the pixel-level representation nor PDIB is applied. (b) xt

is injected into PDIB. (c) zt is injected into PDIB but zt is trained
without Lpixel (d) zt is injected into resblock (e) RealPixVSR

representation zt. In alternate experiments, zt is substituted
with the original image, xt. The final experiment inves-
tigates the effectiveness of the pixel-level contrastive loss,
Lpixel, while the alternate experiment uses only Limg .
Configuration We calculate the NIQE [30] scores on the
UDM10 [50] dataset and make modifications to facilitate
the ablation study. For each setting, we averaged the results
of the 3 runs of training phase 1. The cleaning and prop-
agation layers are reduced to 10 PDIB or Residual blocks,
and the input feed is reduced to 20 frames. To ensure a
fair comparison, we have increased the number of blocks to
align with comparable model sizes of other configurations
for Tab. 3(a). Each training session lasts 100K iterations
with a batch size of 4 and a learning rate of 2.5 × 10−5.
Other configurations remain unchanged.
Effectiveness of PDIB Comparing Tab. 3(d) and 3(e), it is
observed that the utilization of PDIB performs better than
using conventional residual blocks. This indicates the ef-
fectiveness of the proposed PDIB. However, in Tab. 3(a) and
3(b), using PDIB with the original input xt resulted in even
worse performance than not using PDIB. This suggests that

Figure 4. Qualitative evaluation on UDM10 [50] dataset This
figure displays the qualitative comparison on the UDM10 dataset.
The top row depicts the ground-truth images. The second and third
rows show the results of RealBasicVSR and RealPixVSR, respec-
tively. The proposed model reconstructs more details compared to
RealBasicVSR. The displayed images are (a)archpeople, (b)lake,
(c)caffe, and (d)clap.

PDIB is more compatible with zt. This finding is reason-
able as PDIB is designed to make good use of pixel-level
representations. Furthermore, Tab. 3(b) and 3(d) confirms
this claim by showing that replacing xt with zt improves
performance.

Quality of Pixel-level Representation The performance
can be influenced by the quality of the pixel-level repre-
sentation. When comparing Tab. 3(c) and 3(e), we see
significant performance enhancement with the inclusion of
pixel-level contrastive loss Lpixel. This finding implies that
Lpixel contributes to learning a more effective pixel-level
representation for reconstructing HR images. Looking at
the findings presented in Tab. 3(c) and 3(d), it is evident that
the quality of zt significantly impacts the network perfor-
mance, even without the influence of PDIB. This highlights
the effectiveness of pixel-level contrastive loss Lpixel.

6. Conclusion

In this study, we introduce a model for super-resolution
of real-world videos that utilizes contrastive learning to
incorporate pixel-level degradation representation. This
pixel-level degradation representation seamlessly integrates
with the pixel degradation-informed cleaning and VSR net-
works, enabling it to effectively handle complex degrada-
tion in real images. Our experiments on the UDM10 and
VideoLQ datasets demonstrate that our network performs
better than the state-of-the-art models.
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