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Abstract

While extensive research has been conducted on evalu-
ating generative models, little research has been conducted
on the quality assessment and enhancement of individual-
generated samples. We propose a lightweight generaliz-
able evaluation framework, designed to evaluate and en-
hance the generative models and generated samples. Our
framework trains a classifier-based dataset-specific model,
enabling its application to unseen generative models and
extending its compatibility with both deep learning and ef-
ficient machine learning-based methods. We propose three
novel evaluation metrics aiming at capturing distribution
correlation, quality, and diversity of generated samples.
These metrics collectively offer a more thorough perfor-
mance evaluation of generative models compared to the
Fréchet Inception Distance (FID). Our approach assigns
individual quality scores to each generated sample for
sample-level evaluation. This enables better sample mining
and thereby improves the performance of generative mod-
els by filtering out lower-quality generations. Extensive ex-
periments across various datasets and generative models
demonstrate the effectiveness and efficiency of the proposed
method.

1. Introduction

Generative AI has rapid advancements and finds ex-
tensive applications across a range of domains, including
image generation, image inpainting, and image-to-image
translation. Given the burgeoning prevalence of generative
models, it is imperative to devise solutions for an automated
and objective quality assessment of generated samples.

A large number of quantitative metrics have been pro-
posed in recent years [4, 5], with notable examples encom-
passing the Inception Score (IS) [33], Fréchet Inception
Distance (FID) [11], Classifier two-sample test [27, 54],
and Precision and Recall (P&R) [32]. Each of these met-
rics has its own strengths and limitations. However, these

popular evaluation methodologies share three main issues.
Firstly, they evaluate generative models based on the sta-
tistical aggregation of generated samples, precluding their
applicability for evaluating individual samples and enhanc-
ing the generative models. Secondly, the computational
complexity of these methodologies is huge, since they rely
on deep features from late layers of deep neural networks
(DNNs). Moreover, a number of these evaluation method-
ologies exhibit a bias towards the object dataset, ImageNet,
a dataset predominantly used for pre-training networks. De-
spite ongoing endeavors to devise enhanced quality evalua-
tion methodologies [1,12,30], these fundamental challenges
persist.

Recently proposed classifier-based methods [27, 51, 52,
54] present a set of evaluation metrics for generative mod-
els and generated samples. However, these methods de-
mand more computational resources to train the evaluation
framework per generative model. Therefore, these methods
have limited generalizability across various generative mod-
els within the datasets. Additionally, these metrics provide
evaluations at the distribution level and lack the capability
to assess the diversity of the generated samples. Further-
more, little methodology evaluates the quality of individ-
ual generated samples, and the role of evaluation models in
augmenting the performance of generative models is unex-
plored.

To address these challenges, we propose an evaluation
framework to enhance the generalizability to unseen gen-
erative models and reduce the computational demands in
practical applications. This novel framework is lightweight
and applicable to sample-level evaluation, and more ver-
satile, extending its applicability to diverse tasks within
the realm of generative models, including image genera-
tion, image completion [54], and image-to-image transla-
tion [36,50,53]. In particular, we incorporate a dataset con-
struction module into the classifier-based framework, em-
powering it to learn from a variety of generative models
and subsequently apply this knowledge to unseen gener-
ative models. Additionally, we integrate both lightweight
machine learning and efficient deep learning-based feature
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extractors, further enhancing the framework’s generalizabil-
ity and efficiency. Additionally, we introduce both the eval-
uation and enhancement of generative models within the
framework, ensuring a comprehensive and systematic pre-
sentation of these crucial aspects. Furthermore, we propose
three evaluation metrics to comprehensively assess the gen-
erative model performance, including accuracy, diversity,
and quality.

The rest of this paper is systematically organized as fol-
lows: Section 2 provides an overview of related work, Sec-
tion 3 details the methodology, Section 4 showcases exper-
imental results, and Section 5 concludes the paper.

2. Related Work
Existing literature has been prolific during the past

decade about evaluation metrics of generative models. Most
of the proposed metrics aim at measuring the distance of the
distributions between the generated and the real samples.

In Section 2.1, we review the most commonly used eval-
uation metrics, as well as some works from the sample-
based quality assessment. All of those works are built upon
the learned feature space of Deep Neural Networks (DNNs).
Since our work employs the Efficient Machine Learning
framework for creating a feature space embedding for dis-
tance measuring, we review its basic elements in Section
2.2.

2.1. AI Generated Image Quality Metrics

Inception Score (IS) was proposed by Salimans et
al. [33] as a better optimization technique for training
GANs. One significant limitation of IS is that it lacks cap-
turing the intra-class diversity of the generated samples.
Gurumurthy et al. [10] proposed a modified version of IS,
trying to quantify the content diversity, even with limited
training data, by using mixture models and their joint opti-
mization along with the GAN parameters.

Another commonly used metric is the Fréchet Inception
Distance (FID) proposed by Heusel et al. [11]. It is based
on measuring the distance between synthetic and generated
samples under the assumption they are normally distributed.
It employs the Inception-Net-V3 for creating the feature
embedding space and calculating its distribution. This ap-
proach improves the diversity of generated samples com-
pared to IS. Another work was proposed [25] to further im-
prove the intra-class variability on the FID metric.

On a slightly different approach, Liu et al. [28] proposed
the precision-recall metric, aiming at quantifying both ends
of the problem. Precision captures the distance between the
real and generated samples, while recall represents the class
diversity. However, the fact that the reference distribution is
not usually available, makes this metric impractical [30].
Classifier-based works [12, 27] employ a classifier to work
as a discriminator model between fake and real samples,

where the classifier’s accuracy is used as the evaluation met-
ric.

All the previously mentioned works ultimately aim at
evaluating the performance of generative models and help
in their optimization. They lack the ability to evaluate the
quality of individually generated samples. This can lead
to a better optimization for GANs, by enabling online hard
negative mining or in other applications where we need to
assess the quality of synthetic samples, for rejecting those
of poor quality. An earlier work [3] has provided defini-
tions of image distortion and generated sample quality, as
well as realized the tradeoff between distortion and percep-
tual quality.

The Generated Image Quality (GIQA) term is introduced
by Qu et al. [9] aiming at evaluating individual samples and
realizing a quality index, that can correlate well with hu-
man perception with respect to the quality and content of
the sample. On the same line of research, another work [38]
was earlier proposed, also deploying a DNN for predicting a
quality score with no reference. In the context of large-scale
image completion, a new metric named Paired/Unpaired In-
ception Discriminative Score (P-IDS/U-IDS) was proposed
by Zhao et al. [54]. It measures the perceptual quality of in-
painted images which correlates with human opinion, by us-
ing a DNN for feature extraction and a Support Vector Ma-
chine (SVM) with a linear kernel to fit real and fake samples
out of the deep feature space. According to their results,
P-IDS achieves a high correlation coefficient with human
preference rate. Recently, a dataset [24] for generated im-
age quality assessment has been released, namely AGIQA-
3K, which comprises fine-grained subjective scores for gen-
erated images from six different models.

2.2. Efficient Machine Learning

Decoupling from other approaches that use DNNs for
mapping the input image samples onto an embedding fea-
ture space, this work uses the Efficient Machine Learning
(Green Learning, GL) paradigm [20] for feature extraction.
The framework consists of a multi-scale feed-forward lin-
ear model that learns features in an unsupervised way with
no back-propagation. Hence, features are independent from
the objects and classes of the training set, making them a
bias-free approach from the pre-trained dataset’s content.
Besides, one of the key benefits behind GL is the low com-
plexity and model size, making easier its deployment across
several devices. Also, the transparent feature extraction pro-
cess is another advantage for more interpretability within
the feature extraction process.

In the green learning framework, there are a couple of
models for feature extraction. E-Pixelhop [44] is a popu-
lar choice for different image classification tasks. It cre-
ates a rich spatial-spectral representation of the input image
at different scales, by using subspace approximation that
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maximizes the data variance. Within the GL framework a
feature selection method, namely Discriminant Feature Test
(DFT) [45] has been proposed to filter out irrelevant features
for the targeted task. The remainder most discriminant fea-
ture subset can be used for measuring the quality of gen-
erated samples, in terms of its discriminant spatial-spectral
components.

Although GL is an emerging framework, it has been al-
ready successfully applied in several problems, such as im-
age quality assessment [29, 49], point cloud classification,
segmentation and registration [13–15, 26, 47], image en-
hancement [2], texture synthesis [22, 23], as well as graph
node classification [42, 43]. Our method is built upon the
learned GL feature space for the generated sample quality
evaluation.

3. Proposed Method

In this paper, we introduce a comprehensive framework
designed to assess either the performance of generative
models or the quality of the samples they generate, ulti-
mately contributing to the improvement of the generative
models. The architecture of our proposed method is de-
picted in Fig. 1, and it comprises four distinct components,
detailed in the subsequent sections.

3.1. Dataset Construction

The core concept of dataset construction revolves around
developing a dataset-specific evaluation model, universally
applicable to all generative models associated with that par-
ticular dataset. Given a dataset and k distinct generative
models GM1, GM2, ..., GMk, and N groundtruth (real)
images, we construct the training set using samples gen-
erated by the randomly selected first i generative models
GM1, GM2, ..., GMi, where i < k. We label all generated
samples as ”0” and real samples as ”1”. To eliminate class
imbalance, we randomly select N/i samples from each gen-
erative model. Therefore, the number of training samples
including ground truth and generated samples is 2N . We
construct a test set using samples generated by the remain-
ing generative models GMi+1, GMi+2, ..., GMk, as well
as unseen samples produced by GM1, GM2, ..., GMi. The
evaluation of the generative model under investigation is
conducted by feeding its generated samples in the test set.

3.2. Feature Extractor

To validate the generalizability of our framework across
both deep learning and lightweight machine learning
methodologies, we introduce two distinct options for fea-
ture extraction, each with its unique advantages and limi-
tations. We provide a detailed discussion of each method
below:

3.2.1 Deep Learning-Based Feature Extraction

Our framework is compatible with a variety of deep learn-
ing networks for feature extraction, such as Inception-V3,
VGG, ResNet, and EfficientNet, etc. Deep features have
demonstrated a strong correlation with human perception
[48], and show high performance. On the other hand,
the substantial number of parameters and FLOPs of net-
works require significant computational resources. Addi-
tionally, since all these models are pre-trained on the Ima-
geNet dataset, their features are inherently biased towards
object datasets, potentially leading to suboptimal perfor-
mance when applied to other datasets, such as the LSUN-
bedroom dataset, LSUN-church dataset, and grayscale im-
ages.

3.2.2 Machine Learning-Based Feature Extraction

To overcome those challenges while maintaining perfor-
mance by learning visual-correlated and discriminative fea-
tures. This module consists of two submodules, as elabo-
rated below:
1. Representation Learning

We aim to jointly learn effective local spatial and global
spectral representations of images. We analyze overlapping
blocks of the images, by applying the Saab transform [21]
to learn meaningful local representations. This transform
helps in extracting both low and high-frequency compo-
nents from the image blocks, converting them into 3D ten-
sors of spatial representation. To reduce dimensionality and
computational load, we discard high-frequency components
with negligible energy. Absolute max-pooling is then ap-
plied to enhance the robustness of the spatial representation,
which also serves as the input for the next global processing
stage.

Following this, we apply the channel-wise Saab trans-
form [7] to further reduce dimensions and capture longer-
distance correlations effectively. This step generates spec-
tral representations of the image. Finally, we concatenate
these spatial local and spectral global representations, cre-
ating a rich feature set for discriminant feature selection in
the subsequent module. This approach ensures a balance
between detail capture and computational efficiency, pro-
viding a robust foundation for representation analysis.
2. Feature Selection

To derive the most relevant set of features learned in the
representation module, we employ the Discriminant Feature
Test (DFT) [45], a method designed to quantify and rank
the discriminative power of each feature. The DFT method
partitions the value range of each feature dimension, calcu-
lating the DFT loss to measure its discriminative capability.
Lower DFT loss indicates higher relevance for the task at
hand and thus has higher discriminative power.
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Figure 1. The overview of the proposed method. The framework comprises four components, including dataset construction, feature ex-
traction, score calculation, and task-specific operation. Each cylinder in the dataset construction module represents the generated samples
by certain generative models (GM). In the task-specific module, different operations are conducted for model evaluation, model enhance-
ment, or sample evaluation.

Leveraging the independence of representations, we
compute the DFT loss in each dimension, subsequently
ranking the features based on this metric. An elbow point
in the DFT loss curve then guides the selection of the most
discriminative subset of features, which are forwarded to a
binary classifier in Sec. 3.3 for subsequent analysis.
Manipulating Higher-Resolution Images

To avoid significant information loss during image
downsampling for higher-resolution datasets, we introduce
a multi-scale pipeline that comprises two branches with
identical representation learning and feature selection ar-
chitectures for global and local feature learning. Images
are first downsampled to a reasonable size. Local crops ex-
tracted from images are fed into the local learning branch,
while global crops are further downsampled as the input to
the global learning branch. This setup enables simultaneous
feature extraction of low-resolution global layouts (global
branch) and high-resolution local details (local branch).
Features learned from these two branches will subsequently
be forwarded into the following module for further analysis
and processing.

3.3. Score Calculator

We evaluate the quality of each generated sample, as-
signing it a quantitative score as its quality index. Com-
pared with FID, binary classification captures subtle varia-
tions, exhibits a stronger correlation with human perception,
and requires fewer training samples to converge [27, 54].
Furthermore, the binary classifier can be applied to assess
the quality of individual samples.

Therefore, we employ a binary classifier within this
module, training it to distinguish between real and gener-
ated samples. In the training stage, generated samples are
labeled as ”0”, while real samples are ”1”. During the infer-
ence phase, the classifier assigns a soft label, 0 ≤ p̂ ≤ 1, to
each sample. A soft label closer to 0.5 indicates a more dif-

ficult differentiation between real and generated samples, so
it closely resembles real samples in the feature space and,
consequently, is of higher quality. Similarly, a soft label
near the tails, ”0” or ”1” indicates lower quality. Therefore,
we utilize the soft label as a proxy for the quality score of
each generated sample, providing a reliable metric for eval-
uation.

3.4. Model Evaluation and Enhancement

This section depicts two pathways for the enhancement
and evaluation of generative models, dependent upon the
specific requirements of the task.

Figure 2. Model enhancement. We get the evaluation scores by
feeding the generated samples to our framework. Generative mod-
els are enhanced by filtering out samples of evaluated low quality.

Model Enhancement
This procedure involves the exclusion of poor genera-

tions assessed by our scoring calculator. Specifically, we
sort the scores assigned to all generated samples under test
in ascending order. Samples of higher quality are typically
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located in regions of the feature space where distinguishing
between real and generated samples becomes challenging
for a classifier, resulting in a soft label close to 0.5, or the
chance level. Consequently, we discard samples at the tails
of this distribution, which are of inferior quality, resulting
in a refined collection of higher-quality samples.
Model Evaluation

We aggregate the scores across all generated samples and
proceed to calculate three performance metrics: accuracy,
quality, and diversity. Accuracy (Acc.) measures the corre-
lation between the distributions of real and generated sam-
ples in the feature space, quantified as the ratio of correct
decisions to the total number of decisions made. A lower
accuracy score implies better generative models, indicating
a closer distribution correlation and difficulty in distinguish-
ing between the distributions of real and generated samples,
approaching a chance level, close to 0.5.

Quality and diversity are metrics explained using Fig-
ure. 3. Mathematically, we consider the generated class as
positive (P) and the real class as negative (N). Quality is
calculated as the probability of positive samples incorrectly
predicted as negatives, divided by all positive samples:

fquality =
FN

FN + TP
= 1− TP

FN + TP

where TP , FP , TN , and FN denote true positive, false
positive, true negative, and false negative, respectively.
Thus, the quality index can be computed as fquality =
1 − Recallg where Recallg indicates the recall of the gen-
erated class.

We consider the real class as positive (P) and the gener-
ated class as negative (N), diversity is computed as the prob-
ability of negative samples incorrectly predicted as positive,
divided by all samples predicted as positive:

fdiversity =
FP

FP + TP
= 1− TP

FP + TP

Therefore, the diversity index is indicated by fdiversity =
1 − Precisonr where Precisonr denotes the precision of
the real class. Higher quality and diversity scores are prefer-
able.

4. Experiments
In this section, we present comprehensive experiments of

our proposed method across various datasets and generative
models, demonstrating its effectiveness and versatility.

4.1. Experimental Setup

Datasets
Our experiments span across four diverse datasets to val-

idate the robustness and generalizability of our method:
CIFAR-10 [19] (32x32 resolution images), LSUN-Church,

LSUN-Bedroom [46] (both with 256x256 resolution im-
ages), and LSUN-10 [8] (96x96 resolution images).
Generative Models

We evaluate the quality of generated samples and
compare and enhance the performance across multi-
ple generative models, including Diffusion-StyleGAN2
[41], Diffusion-ProjectedGAN [41], StyleGAN2-ADA
[17], StyleFormer [31], StyleGANXL [35], E2GAN [40],
StyleGAN [18], ProgressiveGAN [16], and ProjectedGAN
[34].
Implementation details

Data Construction. We split the generative models into
training and test sets, ensuring test sets comprise untouched
generative models.

Feature Extractor. For deep learning-based feature
extraction, we use EfficientNet [39], specifically the
EfficientNet-B1. This choice is motivated by its small num-
ber of parameters and FLOPs, aligning with our lightweight
objective. Additionally, comparative studies indicate that
EfficientNet-B1 exhibits performance slightly superior to
the widely-used Inception-V3 [37], a standard feature ex-
tractor in performance evaluation metrics such as FID [11]
and IS [33], while it is more lightweight. For machine
learning-based feature extraction, we adhere to the parame-
ter settings outlined in [52].

Score Calculator. We employ the XGBoost (extreme
gradient boosting) classifier [6] due to its proven high
performance in various applications, especially within the
green learning framework.

4.2. Results and Analysis

4.3. Sample Evaluation

Figure 4 displays the histogram of quality scores (soft la-
bels) for samples generated by Styleformer with a machine
learning-based feature extractor. Compared to Diffusion-
StyleGAN2, Styleformer exhibits superior performance on
the CIFAR-10 dataset but inferior on the STL-10 dataset. It
leads to a higher concentration of samples with probabili-
ties near 0.5 in (a) as real and generated samples are harder
to differentiate.

Figure 5 illustrates the correlation between the quality
assessments from our framework and human visual percep-
tion. Samples evaluated as high-quality by our framework,
exhibiting soft scores near 0.5, indeed appear visually supe-
rior compared to those evaluated as low-quality, which have
soft scores close to ”0” or ”1”.

4.4. Model Evaluation

Beyond serving as a measure of quality on a per-sample
basis, our framework also offers evaluation metrics for gen-
erative models through the aggregation of quality indices
from the generated samples. As elaborated in Section 3.4,
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(a) Distribution (b) Quality (c) Diversity

Figure 3. (a) indicates the distribution of real images, denoted as Pr , and the distribution of generated images, represented as Pg . (b)
Quality refers to the likelihood that an arbitrary image from Pg lies within the range of Pr . (c) Diversity measures the chance that a random
image from Pr is encompassed by the range of Pg .

(a) (b)

Figure 4. The soft label histograms of samples generated by Styleformer and real samples on (a) CIFAR-10 and (b) STL-10 datasets.

classification accuracy (Acc.), quality, and diversity are the
three metrics utilized for assessing generative models. We
draw comparisons between rankings of the most popular
FID metric and those derived from the three metrics on deep
learning (EfficientNet-B1) and machine learning-based fea-
ture extractors, across various datasets including LSUN-
Church, LSUN-Bedroom CIFAR-10, and STL-10, with the
results presented in Tables 1, and 2.

The models were initially pre-trained using Progressive-
GAN and Diffusion-ProjectedGAN, followed by testing the
generative models across four different scenarios: (A), (B),
(C), and (D), on the LSUN-Bedroom and LSUN-Church
datasets, respectively. The performance ranking of accuracy
and FID is consistent since both of them are distribution-
level evaluations. However, the scenario changes when as-
sessing quality and diversity; here, the performance dif-
ference among generative models diverges, revealing addi-
tional evaluative insights into the diversity of the models
that the FID score alone may not capture.

Comparatively, scenarios (B) and (D) outperform (A)
and (C) in terms of scores, due to the evaluation mod-

els being pre-trained on the generative models of (B) and
(D). Nonetheless, even within (B) and (D), the performance
ranking between accuracy and FID remains consistent, un-
derscoring the reliability of these metrics across different
experimental settings.

Since the image sizes of CIFAR-10 and STL-10 are too
small for EfficientNet-B1, we experiment with the machine
learning-based method, where we can observe similar eval-
uation results with LSUN datasets. For each dataset, we
cross-evaluate the performance of models (E) and (F): the
evaluation results for (E) are obtained using a model pre-
trained on the generative models of (F), and vice versa, the
results for (F) are derived from a model pre-trained on (E).

4.5. Model Enhancement

The framework can be a discriminator to enhance the
performance of generative models by filtering out poorly
generated samples. Specifically, we filter out generated
samples at the tails of the soft label distribution, targeting
those with exceedingly high or low soft labels. As a re-
sult, the kept samples are more correlated with real samples,
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(a) (b)

(c) (d)

Figure 5. ProjectedGAN-generated samples evaluated as (a) high quality, (b) low quality on LSUN-bedroom dataset and (c) high quality,
(d) low quality on LSUN-church dataset by deep learning based method. Apparently, evaluation results are consistent with visual quality.

Table 1. Comparison of four evaluation metrics (FID, Accuracy, Quality, and Diversity) on multiple generative models for LSUN-Bedroom
and LSUN-Church datasets. The evaluation model is pre-trained on generative models of (B) and (D) in LSUN-bedroom and LSUN-church
datasets, respectively

Settings Generative Models FID ↓ EfficientNet-B1 Machine Learning
Accuracy ↓ Quality ↑ Diversity ↑ Accuracy ↓ Quality ↑ Diversity ↑

LSUN-Bedroom dataset

(A)
Diffusion-StyleGAN2 3.65 0.613 0.500 0.408 0.630 0.435 0.307
StyleGAN 2.65 0.611 0.504 0.410 0.600 0.494 0.416
ProjectedGAN 1.52 0.583 0.558 0.435 0.593 0.508 0.423

(B)
ProgressiveGAN 8.34 0.793 0.138 0.160 0.717 0.261 0.274
Diffusion-ProjectedGAN 1.43 0.630 0.465 0.391 0.666 0.363 0.344

LSUN-Church dataset

(C)
Diffusion-StyleGAN2 3.17 0.610 0.486 0.408 0.778 0.288 0.255
ProjectedGAN 1.59 0.553 0.600 0.460 0.719 0.407 0.326

(D)
ProgressiveGAN 6.42 0.773 0.159 0.184 0.863 0.120 0.125
Diffusion-ProjectedGAN 1.85 0.652 0.400 0.362 0.821 0.203 0.194

leading to enhanced performance.

Figure 6 demonstrates the performance improvements
achieved by filtering out the poorest generations at varying
sampling ratios across different frameworks and datasets.
Specifically, we keep fewer generated samples and filter
out more bad generations in different ratios. For perfor-
mance evaluation, we introduce an equal number of real
samples to match the quantity of the remaining generated
samples. Following this model enhancement, we observe
a decrease in accuracy, and an increase in quality and di-
versity, which indicates improved model performance. No-
tably, the performance enhancement is more rapid when
utilizing deep learning-based models compared to machine
learning-based methods, highlighting the efficacy of the for-
mer in this context.

4.6. Efficiency Analysis

We assess the efficiency of machine learning-based fea-
ture extractors by comparing their model sizes (in terms of
the number of parameters) and computational complexity
(measured in floating-point operations, or FLOPs) against
popular deep learning-based feature extractors. The major-
ity of leading-edge evaluation techniques extract features
using pre-trained Inception-v3, VGG-16, or ResNet-34.

We also evaluate the efficiency in comparison to
EfficientNet-B1, which we employ due to its superior ac-
curacy relative to Inception-Net-V3, while maintaining a
significantly smaller model size and fewer FLOPs, align-
ing with our objective for a lightweight solution. The re-
sults highlight a substantial disparity in both computational
complexity and model size. It is evident that our efficient
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Table 2. Comparison of four evaluation metrics (FID, Accuracy, Quality, and Diversity) on multiple generative models for CIFAR-10 and
STL-10 datasets. Results in (E) are tested on the model pre-trained on (F), while results in (F) are tested on the model pre-trained on (E).

Generative Models FID ↓ (E) Generative Models FID ↓ (F)
Accuracy ↓ Quality ↑ Diversity ↑ Accuracy ↓ Quality ↑ Diversity ↑

CIFAR-10 dataset
StyleGAN2-ADA 2.92 0.584 0.631 0.442 Diffusion-StyleGAN2 3.19 0.599 0.516 0.420
StyleGAN-XL 1.85 0.516 0.766 0.490 Styleformer 2.82 0.565 0.583 0.450

STL-10 dataset
E2GAN 25.4 0.881 0.147 0.161 Styleformer 15.2 0.812 0.251 0.253
Diffusion-ProjectedGAN 6.91 0.648 0.576 0.429 Diffusion-StyleGAN2 11.6 0.621 0.601 0.448

(a) (b) (c)

Figure 6. Model enhancement of ProjectedGAN on (a) bedroom dataset, (b) church datasets using deep learning-based feature extractor,
and (c) bedroom dataset using our efficient machine learning-based feature extractor. The performance improves when filtering out more
bad generations.

Table 3. Comparison of computational complexity and model size
of our efficient machine learning and deep learning networks used
for feature extractor.

Model #FLOPs Ratio #Params Ratio
Ours 3.42M 1x 3.16M 1x
EfficientNet-B1 0.70B 204.7x 7.80M 2.5x
Inception-v3 5.70B 1667x 24.0M 7.6x
VGG-16 15.3B 4474x 138M 44x
ResNet-34 3.60B 1053x 21.8M 6.9x

machine learning-based methods can deliver performance
comparable to that of deep learning-based methods, yet
with markedly higher efficiency.

5. Conclusion

In this paper, we introduced a lightweight and generaliz-
able evaluation method, applicable to both efficient machine
learning and deep learning contexts. This versatile approach
enables sample-level quality assessment, assigning individ-
ual quality scores to each generated sample. Additionally, it
enhances the performance of generative models by filtering
out poor generations. We employ three evaluation metrics
to ensure a thorough assessment of both the generative mod-
els and individual samples they generate, including accu-

racy, quality, and diversity. Extensive experiments demon-
strate that our method achieves performance consistent with
the Fréchet Inception Distance (FID), but at a significantly
reduced computational cost and model size.
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