
Fingerspelling PoseNet: Enhancing Fingerspelling Translation with Pose-Based
Transformer Models

Pooya Fayyazsanavi, Negar Nejatishahidin , and Jana Košecká
George Mason University

{pfayyazs, nnejatis, kosecka}@gmu.edu

Abstract

We address the task of American Sign Language finger-
spelling translation using videos in the wild. We exploit
advances in more accurate hand pose estimation and pro-
pose a novel architecture that leverages the transformer
based encoder-decoder model enabling seamless contex-
tual word translation. The translation model is augmented
by a novel loss term that accurately predicts the length of
the finger-spelled word, benefiting both training and infer-
ence. We also propose a novel two-stage inference approach
that re-ranks the hypotheses using the language model ca-
pabilities of the decoder. Through extensive experiments,
we demonstrate that our proposed method outperforms the
state-of-the-art models on ChicagoFSWild and ChicagoF-
SWild+ achieving more than 10% relative improvement in
performance. Our findings highlight the effectiveness of
our approach and its potential to advance fingerspelling
recognition in sign language translation. Code is also
available at https://github.com/pooyafayyaz/
Fingerspelling-PoseNet.

1. Introduction

American Sign Language (ASL) is a complex and ex-
pressive visual language, that relies on hand gestures, fa-
cial expressions, and body movements to convey meaning.
It has its own unique grammar and syntax. In compari-
son to the remarkable advancements achieved in Automatic
Speech Recognition (ASR), sign language recognition and
translation are still in its early stages of development. It en-
compasses diverse sub-tasks, including fingerspelling trans-
lation, word-level recognition, and continuous translation.
Sign language translation faces challenges such as the avail-
ability of limited paired data for training models and the
complexity of extracting effective representation from vi-
sual modality.

This paper focuses on fingerspelling translation, which
involves accurately detecting and interpreting the specific
hand poses and movements used to spell out individual

Figure 1. Our overall architecture utilizes a sequence of hand
poses as the input. The encoder and decoder components work
in conjunction to generate the final output (”TALENT”).

letters. According to [27], fingerspelling accounts for
approximately 12-35% of communication in American
Sign Language (ASL). This functionality is crucial for
recognizing proper nouns, technical terms, and words that
do not have dedicated signs.

There are some unique challenges in American finger-
spelling translation. It uses a single hand which involves
relatively small and quick motions of the hand and fin-
gers, as opposed to the typically larger arm motions in-
volved in other ASL sub-tasks. Therefore, fingerspelling
can be difficult to analyze with standard approaches. Cur-
rent fingerspelling methods [28,33,43,44] primarily rely on
appearance-based techniques and often face limitations due
to high variability among signers, including differences in
speed, hand appearance, and other motion variations before
and after signing. In contrast, pose-based methods have the
potential to be robust to these variations and offer data effi-
ciency while addressing privacy concerns.
In this work, we propose a novel pose-based approach us-
ing encoder-decoder transformer model summarized in Fig-
ure 1. Transformers have demonstrated remarkable success
in various natural language processing tasks by effectively

This WACV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1120

capturing long-range dependencies and contextual informa-
tion. Using transformers in the domain of fingerspelling
recognition, we were able to exploit their language model-
ing capabilities and achieve significant improvements on the
ChicagoWild [42] and ChicagoWild+ [43] dataset. These
datasets consist of a diverse range of hand gestures corre-
sponding to individual letters, captured from multiple sign-
ers in various environments. In summary, the contributions
of the proposed approach are summarized as follows:

• Transformer-based architecture that combines Con-
nectionist Temporal Classification (CTC) and lan-
guage modeling for fingerspelling. The model cap-
tures contextual information and enables effective lan-
guage modeling and seamless translation within a sin-
gle framework.

• Introducing a novel loss term for predicting the word
length that enhances translation accuracy and robust-
ness, particularly in cases of missing letters. This im-
provement benefits both training and inference.

• Novel two-stage inference approach exploiting the
learned language model for re-ranking the hypotheses.

• Our method surpasses existing SOTA models, achiev-
ing over 10% relative improvement in finger spelling
translation performance.

2. Related Work
Early works on sign language recognition from video fo-

cused on isolated signs [1, 8, 15, 20, 26, 30, 48], where indi-
vidual signs, words or letters, are recognized in isolation.
More recent advancements in the field have shifted towards
continuous sign language recognition [5,6,9,22,40], aiming
to parse and translate continuous signing sequences. More
recently deep learning techniques have been applied to fin-
gerspelling recognition, leveraging the power of convolu-
tional neural networks (CNNs), recurrent neural networks
(RNNs) [10, 38], and Transformers [47]. The choice of
representation plays a crucial role in modeling sign lan-
guage, as it directly impacts the performance and robustness
of recognition and translation systems. In RGB-based ap-
proaches, a 2D/3D convolutional neural network backbone
pre-trained on datasets like ImageNet [7], DeepHand [45],
or activity recognition datasets [18] is commonly employed.
For continuous translation, the backbone can be pre-trained
using word-level data, as demonstrated in [34, 40]. RGB-
based representations are often susceptible to lighting con-
ditions, background clutter, and high visual domain varia-
tion. These challenges impact the accuracy of recognition
and require a large amount of data for training from scratch.

Skeleton-based representations use spatial positions of
joints and body landmarks of the signer. These models [1,

16,24,31] utilize off-the-shelf pose estimation methods and
then learn spatio-temporal features on the top of these 2D or
3D keypoint coordinates. Authors in [31] proposed simple
linear layers to lift the 2D keypoints into the 3D instead of
using 3D pose estimation.

Previous works [5, 6, 14, 36, 37, 42, 43] have extensively
employed LSTM and RNN architectures for various sign
language tasks and vary in the types of input, model
architectures, and fusion strategies when combining
multiple channels of information. These models excel in
capturing sequential dependencies and have been widely
adopted for their ability to model temporal information
in video data. Following the advancements in Natural
Language Processing (NLP), transformer-based approaches
have gained significant attention in sign language pro-
cessing [1, 24, 33, 40]. Transformers excel at capturing
long-range dependencies [25] and contextual information,
making them suitable for modeling the complex dynamics
of sign language. The transformers-based models either use
features learned from the video frames [3, 8] or the 2D/3D
pose estimates [1, 24]. The supervision can be both on the
encoder or decoder side. The decoder’s auto-regressive
component is effective in modeling the linguistic structure
both in case of RNNs [2] and transformer architectures [3].
in the case of word-level classification task, the decoder of
the transformer decodes the class query [1].

Despite the progress in both word-level recognition and
continuous translation, there remains a gap in the literature
concerning the specific task of fingerspelling translation.
Fingerspelling translation in real-world scenarios has been
extensively explored in [33,41–43]. These studies collected
videos from YouTube and Deaf social media platforms to
capture diverse fingerspelled words in natural contexts. In
the work by [42] the authors developed a hand detection
method to locate the signing hand within the video frames,
followed by training a CNN-LSTM model for translation
purposes. The follow-up work [43] presented an end-to-
end approach that bypassed the explicit hand detection step
and proposed an iterative attention mechanism, leveraging a
2D-CNN to extract visual features from individual frames,
which were used as an input to RNN. To enhance represen-
tation learning, [28] introduced a Siamese network archi-
tecture to distinguish between similar and dissimilar hand
shapes. These works primarily focus on videos with exclu-
sive fingerspelling content, which is a limitation in realis-
tic scenarios where the exact occurrence of fingerspelling is
unknown. In [39] the model first detects segment propos-
als in the video, and subsequently performs recognition of
these segments using the CTC [12] loss. In [33], the authors
employ a multi-stage training strategy to overcome the need
for labeled segmentation, leveraging additional cues such as
mouthing. In [11] authors explore the use of optical flow as

1121

Figure 2. The figure illustrates our overall approach. Raw frames are processed to extract keypoints, which are then cropped and nor-
malized. These normalized keypoints are passed through a fully connected layer for upscaling and fed into a Transformers encoder.
Additionally, a special token predicts the letter size using normalized sine and cosine values. On the decoder side, the letter sequence is
augmented with BOS and EOS tokens which generate the subsequent tokens in an autoregressive manner.

additional input to the Transformers Encoder. Meanwhile,
in [29], translation is approached through multi-modal fu-
sion involving pose, optical flow, and CNN features. The
work of [17] employs an attention-based CNN approach for
generating spatial features, utilizing optical flow as a prior
for LSTM modeling. Fingerspelling often encounters the
issue of distinct letters sharing highly similar hand-shapes,
leading to ambiguities. This issue is addressed by [21] by
modifying the transformers Encoder-Decoder to effectively
discern these ambiguities in visual representations.

In recent work [40], a new dataset combines continuous
sign language and fingerspelling, offering rich training data.
Using pre-trained networks and multi-modal transformers,
the study reveals a BLEU-4 score decrease (7.74 to 6.33) in
videos containing fingerspelling. This reveals a limitation in
existing models and emphasizes the potential for improve-
ment in this area.

3. Approach

The aim of a finger-spelling translation system is to con-
vert a collection of video frames I = {I1, I2, . . . , IT } into
a letter sequence, W = {w1, w2, . . . , wL}, thus translat-
ing the entire video sequence. We have access to a set of n
pairs {I,W} where I is a video and w is the corresponding
label. Our transformer-based model uses the sequence of
hand landmarks extracted from the video frames as input.
Additionally, our model incorporates a novel loss function
designed to predict the length of the word. The overall ar-
chitecture is outlined in Figure 2. In the following sections,
each of these components will be described in detail.

3.1. Input Representation and Pre-processing

Pose Estimation. To estimate the human body pose from
the video frames, various off-the-shelf methods can be
employed. While previous works mainly used on Open-
Pose [4], this study utilizes the Google MediaPipe Holistic
framework [23]. In Section 4.5 we present the effect of
different pose estimation methods on the final translation
task. MediaPipe provides 543 body landmarks MediaPipe
(33 body joints pose landmarks, 468 face landmarks, and
21 hand landmarks per hand), where the hand joints are
specifically employed for training the model. Each land-
mark comes with a confidence value and 3D coordinates
consisting of x, y, and z. In this work, only the x and y
coordinates are utilized for training purposes.

Signing Hand Detection. In American Sign Language
(ASL), finger spelling is performed using only one hand.
Consequently, one of the initial steps in the pre-processing
stage involves identifying which hand does the finger-
spelling. Two techniques were employed to determine the
hand involved in the process. First, the finger joint positions
obtained and used to analyze the movements and gestures
of each hand. The dominant hand typically exhibits more
variability(difference between consecutive frames) in joint
movements.

V =
T∑

t=1

J∑
j=0

P t
j − P t−1

j (1)

Here, P t
j denotes the j-th hand joint at frame t, with T

representing the total number of frames and J representing

1122

the count of hand joints. The value V is subsequently com-
pared for the right and the left hand, and the larger value
is chosen to determine the dominant hand. To further im-
prove the accuracy of this heuristic, we leverage the consis-
tency observed in signers’ hand usage type across different
videos. We check the current predictions with the previous
ones made by the same signer. This approach takes advan-
tage of the fact that signers tend to consistently use the same
hand for fingerspelling in all of their videos. By consider-
ing the past patterns of hand usage for each signer, we can
refine the predictions and achieve more accurate results.
The estimated hand landmarks need to be normalized
before the training. Normalizing pose data ensures that
different poses are represented consistently across different
individuals or scenarios like scale, orientation, and position.

Hand Origin. To normalize all the x and y coordinates,
we utilize the wrist landmark origin of the hand coordinate
system and normalize other joints employing the following
procedure: forigin(x, y) = (x− xorigin, y − yorigin) where
xorigin, yorigin are the x, y location of wrist landmark.

Mirror. In the case of signers utilizing the left hand, we
employ a mirroring technique to adjust the hand landmarks
in the following manner: fmirror(x) = −x + max(X)
Let x represent the x-coordinate, and X denote the array
containing all the x coordinates in one frame.

Scaling. In order to address the scaling issue, we uniformly
resize the hand bounding box to a dimension of 1× 1. This
transformation guarantees that all values are scaled within
the range of 0 to 1, with the maximum value set to 1 and the
remaining values adjusted proportionally. By applying this
transformation, we ensure consistent scaling across all hand
instances as follows: fscale(x, y) =

(
x

max(X) ,
y

max(Y)

)
Where the X,Y represent the array that contains all the x
and y locations in one frame.

Lastly, all the hand joint coordinates are normalized by
subtracting the mean and dividing by the maximum abso-
lute value. This process ensures that the values are scaled in
the range of [−0.5, 0.5] while being centered around zero.

3.2. Model Architecture

Our approach utilizes transformer-based encoder-
decoder architecture, initially proposed in [47] and
depicted in Figure 2. The input to our system is a sequence
of normalized body poses, each containing 21 keypoint
coordinates. The extraction of hand poses from the video
involves applying the procedure described in Section 3.1,
utilizing MediaPipe and subsequent pre-processing steps.
The encoder takes in a tensor P = {p1, p2, . . . , pT } of size
T × 21 × 2, which is then flattened to yield a tensor of

size T × 42. Subsequently, a learnable positional encoding
is added to the vector of poses. The sequence then passes
through the self-attention module and a feed-forward
network composed of two layers, to capture contextual
information within the pose sequence. The self-attention
module has 8 attention heads in each of the 3 encoder layers.

Length Token. In the transformers encoder block we incor-
porate a learnable parameter token and concatenate it with
the vector of poses. This output token is then mapped into
a vector of size 2 using a fully connected layer in the out-
put. The role of this token is to predict the number of letters
in the word in sign language fingerspelling. We observed
that existing models often struggle with accurate prediction
of certain letters, leading to performance limitations. By
introducing this token, we aim to improve the prediction
of missing letters. Furthermore, during the inference, we
leverage this prediction to enhance the accuracy and robust-
ness of our model’s predictions. To generate the ground
truth data for this prediction, we transform the length in:

len =

[
sin

(
2π ∗

(
L

30
− 0.5

))
, cos

(
2π ∗

(
L

30
− 0.5

))]
(2)

where L represents the length of the word. Initially, we
normalize the length values, with L = 30 being the longest
word, transform them between [−π, π] and compute the
sine and cosine of these normalized lengths. By using sine
and cosine representations the errors in length prediction
are mapped to points on a unit circle enabling more bal-
anced treatment and making the contribution of the errors
less sensitive to the absolute scale of the words.

On the decoder side, the model takes in the sequence
of letters. We first tokenize the letters, augment them
with the beginning-of-sequence BOS and end-of-sequence
EOS tokens, and add the positional embeddings to the
tokens representing letters. The augmented and embedded
sequence Wword = {w1, w2, . . . , wL}, of length L, is
then passed through the decoder. The decoder employs a
masked attention mechanism, where each token can attend
to only the preceding tokens, preventing the model from
accessing future information during training. This enables
the decoder to generate tokens autoregressively, attending
only to the already generated parts of the sequence.
Following the masked attention step, the decoder further
utilizes self-attention mechanisms, allowing each token to
attend to all other tokens in the sequence capturing global
dependencies and context. The self-attention mechanism
facilitates the decoder in generating the output tokens
one at a time, progressively constructing the final output
sequence. The decoder has 3 layers with 8 attention heads.

1123

3.3. Loss Functions

In our fingerspelling translation task using a transformer
encoder-decoder, we employed three distinct loss functions
that will be discussed in detail next.

CTC Loss. On the encoder side, where the input comprises
a sequence of hand poses without explicit alignments be-
tween the poses and the target sign language letters. We use
Connectionist Temporal Classification (CTC) loss function.
The CTC loss models all possible alignments between the
hand shapes and the sign language letters without requiring
explicit alignment supervision.

LCTC = − log p(W | P) (3)

where P is the vector of poses and W is the target sequence
of labels. In more detail:

LCTC = − log
∑

A∈AP,W

T∏
t=1

p (ct | P) (4)

where, A ∈ AP,W denotes the set of valid alignments
corresponding to the target sequence W , and p (ct | P)
denotes the probability of corresponding letter at timestep t
of the input sequence. The term p (ct | P) is the output of
the encoder at each timestep, where ct is the probability of
the letter at the output of the softmax layer.

MSE Loss. To further enhance the performance and learn-
ing capabilities of the model, we introduced a learnable pa-
rameter to predict the length of the letters during training.
This additional parameter allowed the model to gain a bet-
ter understanding of the variations in letter sizes within sign
language. By training this parameter using a Mean Squared
Error (MSE) loss function, the model could improve its
ability to accurately predict the length of the letters. The
length prediction could also be leveraged during the infer-
ence stage, aiding in generating more accurate and visually
consistent translations.

LMSE =
1

N

N∑
i=1

1

2

2∑
j=1

(
l̂enij − lenij

)2

(5)

In this equation, [l̂en
i

1, l̂en
i

2] represents the predicted word
length, which is a vector of size 2 (sine and cosine) (see
Eq. 2). The ground truth length of i-th example is denoted
as [leni

1, len
i
2] and N represents the batch size.

Cross Entropy. On the decoder side, the task involved gen-
erating the sign language letter translation one letter at a
time, following an auto-regressive approach. To optimize
the decoder’s performance in this auto-regressive task, we
utilized a cross-entropy loss function. The cross-entropy

loss encouraged the model to produce more accurate and
contextually appropriate letter predictions.

LCE = − 1

M

M∑
i=1

yi · log (ŷi) (6)

where yi is the ground truth label and ŷi is the softmax prob-
ability for the ith class, M represents the total number of
classes.
The total loss is calculated as:

L = λLCTC + LCE + LMSE (7)

where λ is utilized to regulate the relative contributions of
loss components.

3.4. Re-ranking Inference

Throughout the prediction process, the encoder employs
a greedy decoding strategy to generate the likelihood of
each letter for every frame.

Ŵ = argmax
W∈w∗

T∏
t=1

pctc (ct | ε(P)) (8)

The beam search then refines the generated candidates
by considering their likelihood and selecting the most prob-
able sequences, We refer to this set of k predictions as our
hypotheses. In the proposed model, the contextualized fea-
tures ε(P) are obtained from the encoder, where P repre-
sents the input pose sequence. The sequence length is de-
noted by T . At each timestep t, at represents the probability
of characters. However, utilizing beam search solely on the
encoder side fails to capitalize on the potential of a language
model. The language model captures the probability distri-
bution of letters based on the generated letters up to a given
point.

p (w1, w2, . . . , wL) =

L∏
i=1

p (wi | w1, w2, . . . , wi−1) (9)

Therefore we employ autoregressive decoding on the de-
coder side. With this approach, the model generates the out-
put sequence token by token, taking into account the previ-
ously generated tokens. This autoregressive process enables
the model to capture the context and dependencies within
the sequence, leading to coherent and contextually appro-
priate predictions.

ŵt = D (ŵ1:t−1, ε(P)) (10)

Using the input pose vector P , the encoder (ε) generates
contextualized tokens. The decoder starts with the SOS to-
ken and proceeds to generate subsequent tokens until either

1124

the model generates the EOS token or the maximum length
is reached.

However, there are some drawbacks of using this
method. Firstly, generating a meaningful sequence, espe-
cially in the case of fingerspelling with limited available
data, necessitates a substantial amount of training data.
Secondly, prior research [13, 35, 46] has shown that the
decoder is more sensitive to target-side information rather
than source-side information. Consequently, even a minor
mis-recognition can significantly degrade the overall
predicted performance. On the other hand, employing a
separate language model, such as [42], might overlook the
rich contextual information encoded by the encoder and
focus solely on language aspects.

To address these limitations, we propose a hybrid
approach that combines the strengths of both methods.
During the decoding process, we utilize the CTC with
beam decoding technique to generate a set of hypotheses.
However, rather than relying solely on an autoregressive
method, we take these hypotheses as input and employ a
re-ranking strategy based on the generated probabilities
on the decoder. This integration allows us to benefit from
the contextualized encoder features while leveraging the
hypothesis generation capability of the CTC.

Furthermore, we incorporate the predicted length to im-
prove the ranking process. This aspect proves particularly
beneficial, as one of the limitations is the potential omission
of certain letters. By integrating the predicted length, our
model generates more consistent predictions and improves
the overall performance.

Ŵ = argmax
W∈w∗

log pctc(W | P) + β log plm(W | ε(P))− γEL

(11)
Where,

EL =
∣∣∣L̂− LY

∣∣∣ (12)

In our approach, the decoder, denoted as plm(W | ε(P)),
takes as input the generated hypotheses from the beam
search. L̂ is the predicted Length token and LY is length
of the hypotheses generated on the encoder.

4. Experiments
We report the results of our approach on ChicagoFSWild

[42], and ChicagoFSWild+ [43] datasets. We also provide
information regarding the training schema, inference rank-
ing, used datasets, and our ablation study.

4.1. Training

We implement our model using PyTorch [32] frame-
work. The Adam optimizer [19] is employed to train our
network with β1 = 0.9, β2 = 0.999. The network is

Decoding Strategy Letter Accuracy%
Encoder only

Encoder Only(CTC) Greedy 57.3
Encoder Only(CTC) + Beam 58.5

Encoder Only(CTC) + LSTM [42] 59.8
Encoder-Decoder

Encoder-Decoder(only CE) 54.6
Encoder-Decoder(CTC + CE) 56.3

Ours 66.3

Table 1. Comparison of Training and Decoding Strategies for Fin-
gerSpelling translation. For training, we can incorporate CTC loss,
CE, or both. During inference, decoding includes auto-regressive
on the decoder or beam search decoding on the encoder side.

trained on one NVIDIA GeForce GPU for 20 epochs on
both ChicagoFSWild and ChicagoFSWild+ datasets, with a
batch size of 1. In addition, we set hyper-parameters in Eq.
7 as λ = 5. All the hyperparameters are determined using
the validation set.

4.2. Dataset

The Chicago Fingerspelling Dataset [42] is a collec-
tion of videos that feature individuals performing Ameri-
can Sign Language (ASL) fingerspelling. This dataset was
created “in the wild”, using videos collected from web-
sites. ChicagoFSWild includes 7304 ASL sequences by
160 signers, while ChicagoFSWild+ [43] contains 55, 232
sequences by 260 signers. The datasets offer video-level
annotations but lack individual frame-level segmentation.

4.3. Inference

The inference stage plays a crucial role in generating
accurate predictions. In this section, we present three
main stages employed during the inference stage, namely
CTC with beam search, autoregressive decoding, and our
re-ranking inference. Following the prior works [21,41–43]
we evaluate the performance based on the metrics of letter
accuracy ErrorRate = (S+D+I)

N , where S,D, I are the
number of substitutions, deletions, and insertions in the
alignments, and N is the number of letters.

CTC with Beam Search. First, the CTC with beam
search technique is commonly used to generate multiple
hypotheses or candidate sequences. Table 1 presents the
results for non-autoregressive decoding using the CTC
approach. Our experiments conducted in two scenarios. In
the first scenario, we performed greedy decoding, selecting
the most probable character at each time step. Secondly,
in order to enhance the prediction quality, we incorporate
beam search with a beam width of 5 to consider multiple
hypotheses, as demonstrated in Table 1.

1125

CTC with Language Model. In this experiment, we
leverage the language model trained specifically for finger
spelling, as introduced in [42]. This dedicated language
model is employed to refine the generated hypotheses,
leading to improved results, as demonstrated in Table
1. The language model consists of an LSTM trained
separately on the training set of labels.

Autoregressive Decoding. Another approach is to employ
autoregressive decoding on the decoder side. With this
approach, we solely rely on the decoder to generate the
output sequence. The utilization of the CTC loss during
training leads to improved results during inference, as
demonstrated in Table 1. However, as shown in Table 1, the
performance of the models in this scenario still lags behind
that of the non-autoregressive counterparts. This outcome
was expected, as explained in Section 3.4.

Our Method. In our approach, we aim to leverage the
strengths of language models while giving importance to
the contextualized features from the encoder as described
in Section 3.4. The values of β and γ are assigned as 0.4
and 1.2, respectively in Eq. 11. As shown in Table 1, the
model can outperform all other inference strategies.

Model FSWild [42] FSWild+ [43]

Resnet Whole Frame 22.3% 24.7%
Hand Det.+ CNN + RNN [42] 41.9% 41.2%
Iterative Attention + LM [43] 45.1% 46.7%
Weakly Supervised [28] 48% -
Fine-Grained Attention [11] 48.36% -
TDC-SL [29] 50% -
Attention(optical flow+Res) [17] 57.84% -
FSS-Net [41] 52.5% 64.4%
CtoML [21] 54.9% -
Ours(Enc-Dec Transformers) 66.3% 71.1%

Table 2. Comparing different models on the test set of the
ChicagoWild [42] and the ChicagoWild+ [43] datasets, we eval-
uate the performance using the metric of Letter Accuracy (% ↑).

4.4. Result

In this section, we present the results of our experiments
and evaluations conducted to assess the performance of our
proposed method. We aim to provide an analysis and in-
terpretation of the outcomes obtained, showcasing the ad-
vancements and contributions made toward the problem.
We adopted the train/val/test split introduced in the origi-
nal paper [42]. The results, as shown in Table 2, are com-
pared with various models on both datasets, demonstrate
that our model surpasses all other models by a significant
margin. Our study also investigates the impact of various
factors, including model architectures, different inference

techniques, and hyperparameters to establish a robust and
reliable framework for tackling the challenges at hand. All
the ablations are using the Chicago Wild [42] dataset.

Letter Accuracy

OpenPose [4] 55.7
3D MediaPipe [23] 64.1
Ours without Length Token 64.1
Ours 66.3

Table 3. Ablation Analysis of Various Components. Our method is
compared with alternative pose estimation approaches. Addition-
ally, we examine the impact of utilizing 3D coordinates instead of
2D, along with assessing the influence of the Length Token.

4.5. Ablation Study

In this section, we present a series of ablation studies
to evaluate the contribution and effectiveness of various
components in our proposed method. Specifically, we
investigate the impact of different factors and variations,
including the selection of the pose method, diverse decod-
ing formulations used during inference, and the influence
of length tokens.

Selection of Pose Estimator. We begin by analyzing the
effect of the Pose Estimator on the overall performance.
We evaluate the impact of different pose methods on
translation accuracy. We employed OpenPose [4] and
MediaPipe [23] as the pose extractor methods. When
comparing MediaPipe [23] Holistic to OpenPose [4], no-
table differences arise in their approach to predicting body
keypoints. MediaPipe first predicts the body keypoints
and subsequently employs separate models for hand and
face keypoints on cropped patches. In contrast, OpenPose
predicts all keypoints together from the input image. A dis-
tinguishing feature of MediaPipe is its consideration of the
consistency between predictions across subsequent frames.
This approach promotes smoother and more consistent
predictions, reducing the likelihood of detection failures or
missed keypoints. Also, MediaPipe directly predicts the
keypoints in 3D, offering a more direct estimation. On the
other hand, OpenPose relies on triangulation techniques to
infer the 3D pose from the detected keypoints. The results
of these evaluations are presented in the first row of Table
3. These findings highlight the potential for enhancing the
accuracy of the methods by further advancements in pose
estimation. Pose models demonstrate greater robustness
in handling variations compared to RGB-based methods.
Furthermore, pose-based approaches exhibit improved data
efficiency during training and also can be advantageous in
scenarios where data privacy is a concern.

1126

Figure 3. Qualitative results on ChicagoFSWild [42]. Only a subset of frames is presented here.

3D vs 2D. We further investigate the impact of utilizing 3D
coordinates instead of 2D from the Mediapipe [23] Holistic
approach. The results, presented in the second row of Table
3, indicate a degradation in performance. This suggests that
the 3D coordinates may not be reliable and can introduce
significant noise to the model.

Length Token. To assess the impact of the length token
in our approach, we conducted experiments where we re-
moved it from the training and decoding process. The third
row of Table 3 shows the results of the method with/without
the Length Token.

Deletions Substitutions Insertions

Error Count 768 488 231
Error Rate 17.37 11.04 5.22

Table 4. Error Counts and Rates in three Scenarios: Deletions,
Substitutions, and Insertions.

4.6. Limitations and Failure Cases

In this section, we discuss the method’s failure cases and
limitations. The primary errors involve deletions, followed
by insertions as shown in Table 4. Furthermore, regarding
substitutions, the top-5 letter pairs that exhibit the highest
confusion rates are (e → o), (i → y), (r → u), (a →
o), (i → j). An additional limitation concerns the perfor-
mance of the pose models employed. Some video frames
contain low-quality and frequently blurry images due to fast
movements. Figure 4 shows the distribution of the missing
hand joints estimated using openpose [4] method. Given
that our model relies solely on pose keypoints, instances of

Figure 4. This figure shows the distribution of hand pose availabil-
ity in the dataset. The x-axis represents the percentage of missing
hand poses in each video, while the y-axis indicates the percentage
of videos in the dataset falling into each category.

failure in the pose model directly lead to the overall fail-
ure of our approach. Figure 3 showcases some of the video
frames alongside our model’s output, displaying both accu-
rate translations and other errors.

4.7. Conclusion

In conclusion, we have presented a novel approach that
combines transformer architecture with hand pose models
for fingerspelling translation. Our proposed method lever-
ages the language modeling capabilities of transformers
while effectively capturing the temporal dynamics of hand
poses. Through extensive experiments on the ChicagoWild
and ChicagoWild+ datasets, we have demonstrated signifi-
cant improvements in accuracy and translation performance
compared to state-of-the-art models.
Acknowledgments: This work was supported by the 2023
Amazon Research Awards Program.

1127

References
[1] Matyáš Boháček and Marek Hrúz. Sign pose-based trans-

former for word-level sign language recognition. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 182–191, 2022. 2

[2] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Her-
mann Ney, and Richard Bowden. Neural sign language trans-
lation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7784–7793, 2018. 2

[3] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and
Richard Bowden. Sign language transformers: Joint end-to-
end sign language recognition and translation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10023–10033, 2020. 2

[4] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017. 3,
7, 8

[5] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, and
Richard Bowden. Subunets: End-to-end hand shape and
continuous sign language recognition. In Proceedings of
the IEEE international conference on computer vision, pages
3056–3065, 2017. 2

[6] Runpeng Cui, Hu Liu, and Changshui Zhang. Recurrent
convolutional neural networks for continuous sign language
recognition by staged optimization. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7361–7369, 2017. 2

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2

[8] Yao Du, Pan Xie, Mingye Wang, Xiaohui Hu, Zheng Zhao,
and Jiaqi Liu. Full transformer network with masking future
for word-level sign language recognition. Neurocomputing,
500:115–123, 2022. 2

[9] Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti
Ghadiyaram, Kenneth DeHaan, Florian Metze, Jordi Torres,
and Xavier Giro-i Nieto. How2sign: a large-scale multi-
modal dataset for continuous american sign language. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 2735–2744, 2021. 2

[10] Pooya Fayyazsanavi, Zhiqiang Wan, Will Hutchcroft, Ivaylo
Boyadzhiev, Yuguang Li, Jana Kosecka, and Sing Bing
Kang. U2rle: Uncertainty-guided 2-stage room layout es-
timation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3561–
3569, 2023. 2

[11] Kamala Gajurel, Cuncong Zhong, and Guanghui Wang.
A fine-grained visual attention approach for fingerspelling
recognition in the wild. In 2021 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pages 3266–
3271. IEEE, 2021. 2, 7

[12] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural

networks. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 369–376, 2006. 2

[13] Tianyu He, Xu Tan, and Tao Qin. Hard but robust, easy but
sensitive: How encoder and decoder perform in neural ma-
chine translation. arXiv preprint arXiv:1908.06259, 2019.
6

[14] Al Amin Hosain, Panneer Selvam Santhalingam, Parth
Pathak, Huzefa Rangwala, and Jana Kosecka. Finehand:
Learning hand shapes for american sign language recogni-
tion, 2020. 2

[15] Al Amin Hosain, Panneer Selvam Santhalingam, Parth
Pathak, Huzefa Rangwala, and Jana Kosecka. Hand pose
guided 3d pooling for word-level sign language recognition.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 3429–3439, 2021. 2

[16] Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng
Li, and Yun Fu. Skeleton aware multi-modal sign language
recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3413–
3423, 2021. 2

[17] Amruta E Kabade, Padmashree Desai, C Sujatha, and G
Shankar. American sign language fingerspelling recognition
using attention model. In 2023 IEEE 8th International Con-
ference for Convergence in Technology (I2CT), pages 1–6.
IEEE, 2023. 3, 7

[18] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 2

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[20] Dongxu Li, Cristian Rodriguez, Xin Yu, and Hongdong Li.
Word-level deep sign language recognition from video: A
new large-scale dataset and methods comparison. In The
IEEE Winter Conference on Applications of Computer Vi-
sion, pages 1459–1469, 2020. 2

[21] Linjun Li, Tao Jin, Xize Cheng, Ye Wang, Wang Lin,
Rongjie Huang, and Zhou Zhao. Contrastive token-wise
meta-learning for unseen performer visual temporal-aligned
translation. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 10993–11007, Toronto,
Canada, July 2023. Association for Computational Linguis-
tics. 3, 6, 7

[22] Ronghui Li and Lu Meng. Multi-view spatial-temporal
network for continuous sign language recognition. arXiv
preprint arXiv:2204.08747, 2022. 2

[23] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris Mc-
Clanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-
Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Medi-
apipe: A framework for building perception pipelines. arXiv
preprint arXiv:1906.08172, 2019. 3, 7, 8

[24] Amit Moryossef, Ioannis Tsochantaridis, Joe Dinn,
Necati Cihan Camgoz, Richard Bowden, Tao Jiang, Annette
Rios, Mathias Muller, and Sarah Ebling. Evaluating the
immediate applicability of pose estimation for sign language

1128

recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
3434–3440, 2021. 2

[25] Negar Nejatishahidin, Will Hutchcroft, Manjunath
Narayana, Ivaylo Boyadzhiev, Yuguang Li, Naji Khos-
ravan, Jana Košecká, and Sing Bing Kang. Graph-covis:
Gnn-based multi-view panorama global pose estimation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6458–6467, 2023. 2

[26] Cemil Oz and Ming C. Leu. American sign language word
recognition with a sensory glove using artificial neural net-
works. Engineering Applications of Artificial Intelligence,
24(7):1204–1213, 2011. Infrastructures and Tools for Multi-
agent Systems. 2

[27] Carol A Padden and Darline Clark Gunsauls. How the al-
phabet came to be used in a sign language. Sign Language
Studies, pages 10–33, 2003. 1

[28] Peerawat Pannattee, Wuttipong Kumwilaisak, Chatchawarn
Hansakunbuntheung, and Nattanun Thatphithakkul. Novel
american sign language fingerspelling recognition in the wild
with weakly supervised learning and feature embedding.
In 2021 18th International Conference on Electrical Engi-
neering/Electronics, Computer, Telecommunications and In-
formation Technology (ECTI-CON), pages 291–294. IEEE,
2021. 1, 2, 7

[29] Katerina Papadimitriou and Gerasimos Potamianos. Multi-
modal Sign Language Recognition via Temporal Deformable
Convolutional Sequence Learning. In Proc. Interspeech
2020, pages 2752–2756, 2020. 3, 7

[30] Maria Parelli, Katerina Papadimitriou, Gerasimos Potami-
anos, Georgios Pavlakos, and Petros Maragos. Exploiting 3d
hand pose estimation in deep learning-based sign language
recognition from rgb videos. In Adrien Bartoli and Andrea
Fusiello, editors, Computer Vision – ECCV 2020 Workshops,
pages 249–263, Cham, 2020. Springer International Publish-
ing. 2

[31] Maria Parelli, Katerina Papadimitriou, Gerasimos Potami-
anos, Georgios Pavlakos, and Petros Maragos. Exploiting 3d
hand pose estimation in deep learning-based sign language
recognition from rgb videos. In Computer Vision–ECCV
2020 Workshops: Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part II 16, pages 249–263. Springer, 2020. 2

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
6

[33] KR Prajwal, Hannah Bull, Liliane Momeni, Samuel Albanie,
Gül Varol, and Andrew Zisserman. Weakly-supervised fin-
gerspelling recognition in british sign language videos. arXiv
preprint arXiv:2211.08954, 2022. 1, 2

[34] Junfu Pu, Wengang Zhou, and Houqiang Li. Iterative align-
ment network for continuous sign language recognition. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4165–4174, 2019. 2

[35] Yi Ren, Jinglin Liu, Xu Tan, Zhou Zhao, Sheng Zhao, and
Tie-Yan Liu. A study of non-autoregressive model for se-

quence generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pages
149–159, 2020. 6

[36] Panneer Selvam Santhalingam, Parth Pathak, Jana Košecká,
Huzefa Rangwala, et al. Sign language recognition analysis
using multimodal data. In 2019 IEEE International Con-
ference on Data Science and Advanced Analytics (DSAA),
pages 203–210. IEEE, 2019. 2

[37] Panneer Selvam Santhalingam, Parth Pathak, Jana Košecké,
Huzefa Rangwala, et al. Body pose and deep hand-shape
feature based american sign language recognition. In 2020
IEEE 7th International Conference on Data Science and Ad-
vanced Analytics (DSAA), pages 207–215. IEEE, 2020. 2

[38] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent
neural networks. IEEE transactions on Signal Processing,
45(11):2673–2681, 1997. 2

[39] Bowen Shi, Diane Brentari, Greg Shakhnarovich, and Karen
Livescu. Fingerspelling detection in american sign language.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4166–4175, 2021. 2

[40] Bowen Shi, Diane Brentari, Greg Shakhnarovich, and Karen
Livescu. Open-domain sign language translation learned
from online video. In EMNLP, 2022. 2, 3

[41] Bowen Shi, Diane Brentari, Greg Shakhnarovich, and Karen
Livescu. Searching for fingerspelled content in American
Sign Language. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1699–1712, Dublin, Ireland, May 2022.
Association for Computational Linguistics. 2, 6, 7

[42] Bowen Shi, Aurora Martinez Del Rio, Jonathan Keane,
Jonathan Michaux, Diane Brentari, Greg Shakhnarovich,
and Karen Livescu. American sign language fingerspelling
recognition in the wild. In 2018 IEEE Spoken Language
Technology Workshop (SLT), pages 145–152. IEEE, 2018. 2,
6, 7, 8

[43] Bowen Shi, Aurora Martinez Del Rio, Jonathan Keane, Di-
ane Brentari, Greg Shakhnarovich, and Karen Livescu. Fin-
gerspelling recognition in the wild with iterative visual atten-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5400–5409, 2019. 1, 2, 6,
7

[44] Bowen Shi, Aurora Martinez Del Rio, Jonathan Keane, Di-
ane Brentari, Greg Shakhnarovich, and Karen Livescu. Fin-
gerspelling recognition in the wild with iterative visual atten-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5400–5409, 2019. 1

[45] Ayan Sinha, Chiho Choi, and Karthik Ramani. Deephand:
Robust hand pose estimation by completing a matrix im-
puted with deep features. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4150–4158, 2016. 2

[46] Xingchen Song, Zhiyong Wu, Yiheng Huang, Chao Weng,
Dan Su, and Helen Meng. Non-autoregressive transformer
asr with ctc-enhanced decoder input. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5894–5898. IEEE, 2021.
6

1129

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2, 4

[48] Ankita Wadhawan and Parteek Kumar. Sign language
recognition systems: A decade systematic literature re-
view. Archives of Computational Methods in Engineering,
28(3):785–813, May 2021. 2

1130

