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Abstract

Despite advancements in Automatic License Plate De-
tection (ALPD) methods, the majority of them fail to ad-
dress the diverse image challenges faced in real-world driv-
ing scenarios. These challenges encompass issues like low
image quality, contrast issues, etc. Factors such as license
plate background, horizontal tilt, and adverse weather con-
ditions like rain or fog further impede LP detection and
recognition. This research focuses on the localization and
recognition of Bangla vehicle plates in foggy conditions
through the application of the Dark Channel Prior (DCP)
fog-dehazing technique. The selection of Bangla as the tar-
get language is motivated by its status as a low-resource
language with high digital text complexity, resulting in lim-
ited available resources. The proposed method comprises
three main phases. The DCP dehazing algorithm reduces
fog in input images initially. Then, the YOLOv8 object de-
tection model is used to identify Bangla license plates from
dehazed images, followed by OCR for text recognition. This
study leverages DCP, YOLOv8, and OCR technologies to
enhance the identification of Bangla vehicle plates under
hazardous conditions, thereby contributing to the improve-
ment of transportation safety, law enforcement, traffic man-
agement, and taxation processes.

1. Introduction

Bengali/Bangla, spoken by 228 million as a primary lan-
guage and 37 million as a second language, ranks fifth
among native languages and sixth overall. Despite its sig-
nificant usage, it is considered a low-resource language

[31]. The low-resource nature of the language is attributed
to insufficient data, limited efforts in the development of
Bengali digital text, and challenges stemming from lan-
guage complexity. According to Joshi et al. [14], the Bangla
language is classified as a class 3 language, where the Mean
Reciprocal Rank (MRR) is 0.42899. According to a claim
by the Bangladesh Road Transport Authority (BRTA), there
are 5.7 million registered cars in Bangladesh [5]. How-
ever, the parking lot is disorganized, making it challeng-
ing to monitor vehicle entry and exit. Urban parking is
difficult due to the high volume of automobiles. Detect-
ing illegal vehicles in Bangladesh is problematic due to is-
sues like CCTV and camera noise, misalignment, and the
use of cheap sensors and color formats, as observed in our
dataset [28]. Managing LP layouts and illumination is diffi-
cult. Additional effort is required to enhance the process for
reliability. Transportation, environmental protection, public
safety, law enforcement, traffic control, revenue collection,
and tolls need car tracking. Rain and fog may make au-
tomobile monitoring more difficult. The BRTA mandates
Bangla LPs, as seen in Figure 1.

Figure 1. Representation of Vehicle Number Plate in Bangladesh
[19]

In our research, we utilize the DCP method to mitigate
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haze and fog effects in still pictures. Opting for still im-
ages over videos or continuous images to avoid computa-
tional challenges and to attain efficiency. We keep videos
and continuous images at the forefront of our future work.
DCP estimates a depth map, referred to as the dark chan-
nel, which is derived from approximately 0.2% of the at-
mospheric light to characterize light scattering due to atmo-
spheric particles, providing insights into haze levels. Addi-
tionally, a transmission map is computed, where pixel val-
ues within this map quantify the relationship between the
observed image and scene properties, indicating less fog-
affected regions. Further refinement is done by the Mat-
ting Laplacian matrix of the transmission map, which has
been performed through filtering techniques to enhance its
quality. Moreover, dehazing improves object detection ac-
curacy, emphasizing the need for clear and high-dynamic-
range images. To facilitate the identification of LPs under
adverse weather conditions, we employ a custom dataset
that underwent rain and fog dehazing procedures.

plate
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Figure 2. Foggy Car Plate Recognition Workflow

Annotation of this dataset is accomplished using the
Computer Vision Annotation Tool (CVAT), and subse-
quently, the dataset is converted into the YOLO format,
encompassing bounding boxes with five associated param-
eters. Training of our model is conducted using the Ul-
tralytics library, employing the nano version of YOLOv8.
This YOLOv8 model is employed for the detection of Ben-
gali car plates, and its performance was assessed across all
vehicles within the images. Our results validate the effec-
tiveness of YOLOv8 in accurately detecting objects within
images, showcasing its superior performance in the con-
text of vehicle localization. After bounding box localiza-
tion, image cropping is carried out based on the coordi-
nates obtained from the bounding boxes. The actual char-
acters on the LP have been deciphered with the help of
EasyOCR. The cropped images are subsequently processed
using EasyOCR to extract and identify characters located
within the bounding box regions. Our entire method of im-
plementation is depicted in figure 2.

The following are some of the main contributions of this
study:

• We employ depth and density regulation to simulate
hazy conditions in standard images.

• We introduce a DCP algorithm designed for dehazing
foggy images containing Bengali LPs.

2. Related Works
Within the realm of image and video analysis, the pro-

cess of License Plate (LP) recognition primarily involves
pinpointing and isolating the LP area, which is generally a
small fraction of the total visual data, as depicted in Figure
2. Numerous investigations [2, 18, 30] have been dedicated
to identifying such compact regions in images in different
research domains. Different kinds of operations, such as
automated test driving and parking systems, have been met
in the transportation sector [17, 22, 25]. Moreover, exten-
sive research has been undertaken to accurately locate a pre-
sumed LP zone in photographic or video content.

Besides, Abdullah et al. [1] explore Bangla License Plate
Recognition (LPR) in Dhaka using YOLOv3, which seg-
ments the input image into a grid to predict bounding boxes
and object classes [6]. They adapted YOLOv3 for Bangla
LP detection, utilizing pre-trained weights from Darknet-53
layers. The technique efficiently identifies Bangla plates,
particularly those with a unique format featuring a charac-
ter and six numbers. However, the single-scale feature map
of YOLOv3 can struggle with varying object sizes and com-
plex scenarios, potentially causing incorrect detections [33].

Moreover, Islam et al. [11] uses a changing boundary to
get rid of the horizontal and vertical histogram values. The
Region of Interest (ROI) has been taken from a picture of
a license plate. This method may be used to locate both
textual and non-textual objects. As a result, non-textual
components are filtered out using an area and aspect-based
strategy. In another study, Azam et al. [4] have applied
the Radon transform-based tilt correction approach to rec-
tify tilted LP for the very first time. To get rid of places
that are not LP, a new criterion based on picture entropy is
being used. The authors of this research suggest a two-type
detection pipeline that is integrated to use the Vision API
to achieve speedy reasoning in real-time while maintaining
consistent accuracy in the detection and recognition of pat-
terns.

Furthermore, Redmon et al. [27] introduce a novel deep
learning technique that has been suggested and the sin-
gle forward computation that allows complete LP identi-
fication and recognition. For LP recognition without pre-
segmentation, the recognition network uses Gated Recur-
rent Units (GRU) and Connectionist Temporal Classifica-
tion (CTC). The CCPD dataset is used to evaluate the sug-
gested technique.
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On the other hand, Rahman [26] employ a Convolu-
tional Neural Network (CNN) for Bengali License Plate
(LP) recognition, initially cropping the LP from the main
image, followed by segmenting digits and characters into
32 × 32 pixel units. These elements underwent various
transformations like scaling and rotation. The study also
delved into Dark Channel Prior (DCP) for dehazing un-
clear images, analyzing its efficacy across four key stages.
The research offers detailed step-by-step instructions for
DCP-based dehazing, encompassing stages like dark chan-
nel generation, ambient light estimation, transmission map
creation, and image enhancement [15].

Moreover, Xuesong et al. [13] introduce a DCP method
enhancing video quality in low-light and low-visibility con-
ditions. They employ local smoothing and Gaussian pyra-
mid operators with the DCP algorithm to enhance image
details. Notably, their approach achieves a higher frame
rate of 33 frames per second, distinguishing it from Dong
et al.’s [7] method, which produces 23 frames per second,
offering a significant improvement for real-time video en-
hancement.

In addition, Yash et al. [29] suggest using Optical Char-
acter Recognition (OCR) and a new method based on deep
learning to automatically find and read number plates. Us-
ing deep learning, the model is taught to spot the car. The
part of the picture that shows the LP is cut out well, and
a CNN uses OCR to figure out what the numbers and let-
ters are. The Jetson TX2 NVIDIA target is used to train
the model, and a public dataset from the Kaggle database is
used to test how well it works.

To the best of our knowledge, no prior research has con-
centrated on Bangla car number plates and low-resource
languages in foggy weather or any form of hazardous
weather. So, we move forward on exploring an in-depth
study in this area.

3. Dataset
We acquire a secondary dataset consisting of 2,754 sam-

ples, which has been partitioned into three subsets: the
training set encompasses 70% of the data, comprising 1,928
images, the test set consists of 15%, accounting for 413 im-
ages, and the validation set also comprises 15%, containing
413 images. The dataset exhibits a diverse range of char-
acteristics, encompassing variations in image clarity, sharp-
ness, distances between objects, LP attachment status, di-
urnal and nocturnal scenarios, and other relevant attributes.
The dataset comprises a distribution of 46.6% cars, 2.6%
LPs alone, 39.4% bikes, 3.3% vehicles utilizing compressed
natural gas (CNG), and 8.1% trucks and buses.

3.1. Customized Dataset

We opt to employ a customized dataset, a derivative of
a pre-existing secondary dataset initially curated by Sams

et al. [28]. This dataset comprises two distinct segments:
the first segment comprises images featuring vehicles with
their associated LPs, while the second segment exclusively
includes images of isolated LPs. Given our specific focus on
isolating the LP region and mitigating environmental distur-
bances, we have selected to utilize the first segment of the
dataset, which consists of 1,928 images allocated for train-
ing, along with 413 images designated for both validation
and testing. Our choice to work with this subset is facili-
tated by the fact that it is already formatted in the YOLO
standard, streamlining its compatibility with our research
objectives.

To introduce a simulated foggy effect into the images, we
follow the approach described by Godard et al. This method
entails the estimation of object depth using a single image
and is achieved through self-supervised training, where the
model learns to predict the perspective of one image based
on another. This process leverages the disparity between
the two images as an intermediary variable, allowing for
the derivation of a depth map (Dt). Subsequently, an error
is quantified according to Equation 1 to ascertain the final
image and the associated generation process [8].

Lp = min pe (It, It′→t) .t
′ (1)

where Lp is the mistake in photometric projection and
pre-photometric pe reconstruction error, which is calculated
using SSIM and L1 distance.

SSIM and L1 distance are both parts of the photomet-
ric restoration mistake, which we get from various research
works [9, 34, 36],

pe (Ia, Ib) =
α

2
(1− SSIM (Ia, Ib)) + (1− α) ||Ia − Ib| |

(2)
In Equation 2, α = 0.85 is the weight of the wall. As in

we use edge-aware smoothness. A smoothness term (equa-
tion 3) has been added to make sure that the depth maps are
smooth.

Ls = |∂xdt| e−|∂xIt| + |∂ydt| e−|∂yIt| (3)

According to Godard et al. [8] various techniques, including
pre-pixel minimum re-projection, have been employed to
enhance the precision of the projected depth maps while re-
fraining from introducing additional models into the frame-
work. To address scenarios involving moving objects, the
minimum error and auto-masking stationary strategies were
implemented. The binary mask µ in equation 4 is dynami-
cally computed, taking into account projection errors and a
multiscale estimation, to prevent convergence to local min-
ima during the optimization process. The collective train-
ing loss is obtained by aggregating the per-pixel smoothness
term (Ls) with the filtered photometric loss [16, 32, 37].
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Figure 3. Mean Intensity of Ground Truth Images and Customized
Foggy Images

µ =
[
min
t′

pe (It, It′→t) < min
t′

pe (It, It′)
]

(4)

This is how we derived the depth maps from the original
images. Subsequently, we inverted these images. Once the
model is appropriately configured, we proceed to import the
designated target image onto which we intend to simulate
the foggy conditions. We also explore methodologies to im-
prove the accuracy of the projected depth maps without the
need for additional model complexity. Upon meticulous ex-
amination, it becomes evident that the artificially generated
foggy images closely resemble their corresponding original
counterparts, exhibiting minimal discernible distinctions.

In a conventional haze-free image, the color image com-
prises pixel values ranging from 0 to 255, serving as indi-
cators of the clarity of each pixel’s coloration. An image
of moderate clarity tends to exhibit greater prominence of
both bright and dark values. Conversely, in cases of foggy
imagery, there is an observable prevalence of brighter pixel
values and a corresponding decrease in darker values due
to the limited visibility caused by the fog. As depicted in
Figure 3, it is noteworthy that the mean intensity value of
the ground truth image is lower than that of the monocu-
lar depth-based foggy image. This discrepancy serves as
evidence affirming the presence of authentic fog within the
customized dataset.

Following the acquisition of the depth-affected image
under foggy conditions, we proceed to amalgamate this
depth image with the corresponding clear image. This fu-
sion process is subject to the regulation of fog density lev-
els, governed by a beta regulator. As depicted in Figure
4, the illustration showcases individual images exhibiting
varying mean intensity values across distinct beta settings.
Notably, at a beta value of 7, the image demonstrates a max-
imum intensity value that notably exceeds 200, whereas the
authentic image typically exhibits mean intensities within
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Figure 4. Variation in Density Mean Intensities of the Individual
Image

the range of 50 to 100. Since we could not discover any
secondary dataset and owing to restrictions in the environ-
ment and condition of the current we would like to work
with real-world datasets in the future after gathering pri-
mary data.

4. Methodology
The methodological framework comprises a tripartite

process. Initially, there is a phase dedicated to data pre-
processing through the application of the DCP technique.
Subsequently, the second stage focuses on the detection of
LPs utilizing the YOLO algorithm. Lastly, the third stage
encompasses the recognition of the detected LPs through
the implementation of EasyOCR, a specialized OCR sys-
tem. This structured approach is designed to facilitate the
comprehensive analysis and identification of LPs in the re-
search context.

4.1. Data Pre-Processing Using DCP

Under hazy atmospheric conditions, this detection pro-
cess may encounter challenges attributable to particulate
matter and fog. These adverse conditions often result in
reduced intensity levels of the license plate or a diminished
dynamic range, leading to the creation of shadow-like ar-
tifacts that adversely affect detection accuracy. Hence, a
critical prerequisite for LP recognition in such scenarios in-
volves an initial data preprocessing step.

The data preprocessing operation is fundamentally in-
strumental in rendering the LP more discernible within the
image. In this context, DCP has been employed as a means
to address dynamic range limitations and enhance image
contrast. The DCP algorithm commences by segregating
the input image into its constituent color channels, specifi-
cally the green (G), blue (B), and red (R) channels. Subse-
quently, it calculates the dark channel, which corresponds
to the channel featuring the smallest pixel values. To fur-
ther augment the distinctiveness of the dark channel, a small
square kernel is applied through an erosion operation. This
preprocessing step serves to accentuate the LP within the
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image, rendering it more prominent and thereby facilitating
subsequent recognition tasks.

Figure 5. Dark Channel Prior Architecture

4.1.1 Atmospheric Light Analysis

According to He et al. [10], estimating the atmospheric light
(A) can be done with a subset of the darkest pixels in the
dark channel. It computes the average value of the dark-
est pixels in the dark channel and the brightest pixels to
measure the light, as the atmospheric light has the high-
est intensities from those pixels. This average serves as the
atmosphere’s illumination. Ai is specified in equation 5.

An+1
i=R,G,B =

1

2
(An

i +R (xn + 1)) x ∈ R̃ (5)

where R̃ is the order of the top 0.2% of the brightness
value in the dark channel of R(x). The value of Ai is found
by comparing and updating the average of the pixel points
that are next to each other in R̃. Because of this, each repe-
tition must be compared to t. Through repetition, the places
where the dark channel brightness is not very noticeable are
taken into account.

4.1.2 Transmission Map Forecast

The transmission map (t) is calculated using the atmo-
spheric light channel and the dark channel. Here, t̃(x) in
equation 6 is determined by the expression.

t̃(x) = 1−min c

(
miny ∈ Ω(x)

(
Ic(y)

Ac

))
(6)

where Ic is the normalized input image divided by the
atmospheric light Ac and omega is a constant. In fact,
min c

(
miny ∈ Ω(x)

(
Ic(y)
Ac

))
is the dark channel of the

normalized haze image Ic(y)
Ac . It directly provides an esti-

mation of the transmission.

4.1.3 Transmission Refinement via Guided Filtration

According to He et al. [10], using directed filtering to refine
the transmission map enhances edges and maintains essen-
tial details. As inputs, the guided filter utilizes the gray-
scale image and the estimated transmission map to generate
a refined transmission map (t). t(x) stands for the refined
transmission map. We minimize the following cost function
by writing t(x) and t̃(x) as t and t̃ in the form of a vector.

E(t) = tT Lt+ λ(t− t̃)T (t− t̃). (7)

The equation 7 is the cost function, where L is the Matting
Laplacian matrix that had been proposed by Levin. Here, λ
is a regularization parameter.

4.1.4 Image Restoration

The process involves the reconstruction of the dehazed im-
age through the utilization of the improved transmission
map (t), the atmospheric light (A), and a conservative
threshold value. Adjustments and shifts in pixel values for
each color channel are carried out to regain the dehazed im-
age (J), a technique described by He et al. [10]. Upon ex-
amination of the intensity frequency distribution before and
after the application of the DCP, it becomes evident that the
dynamic range has undergone alteration. Specifically, post-
application of the DCP, the intensity values exhibit a more
dispersed distribution compared to the initial state, wherein
the image displayed greater prominence.

Figure 6. Pre-processing using DCP

4.2. Models

Our experimental setup involve the selection of four dis-
tinct models, in conjunction with a proposed model, to in-
vestigate their efficacy in the context of image enhance-
ment. The first model under consideration is the Multi-
scale Retinex, a method that traditionally utilizes an array
of bandpass filters to decompose the image into multiple
scales. Subsequently, it employs local contrast adjustment
techniques, including logarithmic transformations and divi-
sive normalization, to enhance image quality. Additionally,
we leverage the DCP technique, which plays a pivotal role
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in estimating the hazy map within the images. However,
unlike conventional non-local dehazing approaches, DCP
employs a CNN to disentangle the haze and enhance vis-
ibility. The third model incorporated into our analysis is
Fast Visibility Restoration, a method designed to dehaze
single images through a combination of techniques, includ-
ing white balance correction, atmospheric veil estimation,
corner preservation smoothing, and specialized tone map-
ping.

Our experimental evaluation is based on three key pa-
rameters: Structural Similarity Index (SSIM), Peak Signal-
to-Noise Ratio (PSNR), and Execution Time. SSIM pro-
vides a measure of structural similarity between the modi-
fied image and the original, encompassing luminance, con-
trast, and structural components. The model exhibiting the
SSIM value closest to the ground truth is deemed the most
representative. PSNR, on the other hand, quantifies image
quality relative to the ground truth. Lastly, execution time
denotes the duration required for processing a dataset using
a particular algorithm.

Our findings reveal that among the considered models,
DCP exhibits the highest SSIM and PSNR values, mea-
suring 0.81 and 19.71, respectively. Notably, Fast Visibil-
ity Restoration demonstrates significantly faster execution,
outperforming DCP by a factor of 15.5. However, it is im-
portant to note that rapid visibility adjustments in the lat-
ter model may result in deviations in hue, saturation, and
brightness compared to real-world colors, which constitute
a primary challenge.

Dehazing Algo-
rithms

Average
SSIM

Average
PSNR

Execution
Time(s)

DCP 0.8188 19.7172 0.4257
Multi-Scale
Retinex

0.7777 14.4045 7.3202

Non-local Image
Dehazing

0.7444 15.4989 10.5618

Fast Visibility
Restoration

0.7377 16.879 0.027

Table 1. SSIM Score, PSNR Score, and Execution Time Per Pic-
ture of Four Dehazing Models

Upon examination of Figure 7, it becomes evident that
the graphical representations therein depict the contrast en-
hancement outcomes achieved by various algorithms rel-
ative to the original hazy image. Among the algorithms
evaluated, the most substantial contrast enhancement is ob-
served in the results obtained through the utilization of the
Multi-scale Retinex and DCP methods. The term “contrast
enhancement” pertains to the disparity between the mini-
mum and maximum pixel values within the image. How-
ever, when assessing the accuracy of haze removal using
the Structural Similarity Index (SSIM), it is noteworthy that
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Figure 7. Comparison: Contrast Enhancement and Haze Removal
Accuracy

the DCP method attains the highest accuracy level, measur-
ing at 80%. This achievement is further underscored by the
frequency at which such superior accuracy is consistently
observed in comparison to alternative methodologies.

DCP Fast Restoration Non Local

Multi-Scale RetinexGround TruthHazy Image

Figure 8. Visual Comparison of Single Image Dehazing Algo-
rithms

Figure 8 shows the individualized foggy representation
alongside the ground truth. and compare the output of the
four individual image dehazing algorithms on the same im-
age. The visualization shows us which luminance, hue, and
saturation values are most significantly shown on DCP com-
pared to others.

4.3. Detection Using YOLOv8

We utilize a custom dataset comprising over 2,754 im-
ages, specifically focusing on hazy weather conditions. De-
hazing of the images is executed using the DCP algorithm,
followed by meticulous data annotation involving the label-
ing of each LP within every image. This dataset is sub-
sequently transformed into YOLO 1.1 format, with anno-
tated images stored as text files, each bounding box rep-
resented by five parameters signifying class, center, width,
and height.

The model is trained using the Ultralytics library, specif-
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ically the nano version of YOLOv8. The training configu-
rations, encompassing class names, file paths, training set-
tings, and validation datasets, are defined within a YAML
file. The model effectively detects and localizes all vehicles
within the images, denoted by the red bounding boxes. Sub-
sequently, the model undergoes rigorous testing with new
data, unequivocally showcasing the superior performance
of the YOLOv8 object identification model in detecting and
localizing objects within images.

In the experimental phase, five distinct models are em-
ployed to identify LPs. The initial iteration of YOLO in-
volved bounding box detection to discern licensed con-
tent, with multiple YOLO variants implemented on separate
backbones. These YOLO iterations encompass v8n, v8m,
v5n, and v5m. Notably, in terms of parameters and floating-
point operations per second, YOLOv8m exhibit twice the
computational potency of YOLOv8n. For YOLOv8m, we
use CSPdarknet50 as the backbone and 100 epochs to train
our dataset for detection. For other models, optimal param-
eters have been used, which may outperform.

A comprehensive evaluation is conducted on 15% of
the dataset images following a predefined training and val-
idation period. Results indicate that YOLOv8m achieves
the highest accuracy at 0.985, a commendable F1 score
of 0.96, a recall confidence of 0.98, and precision at
1.00. Specifically, YOLOv8m demonstrates an accuracy
of 0.985 and a recall rate of 0.98 at a confidence thresh-
old of 0.430, surpassing the performance of YOLOv5n and
YOLOv5m, which achieved 0.971 and 0.982, respectively,
and YOLOv8n with a score of 0.942. The hyperparameters
for YOLO8m are - patience = 50, batch size = 16, learning
rate initial = 0.01, and learning rate final = 0.01. Since we
have an adequate amount of samples and our main contri-
bution is in the form of data pre-processing, we skip the use
of augmentation.

Detection
Models

Accuracy F1
Score

Precision
Score

Recall
Score

YOLOv8m 0.985 0.96 1.00 0.98
YOLOv5n 0.971 0.96 1.00 0.98
YOLOv8n 0.942 0.94 1.00 0.98
YOLOv5m 0.982 0.96 1.00 0.99

Table 2. Performance Metrics of Detection Models

5. Recognition of Character Using EasyOCR
The text outlines the procedure for configuring an OCR

reader for Bengali text recognition via EasyOCR. It in-
corporates object detection through the deployment of
YOLOv8, which identifies objects within designated im-
ages. When an object is detected, the corresponding Re-
gion of Interest (ROI), typically an LP, is extracted. Sub-

sequently, OCR analysis is executed on these cropped im-
ages, primarily containing LPs. EasyOCR supports over 70
languages and many fonts and text styles. Fast and real-
time, EasyOCR processes massive photo volumes. Its in-
terface is easy to integrate into Python apps [12]. Easy-
OCR excels at OCR benchmarks. The OCR outcomes are
managed through the extraction of recognized text from the
cropped images. The process includes tracking total confi-
dence scores and character counts for the subsequent calcu-
lation of an average confidence score, computed by dividing
the cumulative confidence score by the count of recognized
characters.

Models Average confidence
YOLOv5m 0.6648
YOLOv8n 0.6551
YOLOv5n 0.6497
YOLOv8m 0.6843

Table 3. EasyOCR Average Confidence Score in Different Models

Figure 9. OCR Recognition: True vs. False

EasyOCR is able to identify characters in 2237 out of a
total of 2754 photos (81.23%). EasyOCR demonstrates a
favorable ability to accurately detect most individual char-
acters; however, when considered collectively, its perfor-
mance exhibits a range from lower to moderate proficiency.
As illustrated in Figure 9, instances of both true positives
and false positives in EasyOCR recognition are evident.
Notably, an observed advantage is that an increase in image
enhancement through the application of DCP corresponds
to improved OCR capabilities.

Limitation. Limitations arise when dealing with low-
resolution images, contributing to reduced accuracy. These
limitations may stem from factors such as 1) inadequate im-
age resolution; 2) attachment of obstructions to the number
plate; 3) character discoloration; 4) color matching between
the plate and characters; and 5) the presence of the BRTA
seal.

6. Discussion
To mitigate haze in the images, several algorithms, in-

cluding Multi-Scale Retinex, Non-Local Image Dehazing,
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Fast Visibility Restoration, and DCP, are employed. No-
tably, the DCP method outperforms other models in terms
of SSIM and PSNR, indicating a higher degree of structural
and color similarity between the enhanced images and the
ground truth images, compared to alternative approaches.

Several factors contribute to the superior performance
of DCP. Firstly, the dark channel effectively encapsulates
the depth of haze within the image, in contrast to Multi-
Scale Retinex, which focuses on luminance and color. The
conversion of illumination components from Retinex into
grayscale images diminishes its PSNR and SSIM values. In
the case of Fast Visibility Restoration, color alterations re-
sult from the conversion from RGB to LAB color space.
Conversely, in Non-Local Image Dehazing, reliance on the
transmission map impacts its performance. DCP, on the
other hand, employs Laplace Matting for image restora-
tion, while Non-Local Image Dehazing involves refinement,
which results in a loss of structural information and satura-
tion [35].
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Figure 10. SSIM and PSNR Score of All Models

The superior performance of YOLOv8m over
YOLOv8n, YOLOv5m, and YOLOv5n, particularly
with the CSPDarknet50 backbone, can be attributed to
several factors. Notable enhancements, including the
introduction of anchor box creation, a refined loss function,
and the incorporation of the Spatial Pyramid Pooling (SPP)
module, are distinctive features introduced in YOLOv8.
These advancements likely conferred advantages to
YOLOv8m, contributing to its superior performance.

Additionally, YOLOv8m benefits from a more exten-

sive and diversified training dataset compared to YOLOv8n,
YOLOv5m, and YOLOv5n. This broader dataset facilitates
a deeper understanding of the surrounding environment and
the ability to generalize from new information. Further-
more, the superior hyper-parameter settings of YOLOv8m
relative to v8n, v5m, and v5n likely play a pivotal role in
its heightened performance. It is also noteworthy that the
adoption of the novel CSPDarknet50 backbone architec-
ture in YOLOv8m potentially confers a performance ad-
vantage over its counterparts, YOLOv8n, YOLOv5m, and
YOLOv5n.

7. Conclusion and Future Work
In the research, we present a novel approach to Auto-

matic License Plate Detection (ALPD) tailored for chal-
lenging foggy conditions, utilizing the Dark Channel Prior
(DCP) dehazing technique combined with the advanced
YOLOv8 object detection model. This methodology is
specifically designed to improve the detection and recog-
nition of Bangla car plates, a language often overlooked in
digital text complexity due to its low-resource status. The
DCP algorithm significantly enhances image clarity by ef-
fectively reducing fog, a critical step in ensuring the vis-
ibility and accuracy of license plate detection. YOLOv8
provides a highly effective means of identifying Bangla li-
cense plates from the dehazed images. This approach has
proven exceptionally effective, achieving an impressive li-
cense plate identification accuracy of 98.5%.

Following the detection process, Optical Character
Recognition (OCR) technology is employed to decipher
and extract text from the license plates, achieving a con-
fidence score of 68.43%. Incorporating this kind of tech-
nologies into multimedia-cloud storage [20, 21, 23, 24], es-
pecially within a resource-constrained environment not only
advances the domains of transportation safety and law en-
forcement in the developing countries but also holds signif-
icant importance in bolstering the safety of vehicle passen-
gers. This concern is particularly noticeable in Bangladeshi
cities, as reported by a recent study [3].

Looking forward, the research aims to extend its focus to
Hindi, another language with limited digital resources. Our
future endeavors will concentrate on refining image qual-
ity through techniques like contrast-limited Adaptive His-
togram Equalization (CLAHE) and exploring high-contrast
black-and-white imaging. Additionally, we aim to improve
detection capabilities using models like DETR and to re-
solve challenges associated with OCR, particularly in read-
ing handwritten text and deciphering serial scrambling. A
particular emphasis will be placed on optimizing ALPD for
low-light and nighttime conditions, addressing both image
quality and object detection challenges, thereby broadening
the applicability and reliability of our proposed method in
diverse and challenging driving environments.
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