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Abstract

In computer graphics, point clouds from laser scanning

devices are difficult to render into photo-realistic images

due to lack of information they carry about color, normal,

lighting, and connection between points. Rendering a point

cloud after surface mesh reconstruction generally results

into poor image quality with many noticeable artifacts. In

this paper, we propose a conditional generative adversarial

network that directly renders a point cloud given the az-

imuth and elevation angles of camera viewpoint. The pro-

posed method, called pc2pix, renders point clouds into ob-

jects with higher class similarity with the ground truth as

compared to images from surface reconstruction. pc2pix is

also significantly faster, more robust to noise and can oper-

ate on a lower number of points. The code is available at:

https://github.com/roatienza/pc2pix.

1. Introduction

A point cloud is a set of points with x, y, and z compo-

nents representing spatial positions relative to a coordinate

system. In laser scanning devices such as LIDAR or Kinect,

each point is the intersection where the laser strikes the sur-

face of an object. Rendering a point cloud into an image

enables us to take advantage of many computer vision algo-

rithms for analysis.

In computer graphics, a point cloud can be rendered

given its consistent polygonal 3D model (mesh) which can

be created after surface reconstruction. However, surface

reconstruction of point clouds is itself a very hard problem

[27] and not completely solved. Berger et al. [3] provided

a comprehensive analysis of state of the art in surface re-

construction from point clouds. The algorithms impose a

strong prior such as volumetric smoothing [31], structural

repetition [36], part composition [30], and polygonal sur-

face fitting [23].

Performing surface reconstruction from point clouds

generated by laser scanning devices presents some unique

problems. In particular, unlike in multi-view stereo point

Figure 1. Top: Point cloud (original number of points, down sam-

pled and noised), Middle: Rendering after surface reconstruction,

Bottom: Rendering by pc2pix.

clouds, there is no information on color and normal of each

point that can guide the reconstruction process. Point clouds

generated by scanning devices can be sparse, noisy, and

may contain outliers. Furthermore, figuring out the con-

nection between points or edges is a difficult problem.

Recently, generative adversarial networks (GANs) ex-

hibited a remarkable performance in synthesizing high res-

olution realistic images from latent space. Inspired by these

results, we theorize that a GAN can render point clouds. In

this paper, we propose a conditional GAN called pc2pix.

Our work is closely related to points2pix [19] which was

developed at the same time as pc2pix. The main difference

is pc2pix is built on the better performing auxiliary condi-

tional GAN (ACGAN) [24]. ACGAN forces the discrimina-

tor to recover the conditional input. As a result, the genera-

tor produces images with higher scores. Another difference

is pc2pix hallucinates color based on the object statistics in

the given dataset. points2pix relies on an additional back-

ground texture input to propose the color of the rendered

object.

To illustrate rendering, Figure 1 shows a point cloud of a

chair object from ShapeNet [6], the image outputs after sur-

face reconstruction and pc2pix. The point cloud is centered
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at the origin of a sphere with radius 1.0. From the original

number of 2048 points, the point cloud was down sampled

to 1024 and 512 points. We also experimented on adding

Gaussian noise with µ = 0 and σ = 0.05 and 0.1.

For the surface reconstruction, we used the ball-pivoting

algorithm (BPA) after point normal estimation [4]. Af-

ter mesh surface reconstruction, additional surface refine-

ment techniques such as holes closing and marching cubes

(APSS) [18, 9] were applied. From this point, we will call

this ensemble of algorithms surface reconstruction or SR.

We used Blender 1 and MeshLab 2 for SR.

Figure 1 demonstrates the robustness of pc2pix when the

point cloud is subjected to down sampling and noise. The

rendered image is also smoother and has less visual artifacts

compared to the output after SR. We can also observe how

rendering after SR degrades with down sampling and noise.

In summary, our contributions are as follows:

• We present a model, pc2pix, that directly renders point

clouds. pc2pix skips surface reconstruction by infer-

ring the image from a given point cloud and camera

viewpoint angles. pc2pix rendering process is fast, and

robust to noise and down sampling of point clouds.

The generated images are also of higher visual qual-

ity.

• pc2pix can navigate the point cloud encoder latent

space. Simple arithmetic operations in the latent space

can also be performed. These result into new point

cloud configurations that have not been observed be-

fore and can be rendered into images by pc2pix.

2. Background

Most 3D data acquisition devices generate point clouds

which are memory efficient continuous spatial data. The

problem is point clouds can not be easily converted to

meshes for rendering purposes to due to lack of informa-

tion about normal and interconnection between points to

form graph vertices. In this paper, we propose to address

the problem of directly rendering point clouds by using a

generative model to infer the image given the camera view-

point angles.

Recently, generative models demonstrated a remarkable

ability to synthesize high-resolution realistic images from

latent space: ProGAN [16], SNGAN [21], SAGAN [34]

and BigGAN [5]. These networks recommended improve-

ments in training and network configuration on the original

GAN [8] and its implementation using deep convolutional

neural networks, DCGAN [26]. Most of the tricks are built

upon improving training stability that impose 1-Lipschitz

1https://www.blender.org
2http://www.meshlab.net

constraint [2] and gradient penalty [10] on the discrimina-

tor weights.

A GAN is made of two networks, generator and discrimi-

nator. The concatenation of these two networks is called an

adversarial network. GANs find the equilibrium by alter-

nately training the discriminator and generator to minimize

their respective loss functions, Eq. 1 and 2 [8]:

L(D) = −Ex logD(x)− Ez log(1−D(G(z))) (1)

L(G) = −Ez logD(G(z)) (2)

where z ∈ R
dz is the latent code drawn from distribution

N (0, 1) or U(−1, 1).

We can force GANs to generate an image with specific

attributes. CGAN [20], ACGAN[24], and cGANs[22] gen-

erate images given a specific label or discrete-valued side

information. For example, ACGAN forces the discrimina-

tor to reconstruct the side information using an auxiliary

network. The ACGAN discriminator and generator loss

functions are shown in Eq. 3 and 4:

L(D) = −Ex logD(x|y)− Ez log(1−D(G(z|y)))

− Ex logP(c|x)− Ez logP(c|G(z|y)) (3)

L(G) = −Ez logD(G(z|y)) − Ez logP(c|G(z|y)) (4)

where y is the side information (e.g. class). P(c|·) is the

predicted class conditional probability. Related to ACGAN

is cGANs which uses a projection layer in the discrimina-

tor for improved generator performance. However, the loss

functions of ACGAN are more transparent and interpretable

than cGANs.

GANs that perform image to image translation such as

pix2pix [14] and CycleGAN [37] are not suitable for render-

ing since point clouds of two different objects can have the

same appearance on certain viewpoints resulting to ambi-

guity. For example, the point clouds of two different chairs

may appear indistinguishable from the side view.

Following the recommendations made by the large-scale

analysis of state of the art GANs [17] on losses, architec-

ture, normalization, and regularization, pc2pix builds on

SNGAN. To condition the image to generate from a point

cloud, we borrow the concept of side information and re-

construction from ACGAN. We use ResNet [11, 12] archi-

tecture on both generator and discriminator. Spectral nor-

malization is applied on the discriminator. Batch normal-

ization is used only on the generator.

In the following sub sections, the state of the art gener-

ator evaluation metrics are put in the context of rendering

point clouds.
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Figure 2. pc2pix is a conditional GAN. The point cloud is encoded into a low-dimensional code. The side information is made of point

cloud code and normalized azimuth and elevation angles of camera viewpoint. The side information is recovered in the discriminator

network.

2.1. Image Similarity

Image similarity could be a good measure of the perfor-

mance of a generator for rendering point clouds. Given the

expected image as rendered from the CAD model of an ob-

ject, the similarity with the images generated by surface re-

construction rendering and generator can be obtained. Gen-

erally, the higher the similarity, the better.

SSIM [32] is an established measure for measuring sim-

ilarity between two images. Other measures of image simi-

larity include MS-SSIM [33], CW-SSIM [29], and Percep-

tual Similarity [35]. SSIM breaks down the similarity mea-

sure into three independent components with equal weights:

1) Luminance, 2) Contrast, and 3) Structure. Luminance is

a measure of image intensity due to illumination and re-

flectance of the scene. Contrast is also a measure of inten-

sity but after subtracting the mean intensity from the image.

Structural information is the structure of the objects in the

scene independent of the average luminance and contrast.

Given that point clouds have no color and intensity infor-

mation, we argue that the most important component for

our purposes is structure since it directly compares inferred

object geometry in the scene.

2.2. Frèchet Inception Distance

Inception Score (IS) was proposed by [28] to measure

the performance of a generator. The main criticism against

IS is it is not a proper measure of distance [17]. It is

also challenging to use IS for measuring image similarity

to benchmark rendering algorithms.

Frèchet Inception Distance (FID) [13] proposes to ad-

dress the concerns on IS. In FID, the features of generated

and real samples are projected on an Inception V3 network

layer. Assuming the features can be modelled by multivari-

ate Gaussians, Xr = N (µr,Σr) and Xg = N (µg,Σg) for

real and generated feature distributions respectively:

FID = ‖µr − µg‖
2
+ Tr(Σr +Σg − 2(ΣrΣg)

1

2 ) (5)

The lower the FID, the closer is the generated samples

to the real samples. The proponent of FID argues that FID

is closer to human judgment. Furthermore, the presence of

noise and artifacts in the image reduces the FID and con-

sequently, the similarity. Because of these, FID is a good

performance metric of the rendering algorithm.

3. Generative Rendering

Figure 2 shows pc2pix. We implement a ResNet archi-

tecture on both generator G and discriminator D. The side

information is reconstructed from the discriminator via aux-

iliary networks Aρ, Aα, and Aβ where ρ is point cloud la-

tent code, α is the azimuth angle, and β is the elevation

angle. Conditioning the generator to use side information

enables it to generate an image that mimics the rendering

process. pc2pix discriminator and generator loss functions

are shown in Eq. 6 and 7:

L(D) = −Ex logD(x|ρ, α, β)

− Ez log(1−D(G(z|ρ, α, β)))

+
3

∑

i=1

{

ExR(ci|x) + EzR(ci|G(z|ρ, α, β))
}

(6)

L(G) = −Ez logD(G(z|ρ, α, β))

+

3
∑

i=1

EzR(ci|G(z|ρ, α, β)) (7)

where c1 = ρ, c2 = α, and c3 = β. R(ci|·) =
− logP(ci|·). R(ci|·) can be interpreted as a reconstruc-

tion error. In our experiments, the distance of the camera

from the origin of the point cloud coordinate system is kept

constant (i.e. the camera is moved along the surface of a

sphere with a constant radius).

3.1. Point Cloud Autoencoder

One of the inputs to pc2pix is the raw point cloud with

dimensions N × 3 where N is the number of points and

the value 3 refers to the x, y, and z coordinates. This is
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Figure 3. Examples of point cloud rendering by pc2pix and surface reconstruction on chair dataset.

Figure 4. Examples of point cloud rendering by pc2pix and surface reconstruction on 13 classes.

Table 1. pc2pix generator. ResBlock is a ResNet block with

Batch Normalization (BN).

GENERATOR LAYERS

z ∈ R
128

∼ U(−1, 1), ρ ∈ R
d, α ∈ R

1, β ∈ R
1

x = Concat(z, ρ, α, β)
x = Dense(x, 4 × 4 × 1024, ReLU)

x = Reshape(x, (4, 4, 1024))
x = ResBlock(x, (4, 4, 1024) → (8, 8, 1024))
x = ResBlock(x, (8, 8, 1024) → (16, 16, 512))
x = ResBlock(x, (16, 16, 512) → (32, 32, 256))
x = ResBlock(x, (32, 32, 256) → (64, 64, 128))
x = ResBlock(x, (64, 64, 128) → (128, 128, 64))

x = BN − ReLU(x)
x = Conv2D(x, (128, 128, 64) → (128, 128, 3), tanh)

x ∈ R
128×128×3

encoded into a low-dimensional code ρ ∈ R
d by E. We im-

plemented improvements on the base PointNet [25] and l-

GAN [1] autoencoder using wide 1D convolution with skip

connections. After training, the encoder weights are frozen

and used in pc2pix to generate point cloud latent code vec-

tors.

3.2. Rendering GAN

The GAN architecture of pc2pix is shown in Tables 1

and 2. Both generator and discriminator use ResNet blocks.

Table 2. pc2pix discriminator. ResBlockSN has no BN but uses

Spectral Normalization (SN). DenseSN is Dense with SN.

DISCRIMINATOR LAYERS

x ∈ R
128×128×3

x = ResBlockSN(x, (128, 128, 3) → 64, 64, 64))
x = ResBlockSN(x, (64, 64, 64) → (32, 32, 128))
x = ResBlockSN(x, (32, 32, 128) → (16, 16, 256))
x = ResBlockSN(x, (16, 16, 256) → (8, 8, 512))

ρ = Flatten(x)
ρ = DenseSN(ρ, 256, ReLU)
ρ = DenseSN(ρ, 1024, ReLU)
ρ = DenseSN(ρ, 1024, ReLU)
ρ = DenseSN(ρ, 1024, ReLU)

ρ = DenseSN(ρ, d, linear) ∈ R
d

x = ResBlockSN(x, (8, 8, 512) → (4, 4, 1024))
x = ResBlockSN(x, (4, 4, 1024) → (4, 4, 1024))

x = ReLU(x)
x = GlobalSumPooling2D(x)

preal = DenseSN(x, 1, sigmoid) ∈ R
1

α = DenseSN(x, 1, sigmoid) ∈ R
1

β = DenseSN(x, 1, sigmoid) ∈ R
1

Only the generator uses batch normalization while spectral

normalization helps to stabilize the discriminator training.

We generalize ACGAN to include continuous side informa-

tion (ρ, α, β) as conditioning inputs to the generator. The

side information is recovered using auxiliary networks.

We use binary cross entropy loss for the discriminator
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Table 3. SSIM and its components. SSIM is against rendered chairs using ShapeNet CAD model. The closer to 1.0, the better.

2048 PTS 1024 PTS 512 PTS 2048 PTS + N (0,0.05) 2048 PTS + N (0,0.1)

METRIC SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX

SSIM 0.70 0.64 0.67 0.64 0.63 0.64 0.46 0.63 0.30 0.63

LUMINANCE 0.95 0.94 0.95 0.94 0.94 0.94 0.92 0.94 0.88 0.94

CONTRAST 0.87 0.79 0.85 0.79 0.82 0.79 0.69 0.79 0.53 0.79

STRUCTURE 0.77 0.77 0.75 0.77 0.73 0.78 0.65 0.77 0.65 0.77

Table 4. FID scores of rendered chairs. FID is measured against rendered chairs using ShapeNet CAD model. The lower, the better.

2048 PTS 1024 PTS 512 PTS 2048 PTS + N (0,0.05) 2048 PTS + N (0,0.1)

METRIC SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX

FID 94.0 31.5 133.6 34.0 183.8 36.7 293.0 33.0 294.2 39.0

output and MSE for the point cloud auxiliary network. The

normalized azimuth and elevation angles use relative angu-

lar error Lθ = atan2 sin δθ
cos δθ

, where δθ = θgt − θpred and

θ = α, β. The training optimizer is Adam with learning

rate 1e − 4 and 2e − 4 for the generator and discriminator

respectively. β1 = 0.5 and β2 = 0.999. The discriminator

and generator are alternately trained. The batch size is 32.

4. Experimental Evaluation

In our experiment, we used approximately 44k CAD

models belonging to 13 classes from the ShapeNet dataset

[6]. To generate the point cloud, each object was axis

aligned and centered around a unit sphere. The surface was

uniformly sampled for N = 2048 points [1]. We used the

train-val-test split and rendering of CAD models made by

[15]. Twenty 128× 128 pixels RGB images were rendered

after positioning the camera on random azimuth and ele-

vation angles. The azimuth range is from −180◦ to +180◦

while the elevation range is from −40◦ to +40◦. Each point

cloud can be rendered at the average of 0.02sec using pc2pix

and 0.18sec after SR on an NVIDIA GTX 1060. pc2pix is

9x faster than rendering after SR.

4.1. Chair Dataset

Our initial evaluation involved training pc2pix on a sin-

gle class. We chose chair given its advantage in terms

of diversity and sample size. The autoencoder with 32-

dim latent code was trained for 30 epochs by optimizing

the Chamfer Distance loss [7]. Afterward, the conditional

GAN of pc2pix was trained for 120 epochs (around 4 days

on NVIDIA GTX 1080Ti) using the side information from

the encoder and azimuth and elevation angles of the camera

viewpoint. The performance evaluation was done on the test

split.

Figure 3 shows sample rendered images after SR and

using pc2pix. For reference, we also included the point

cloud oriented on a given camera viewpoint and the ground

truth rendered image. Qualitatively, we can observe the

advantages of pc2pix in terms of similarity and robustness

against down sampling and noise. There are many instances

wherein the rendered images after SR are not recognizable

(e.g. 1-seater sofa).

As shown in Table 3, in terms of SSIM structure com-

ponent, pc2pix has the same performance as the render af-

ter SR. However, pc2pix remains robust against down sam-

pling and presence of noise. The luminance and contrast

are highly arguable measures of similarity in the context of

rendering of point clouds without color and normal infor-

mation.

Table 4 shows the similarity measure of rendered image

versus ground truth using FID. pc2pix has a significant per-

formance advantage compared to rendering after SR. Sim-

ilar to its qualitative performance, pc2pix is robust against

down sampling and noise.

4.2. Multiple Classes Dataset

After validating pc2pix on chair dataset, we trained the

point cloud autoencoder with 512-dim latent code and ren-

dering GAN on all 13 classes. Figure 4 shows the point

cloud and rendered images from ground truth CAD model,

SR, and pc2pix. Generally the images produced by pc2pix

have a much better visual quality in terms of smoothness

and texture. On some objects, even the regularity in the pat-

tern of color is predicted correctly. For example, cars have

uniform body color, tinted windows and windshields, and

black tires.

The visual quality is reflected on the FID values as

shown on Table 5. pc2pix has a significantly higher FID

on all classes except on rifle and lamp categories. On rifle,

the small difference on FID may be considered not signifi-

cant. Both scores are low. However, pc2pix has poor per-

formance on lamp category. This could be attributed to the

small sample size (1.8k) and significant design variations

(e.g. chandelier, study lamp, beside lamp, lamp post, etc) in

the lamp objects. In contrast for example to cars with many

samples (6k) and have very little intricate design variations

(e.g. sedan, SUV, van, and truck). For the case of chair

object, the FID has 2.7 improvement in value when all 13

classes were used. This may be attributed to additional fea-

tures learned from similar structures like sofa and table.
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Table 5. FID scores of 13 object classes from ShapeNet. The lower, the better.

AIRPLANE BENCH CABINET CAR CHAIR DISPLAY LAMP

SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX

54.6 13.6 93.0 43.6 188.8 57.9 203.1 40.0 94.0 28.8 148.4 121.7 51.6 112.1

LOUDSPEAKER RIFLE SOFA TABLE TELEPHONE VESSEL AVERAGE

SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX SR PC2PIX

193.6 78.2 26.3 29.0 135.6 41.8 127.2 39.7 103.7 94.4 67.4 43.0 114.4 57.2

Figure 5. Rendering interpolated point clouds.

Figure 6. Rendering latent code arithmetic operation.

Another observation that can be made on outputs of the

two rendering algorithms is that SR can generate good qual-

ity images whenever the point clouds are dense. This can

be seen on visual quality of airplane, rifle, and lamp. pc2pix

outputs improve with quantity of the training data. It suffers

when there is dataset imbalance.

We experimented on latent interpolation on point cloud

code. Figure 5 shows interpolation of point cloud for both

single and two classes of objects. For example, we can in-

terpolate between two chair designs and we can see how

point clouds vary from left to right. Figure 5 shows that for

each point cloud interpolation, pc2pix renders a meaningful

image of a chair. Between two different objects, we can

observe how the point cloud and its corresponding rendered

image morph from sofa to car.

Arithmetic operation in latent space of point cloud is il-

lustrated in Figure 6. Subtracting two point cloud latent

code vectors and adding to a third results into another mean-

ingful point cloud with some features added or removed.

For example, subtracting a chair with four legs from a chair

with a single leg but with a wide base support structure and

adding to another chair with four thinner legs results into a

chair with a single leg and four thin radial supports struc-

ture. The second example in Figure 6 shows that subtract-

ing a sofa from a chair and adding the difference to a table

results into a another point cloud that looks like a hybrid

sofa-chair object.

5. Conclusion

Rendering point clouds is a challenging problem. We

proposed a conditional GAN pc2pix to directly render point

clouds. The results showed significant performance im-

provement compared to rendering point clouds after SR.

pc2pix can also perform interpolation and arithmetic oper-

ation in point cloud latent space to synthesize new point

clouds that can be directly rendered into images.
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[9] Gaël Guennebaud and Markus Gross. Algebraic point set

surfaces. In ACM Transactions on Graphics (TOG), vol-

ume 26, page 23. ACM, 2007.

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in Neural Information Pro-

cessing Systems, pages 5767–5777, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In European

Conference on Computer Vision, pages 630–645. Springer,

2016.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Advances in Neural Information Processing Sys-

tems, pages 6626–6637, 2017.

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. CVPR, 2017.
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