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Abstract

Reconstructing accurate 3D shapes of human faces from

a single 2D image is a highly challenging Computer Vision

problem that was studied for decades. Statistical model-

ing techniques, such as the 3D Morphable Model (3DMM),

have been widely employed because of their capability of

reconstructing a plausible model grounding on the prior

knowledge of the facial shape. However, most of them de-

rive a and smooth approximation of the real shape, without

accounting for the surface details. In this work, we pro-

pose an approach based on a Conditional Generative Ad-

versarial Network (CGAN) for refining the reconstruction

provided by a 3DMM. The latter is represented as a three-

channel image, where the pixel intensities represent, respec-

tively, the depth and the azimuth and elevation angles of the

surface normals. The network architecture is an encoder-

decoder, which is trained progressively, starting from the

lower-resolution layers; this technique allows a more sta-

ble training, which led to the generation of high quality

outputs even when high-resolution images are fed during

the training. Experimental results show that our method

is able to produce detailed realistic reconstructions and ob-

tain lower errors with respect to the 3DMM. Finally, a com-

parison with a state-of-the-art solution evidences competi-

tive performance and a clear improvement in the quality of

the generated models.

1. Introduction

The idea of deriving 3D information from 2D images us-

ing computer vision techniques is a research topic with a

quite long tradition that dates back to ’80 [18]. However,

estimating the 3D geometry from single or multiple images

under general conditions, where no a priori knowledge is
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available about the imaged scene and the object of interest

is a very challenging task. Hence, to make the problem solv-

able to some extent, priors are usually assumed. Face recon-

struction is a particular case where such solution showed its

viability. In this case, a 3D Morphable Model (3DMM) is

used as a shape prior of the face; this statistical model lim-

its the shape of the reconstructed face to the combination,

according to a set of parameters, of an average face model

and some deformation components. However, the results of

such reconstructions appear generally over-smoothed, lack-

ing of fine details.

To move a step further from the above solutions, a

promising idea is that of first deriving a smooth approxi-

mation of the face shape, then add local details to it. A

work that followed this idea, while keeping general in the

assumptions, has been proposed in [28]. In that work, a

foundation shape is generated by a deep learning based

3DMM [27], which is then refined by adding details gen-

erated by an encoder-decoder network. This idea brings

quite naturally to the use of Generative Adversarial Net-

works (GANs) [9]; in the current literature of deep learning

solutions, GANs have proved their capability of generating

synthetic image data that are hardly distinguishable from

real one [1]. Thanks to this specific prerogative, they have

found successful application in tasks such as image super-

resolution [17], image enhancement [21], image restora-

tion [29], etc.

Grounding on the above considerations, in this work we

propose a coarse-to-fine approach to reconstruct a detailed

3D face model from a single image. The approach devel-

ops on the idea of first deriving an approximated 3D shape

by fitting a 3DMM to an image of the face. Then, such

shape is refined using a Conditional Generative Adversar-

ial Network (CGAN). To this end, the 3D shape is repre-

sented as a three-channel image, where the three channels

are the depth, azimuth and elevation values of the vertices of

the model. The CGAN is designed following the encoder-
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decoder paradigm, which is trained progressively starting

from the lower-resolution layers. Experimental results show

that our method is able to produce reconstructions with real-

istic details and lower reconstruction errors with respect to

the 3DMM. A comparison with a state-of-the-art solution

reveals that the proposed approach is highly competitive,

showing an evident superiority in generating detailed and

realistic reconstructions. In summary, our contributions are

as follows:

• We design an effective solution to reconstruct a realis-

tic 3D face model from a single face image;

• We model the 3D face refinement step as the prob-

lem of training, with progressive growing, an encoder-

decoder based Conditional GAN;

• We demonstrate that the 3D face obtained by using the

proposed solution better approximates a realistic face

with respect to state-of-the-art solutions.

The rest of the paper is organized as follows: in Section 2,

we summarize the closely related work on 3D face recon-

struction; in Section 3, we introduce the 3D Morphable

Shape Model and illustrate how this serves to derive train-

ing image data with depth, azimuth and elevation channels;

the GAN architecture we have designed and its training are

detailed in Section 4; experimental results are presented in

Section 5; finally, conclusions and future research directions

are sketched in Section 6.

2. Related work

In the general case, reconstructing a 3D face model from

2D images is extremely challenging so that most of the ex-

isting solutions rely on some assumptions in the form of

prior knowledge. Keeping aside methods that do not resort

to any problem simplification, and that thus result in poor

reconstructions, in the following, we briefly present the rel-

evant literature on model-based 3D face reconstruction.

Methods belonging to this category keep the assump-

tions general and use priors in the form of a prototypical

face model, thus reconstructing smooth shapes that usually

lack of fine details. The most widely recognized examples

in this category are the 3DMM based fitting methods, as

originally proposed in [2], and subsequently refined in [23].

Also these methods emphasized more the appeal of ren-

dered face images, rather than the quantitative evaluation

of the accuracy of the reconstructed face shape. Among the

3DMM variants, the most successful was proposed in [19]

that improved the 3DMM into the Basel Face Model with

higher shape and texture accuracy and less correspondence

artifacts. In [4, 3] an in-the-wild 3DMM was proposed by

combining a statistical model of shape, which describes

both identity and expression, with an in-the-wild texture

model. Some other techniques fit the 3DMM surface to

detected facial landmarks rather than to face intensities di-

rectly. These include solutions designed for videos, like

in [24, 11], and the CNN based approaches of [14, 32].

An emerging trend in this category of methods is that

of defining alternative solutions that are general but accu-

rate. In most of the cases, this is obtained by applying a re-

finement step that adds details to an initially approximated

shape; deep learning solutions are mostly used for this sec-

ond step. Following this approach, in [22] a rather shallow

network is trained on synthetic shapes with an iterative pro-

cess, and facial details are also added by training an end-

to-end system to additionally estimate shape-from-shading

(SfS). Other methods in this category used deep networks

by emphasizing more the aspect of estimating 3D shapes

from unconstrained photos [27, 6, 13, 26]. These methods

estimate shapes that are highly invariant to viewing condi-

tions, but provide only coarse surface details.

We are not aware of methods that use GANs, either con-

ditional or not, to generate detailed 3D models of the face

starting from a raw estimation of the shape geometry. How-

ever, in designing our reconstruction solution, we leveraged

on classical GAN-based methods applied to RGB images;

therefore, in the following, we refer some relevant work

that used GANs for image related tasks. GANs were first

proposed in [9], and subsequently modified in a series of

works, for improved training [25], or extended to unsuper-

vised learning as with the Deep Convolutional GANs (DC-

GANs) [21]. Since their introduction, GANs have rapidly

established as state-of-the-art solutions to improve the qual-

ity of generated 2D images in a variety of image synthe-

sis tasks. In [12] conditional GANs were investigated as

a general-purpose solution for image-to-image translation

problems. These networks not only learn the mapping from

input to output image, but also learn a loss function to train

this mapping. This was extended in [31] for learning how to

translate an image from a source domain to a target domain

in the absence of paired examples. Though the methods

above have been inspiring for our proposed solution, they

are tailored for generating 2D RGB images, while we gen-

erate a three-channel image based on depth. azimuth and el-

evation. Despite our channels are disposed according to the

same grid-like structure used for RGB images, the informa-

tion carried out by each image channel is not the same, thus

posing new and challenging problems about how to train

GANs in a robust and effective way.

3. 3D reconstruction through 3DMM

Given a face image, we first aim at estimating an ap-

proximated 3D reconstruction exploiting the 3D Morphable

Model (3DMM) technique; then, we represent the recon-

structed geometry by a three channel 2D image, where the

channels are the depth, azimuth and elevation angles of the
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surface normals of the reconstructed model. To obtain the

models, we employed two 3DMM based solutions proposed

in [7] and [27], called Dictionary Learning-3DMM (DL-

3DMM) and Deep3DMM, respectively. The first adapts the

3DMM to a face image exploiting 2D-3D facial landmark

pairs. This method can estimate the face shape fairly accu-

rately even in the presence of strong facial expressions. The

Binghamton University 3D Facial Expression dataset (BU-

3DFE) [30] was used to build the average model and learn

the deformation components. The second instead exploits a

deep CNN to regress the 3DMM parameters directly from

RGB images; this method does not model facial expressions

but it is robust to the identity i.e. different images of the

same individual generate the same parameters.

Actually, any other 3D face modeling technique could

have fit our purposes; in fact, the proposed method aims to

refine the reconstruction given as input. It thus results rather

independent from the approximated model that is provided,

and any method can be used in practice. Nonetheless, better

input reconstructions lead to more accurate refined models.

3.1. Images in depth, azimuth and elevation format

The 2D representation of the reconstruction used in this

work is inspired by the approach in [8]. Differently from

the classic gray-scale depth image, this format transforms a

3D mesh into an RGB image. The first channel contains the

depth value i.e. z coordinate of each 3D vertex; the other

two contain, respectively, the elevation (or inclination, or

polar angle) and azimuth angles of the normal vectors com-

puted at each 3D vertex, represented in spherical coordi-

nates. An example of the proposed representation based on

depth, azimuth and elevation is shown in Figure 1.

The subsequent step in the image creation is the projec-

tion of the depth, azimuth and elevation values on the im-

age plane, and rescaling of the values in the range [0, 255].
This procedure must be applied consistently both for the

coarsely reconstructed 3DMM and the ground-truth so that

the generated images are aligned. To this aim, we estimate

an orthographic projection matrix P ∈ R
2×3 from 2D and

3D landmark correspondences. The 2D landmarks, which

are detected on the RGB face images exploiting the method

of [5], are both used to fit and project the 3DMM and, in-

dependently, estimate the projection matrix for the ground-

truth model so as to account for the relative difference in

the models’ scale. The same procedure is applied for the

Deep3DMM; in this latter case, the parameters to deform

the 3DMM have been directly regressed from the RGB im-

age. Thus, the landmarks are only used to estimate the pro-

jection matrix and map the 3D model onto the image plane.

The projections are finally used to map the depth, azimuth

and elevation values on the image plane and build the three-

channel images of the 3DMM and ground-truth pair.

Figure 1. Representation of the 3D face model by a three-channel

image. For visualization purposes, the depth, azimuth and eleva-

tion channels are shown as individual images, from left to right.

4. Deep generative refinement

The reconstruction described in Section 3 is usually ob-

tained as a modification of an average, smooth, model; con-

sequently, its surface usually lacks of fine grained details.

In order to obtain such detailed reconstruction from a sin-

gle RGB face image, we employ a Conditional Genera-

tive Adversarial Network (CGAN). Differently from clas-

sic CGAN, the architecture is trained progressively as de-

scribed in [15]. Conditional GANs have been specifically

designed for image-to-image translation, and this makes

them particularly suited for our purpose. In our solution,

indeed, the generator G aims at translating the approxi-

mated reconstruction, the condition, to the target domain,

the ground-truth. The discriminator D, instead, has the ob-

jective of discriminating ground-truth images from the syn-

thetically generated ones. Formally, the training procedure

is supervised as the dataset contains paired images of the ap-

proximated model x and the correspondent detailed model y
(i.e., the ground-truth). The objective of conditional GANs

is to learn a distribution of real detailed models given input

conditions as:

min
G

max
D

E(x,y) [logD(x, y)]+Ex [log (1−D(x,G(x)))] .

(1)

In our particular case, x and y are the proposed image rep-

resentations of Section 3.1 for, respectively, the 3DMM re-

construction and the ground truth model. The proposed so-

lution is conditioned on x.

We aim to exploit the benefits of progressive growth of

GANs [15] in a conditional context. For this reason, we

design our generator as an encoder-decoder to transform a

3DMM into a high quality detailed face model. To ensure

further stability to the training of our framework, we employ

the improved version of Wasserstein GAN [10]. The set of

weights for the discriminator are learned by minimizing the

objective function:

LD = D(x, y)−D(x,G(x)) + λ(||∇x̂D(x, x̂)||2 − 1)2 ,
(2)

where x and y are, as in Eq. (1), the proposed image repre-

sentations of the 3DMM and the ground truth model, re-
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spectively, and x̂ is sampled uniformly between pairs of

points belonging to the real and the generator distribution.

Given the fact that our training is supervised, i.e., each

3DMM is paired with the relative ground-truth image, we

can define the loss for the generator as a combination of

two contributions:

LG = Lp(y,G(x)) + κLadv(G(x)) , (3)

where

Lp(y,G(x)) = ||y −G(x)||p ,

represents the pixel loss, and

Ladv(x,G(x)) = D(x,G(x)) ,

is the adversarial loss. The architectures for the components

in our conditional GAN resemble the ones in [15]. The en-

coder part of the generator and the discriminator share the

same architecture; the decoder differs from the encoder in as

much as the down-sampling layers are substituted with up-

sampling layers. We progressively train G and D starting

from 4×4 down-scaled images up to 256×256, expanding

G in both directions simultaneously, encoder and decoder,

as shown in Figure 2.

5. Experiments

We performed a set of experiments in order to assess the

validity of the proposed approach. In particular, we show

how the proposed method effectively improves upon the ap-

proximated reconstruction provided by the 3DMM; further,

we qualitatively compare our reconstruction results with the

state-of-the-art solution proposed by [12].

All the experiments have been carried out on the Face

Recognition Grand Challenge dataset (FRGC) [20]. In par-

ticular, the FRGC dataset has been split and used both for

training and for testing. The FRGC dataset includes 4,007

scans of 466 individuals acquired with frontal view from the

shoulder level, with very small pose variations. About 60%

of the faces have neutral expression, while the others show

spontaneous expressions of disgust, happiness, sadness, and

surprise. Scans are given as matrices of 3D points of size

480×640, with a binary mask indicating the valid points of

the face (about 40K on average). RGB images of the face

are also available and aligned with the matrix of 3D points.

Data Augmentation - We augmented the training data

by generating novel poses as follows: given a 3D face

model from the training set (3DMM and ground-truth

pair), we generated a random rotation matrix Rrand ∈
R

3×3, with rotation angles (yaw, pitch, roll) in the range

[±45,±20,±20], and used it to build the orthographic pro-

jection matrix P using a fixed 2D translation vector t ∈ R
2

and scale parameters matrix S ∈ R
2×3. We then used P to

project the pose-augmented models onto the image plane.
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Figure 2. Schema of the proposed CGAN framework.

This process is repeated 5 times for each 3D model, which

results in more than 14, 000 images. During training, pixel

values of each channel have been normalized in the range

[−1, 1]. To further strengthen the procedure, we randomly

crop and pad the images online during training.

Training Details - The weights of the proposed archi-

tecture are initialized using a truncated normal distribu-

tion. Each resolution in our architecture has been separately

trained for 10, 000 iterations with a batch size of 4 (e.g.,

about 3 epochs with 14, 000 training samples). We train our

networks using the Adam algorithm of [16], with a learning

rate of 10−5. We empirically found that a reasonable value

for κ of Eq. (3) is 5 ∗ 10−5.

Evaluation protocol and metric - We randomly split

the FRGC individuals into three parts; the first 2/3 are used

for training, for a total of 310 individuals; the remaining

1/3 of individuals and the relative models are used for test.

In this way, we can ensure that an identity used for test has

never been seen during the training. To quantitatively eval-

uate our approach, we employed the Mean Absolute Error

(MAE) measure computed between the ground-truth depth

image y and the estimated depth image G(x).

5.1. Results

In this section we report qualitative and quantitative re-

construction results of our approach. Table 1 reports MAE

computed with the two 3DMM models and the refined ones

with respect to the ground-truth. Evidently, our refine-

ment produces more accurate reconstructions, effectively

improving upon both the 3DMM models. This holds for all

the three channels. In Figure. 3 we also report some quali-

tative heatmaps comparing the 3DMM and refined models;

the heatmaps consistently reveal a reduced general recon-

struction error.

In order to present a more complete evaluation, we
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Table 1. Mean absolute error computed on the test set of the FRGC v2.0 dataset. Results are shown for each channel separately. The

average for the three channels is also reported.
Depth Azimuth Elevation Avg

Coarse Refined Coarse Refined Coarse Refined Coarse Refined

DL-3DMM 0.110± 0.032 0.084± 0.026 0.183± 0.029 0.151± 0.022 0.159± 0.032 0.132± 0.019 0.150± 0.031 0.122± 0.023
Deep3DMM [27] 0.133± 0.039 0.062± 0.020 0.188± 0.027 0.141± 0.023 0.162± 0.027 0.113± 0.021 0.161± 0.031 0.105± 0.022

trained a recent CGAN architecture, namely Pix2Pix [12],

to refine the approximated model considered in this work.

From an architectural point of view, it adopts the U-Net as a

generator, and it embodies a patch discriminator. We trained

Pix2Pix on our 256 × 256 training images with the default

settings for 20 epochs. Figure 4 reports some qualitative

examples; we can immediately appreciate that, compared

to our approach, the Pix2Pix method clearly introduces far

more noise in the reconstructed models. Moreover, Fig-

ure 4 (a) highlights how the proposed method is able to ef-

fectively maintain the identity-specific traits of the subject

portrayed, while Figure 4 (b) shows robustness to facial ex-

pressions, which instead wreck the Pix2Pix reconstructions.

6. Discussion and Future Work

In this work, we proposed an approach based on a Con-

ditional Generative Adversarial Network (CGAN) for refin-

ing the reconstruction of face images provided by a 3DMM.

The reconstruction is represented as an RGB image, where

the pixel intensities represent the depth, azimuth and el-

evation values of the 3D model’ vertices. We proposed

an encoder-decoder architecture, which is trained progres-

sively; this technique allowed a more stable training, which

led to the generation of pleasant images even at higher res-

olutions. However, our approach is not exempt from lim-

itations; first, if the shape of the 3DMM differs too much

with respect to the ground-truth ones, the network might

eventually overfit the data in the attempt of transforming the

shapes and thus lose its generalization capabilities or, on the

contrary, fail in generating pleasant outputs. Another limita-

tion is that if we want to change the input 3D reconstruction

model to be refined, a new instance of the network has to be

trained from scratch. Even though the training procedure

is rather fast and does not require as many images as other

architectures, we still might want to investigate if a feasible

solution to make it independent from the 3D input can be

found. Overall, we demonstrated that a progressive CGAN

can be effectively trained on distinctive image data and em-

ployed to generate highly detailed 3D surfaces from their

smoother counterparts. The solutions that have been inves-

tigated and presented in this manuscript actually represent

only a small portion of the possible alternatives, for which

there is a lot of room for improvements. As an example, we

will further investigate how to exploit the correlations that

occur between the three channels encoding surface geomet-

ric properties to our advantage.

Figure 3. Absolute error heat maps with respect to the GT models.
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