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Abstract

The increasing demand for marine monitoring calls

for robust automated systems to support researchers in

gathering information from marine ecosystems. This in-

cludes computer vision based marine organism detection

and species classification systems. Current state-of-the-art

marine vision systems are based on CNNs, which in nature

require a relatively large amount of varied training data.

In this paper we present a new publicly available underwa-

ter dataset with annotated image sequences of fish, crabs,

and starfish captured in brackish water with varying visi-

bility. The dataset is called the Brackish Dataset and it is

the first part of a planned long term monitoring of the ma-

rine species visiting the strait where the cameras are perma-

nently mounted. To the best of our knowledge, this is the first

annotated underwater image dataset captured in temperate

brackish waters. In order to obtain a baseline performance

for future reference, the YOLOv2 and YOLOv3 CNNs were

fine-tuned and tested on the Brackish Dataset.

1. Introduction

More than 70% of the Earth is covered by water and our

oceans plays a vital role for humans all around the globe. In

order to reduce declination of biodiversity and uphold sus-

tainable fisheries, it is important to keep our oceans healthy.

A necessary step towards a better understanding of marine

life and ecosystems is to monitor and analyze the impact hu-

man activities have on our waters both on a local, regional,

and international scale [28].

As underwater cameras and technology in general be-

come more accessible, automatic computer vision based

methods are being developed for efficient detection and

classification of marine animals and plants, which can be

of great aid for marine researchers in analyzing and mon-

itoring our oceans. While underwater images captured in

pure water can be handled much like regular images cap-

tured above water, other factors must be taken into account

when processing images from natural waters. The optical

properties of natural water depend on the absorption and

scattering of light. While the light scattering in pure water

only depends on the temperature and pressure, natural wa-

ters show much larger temporal and spatial variations due

to the varying content of dissolved and particulate matter.

These particles affect both scattering and absorption of light

and are often visible as noise in the images [20, 32].

Within scientific communities, it is common practice to

evaluate the performance of methods on the same dataset

to allow for fair comparison and benchmarking. However,

to be able to develop robust algorithms for, e.g., analysis of

marine life and ecosystems, the datasets need to represent

the natural variations in optical properties seen in natural

waters across the world.

To the best of our knowledge, there exists no large scale

labeled dataset of temperate coastal or estuarine environ-

ments that allows for the development of methods for de-

tecting and classifying marine species in such waters. In

particular, none of the publicly available datasets are cap-

tured in European marine environments. This is needed

to develop robust methods for all water types and marine

species, and furthermore, it is needed in order to reach the

goal of Good Environmental Status (GES), stipulated by

the European Union’s Marine Strategy Framework Direc-

tive (MSFD) [1, 11].

With this paper, we strive to accommodate this need by

releasing a publicly available dataset that has been captured

over several weeks in temperate brackish water. Hence, it

includes natural variation derived from, e.g., time of day,

weather conditions, and activities in the water. The dataset

is the first stage of a long-term marine monitoring project
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where three cameras continuously capture video of the ma-

rine life near the bottom of Limfjorden in Denmark, nine

meters below the water surface. The aim of this paper

is to present this new annotated dataset which, due to its

uniqueness, is an important addition to existing annotated

marine image datasets. Furthermore, we evaluate two ex-

isting state-of-the-art detection methods on the new dataset

and present the results as a baseline for future reference.

1.1. Contributions

• A publicly available underwater dataset1 containing

bounding box annotated sequences of images contain-

ing big fish, small fish, starfish, shrimps, jellyfish, and

crabs captured in a brackish strait with varying visibil-

ity.

• An overview of annotated underwater image datasets.

• A baseline evaluation of state-of-the-art detection

methods on the presented dataset.

An example from the proposed dataset can be seen in

Figure 1, where a frame from a sequence with a school of

small fish is presented with and without annotations.

2. Related Work

As the oceans cover everything from the dark abyssal

zone to the sunny coral reefs, the variation between under-

water datasets and their associated detection methods can

be significant. This section presents an overview of some of

the areas where computer vision algorithms have been de-

veloped to assist in the huge task of monitoring our oceans

and an overview of annotated marine image datasets.

The term marine vision will be used in the remainder of

this paper as an umbrella term covering the methods and

algorithms developed for the purpose of assisting in moni-

toring marine environments.

2.1. Marine Vision Methods

Detection and classification of fish has been addressed

by Villon et al. [42] who investigates the performance of

a traditional Support Vector Machines (SVM) classifier

trained on Histogram of Oriented Gradients (HOG) fea-

tures for classifying coral reef fish and compares it with

the performance of a fine-tuned Convolutional Neural Net-

work (CNN). Their tests show that the CNN outperforms

the traditional classification methods. The same conclusion

is reached by Salman et al. [38] who compares traditional

classification methods such as SVM, k-Nearest Neighbours

(k-NN), and Sparse Representation Classifier (SRC) with

CNN. They achieve an average classification rate of more

1https://www.kaggle.com/aalborguniversity/

brackish-dataset

(a) Frame from a sequence with a school of small fish.

(b) Same frame as above, but with annotations drawn on the

image.

Figure 1: A frame example from the proposed dataset. The

same frame is shown with and without annotations.

than 90% on the LifeCLEF14 [22] and LifeCLEF15 [23]

fish datasets using CNN and generally a significantly lower

rate using the traditional methods. Siddiqui et al. [40]

reaches state-of-the-art performance on fish species clas-

sification using a very deep CNN with a cross-layer pool-

ing approach for enhanced discriminative ability in order to

handle the problem of limited labelled training data.

Another interesting marine vision area is scallop detec-

tion which has been investigated by Dawkins and Gallager

[13]. Using multiple features and a series of cascaded Ad-

aboost classifiers, they developed one of the most prominent

scallop detection algorithms. A more recent attempt was

presented by Rasmussen et al. [34] who tested variations

of the YOLOv2 CNN trained for scallop detection. They

achieved high accuracy while being able to run in real-time

for keeping up with live recordings from an Autonomous

Underwater Vehicle (AUV).

Coral reefs are of great interest to marine biologists

worldwide but they are difficult and tedious to monitor. In

order to assist biologists, Mahmood et al. [30] fine-tuned a

VGGNet using a subset of the Benthoz-15 dataset [6] and

used it for automatically analyzing the coral coverage of

three sites in Western Australia. Another approach was in-

vestigated by Beijbom et al. [5] who achieved state-of-the-
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art performance by fusing standard reflectance images with

fluorescence images of corals in a 5 channel CNN.

2.2. Annotated Marine Image Datasets

A thing that is common for state-of-the-art detection

methods, and deep learning methods in particular, is that

they are in need of relatively large amounts of training data.

One of the most popular underwater datasets for fish de-

tection and species classification is the F4K dataset [15].

It was recorded from 10 cameras between 2010 and 2013

in Taiwan and it has been used for multiple detection and

classification algorithms [39, 38, 18, 25, 9, 42]. The F4K

dataset is large and consists of videos and images with com-

plex scenes, various marine species and lots of annotations

making it an obvious benchmark dataset. It was also used

as part of the LifeCLEF tasks [22, 23, 21].

Another large dataset is the Jamstec E-Library of Deep-

sea Images (J-EDI) [17], which consists of videos and im-

ages of deep sea organisms captured by Remotely Oper-

ated underwater Vehicles (ROV). The images of the J-EDI

dataset are annotated on an image level and have been used

to train CNNs for detection of deep sea organisms [29, 26].

Two other datasets with focus on fish are the Croatian Fish

Dataset [19] which consists of cropped images of 12 differ-

ent fish species and the QUT Fish Dataset [2] which consists

of fish images both in and out of water.

However, as already mentioned, it is not only fish that

are of interest within marine vision. Another critical field

is monitoring of benthic organisms, such as scallops and

corals. The HabCam dataset [41, 10] consists of 2.5 mil-

lions annotated images of mainly scallops, but also fish and

starfish. The images have been captured along the continen-

tal shelf off the east coast of the USA and was used in the

work presented by Dawkins and Gallager [13].

The BENTHOZ-2015 dataset [6] is a benthic dataset

recorded along the coasts of Australia and used for classify-

ing corals [30]. The Tasmania Coral Point Count [16] was

recorded in 2008 during 22 dive missions using an AUV off

the South-East coast of Tasmania and has been used for kelp

detection [31].

Other annotated coral reef datasets include the Moorea

Labeled Corals [4] which is an annotated subset of the

Moorea Labeled Corals Long Term Ecological Research

project in French Polynesia and the Eilat Fluorescence

dataset [5], which experiments with a combination of stan-

dard reflectance and fluorescence images in order to im-

prove the coral classification rate of CNNs. Both datasets

have been recorded using a custom variation of a photo-

quadrat [33].

A collection of datasets has been published for the data

challenge of the workshop ”Automated Analysis of Ma-

rine Video for Environmental Monitoring” in 2018 and

2019 [43]. These datasets include a part of the HabCam

dataset [10], as well as four other datasets, MOUSS, AFSC,

MBARI, and NWFSC and the images are annotated with

either keypoints or bounding boxes.

A table summarizing the underwater datasets can be

found in Table 1 along with the proposed dataset, named

the Brackish Dataset, which will be described in further de-

tails in Section 4.

3. Camera Setup

The setup used to capture the proposed dataset consists

of three cameras and three lights. The devices are placed in

a grid-wise manner on a stainless steel frame as illustrated

in Figure 2. However, the position and orientation of the de-

vices in the figure are not representative for the arrangement

used to capture the dataset.

Figure 2: The setup consists of a stainless steel frame with

three cameras and three lights.

The cameras use a 1/3” Sony ExView Super HAD Color

CCD imaging sensor and a 2.8 mm lens with a resolution

up to 1080×1920 pixels and a framerate up to 30 fps with

H.264 compression. The lamps are LEDs emitting light

with 1900 lumens. Each camera and light is fitted in a cylin-

drical waterproof casing, which can resist a water pressure

of approximately 10 bar. The diameter of the casing is 30

mm and the length is 128 mm.

As both the cameras and lights are placed in the same

type of waterproof casing the setup is easily configurable,

since all six positions in the steel frame can hold either

lights or cameras. The design of the steel frame allows

divers to adjust the orientation of lights and cameras un-

der water. This is illustrated in Figure 3, where knob1 can

be pulled in order to adjust the device vertically and knob2,

hidden beneath the mount, can be pulled to adjust it hori-

zontally. The two bolts on top of the mount can be loosened

in order to change or replace a device.

The setup is permanently mounted on a pillar of the

Limfjords-bridge connecting Aalborg and Nørresundby in
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Environment Recording type Visibility Sensor Images Labeling

F4K - Complex [24] Reef Stationary Varying RGB 14 videos Bounding box

F4K - Species [8] Reef Stationary Varying RGB 27,370 Masks

F4K - Trajectories [7] Reef Stationary Varying RGB 93 videos Bounding box

J-EDI [17] Deep sea ROV Clear RGB 1,500,000 Image level

Croatian Fish Dataset [19] - Various Varying RGB 794 Bounding box

QUT Fish Dataset [2] - Various Clear RGB 3,960 Bounding box

HabCam [10] Shelf sea Towing Clear Stereo 2,500,000 Bounding box

Benthoz-15 [6] Reef AUV Clear Stereo 9,874 Points

Tasmania Coral Point Count [16] Reef AUV Clear Stereo 1,258 Points

The Moorea Labeled Corals [4] Reef Photoquadrat Clear RGB 2,055 Points

Eilat Fluorescence [5] Reef Photoquadrat Clear RGB 212 Points

MOUSS [43] Ocean floor Stationary Clear Gray 159 Bounding box

AFSC [43] Ocean ROV Clear RGB 571 Points

MBARI [43] Ocean floor - Clear RGB 666 Bounding box

NWFSC [43] Ocean floor ROV Clear RGB 123 Points

The Brackish Dataset (Proposed) Brackish strait Stationary Varying RGB 14,518 Bounding box

Table 1: An overview of annotated underwater image datasets.

Figure 3: Adjustable mount for cameras and lights.

Denmark, at a depth of around nine meters. A barrier of

boulders are placed around the pillar for protection, but it

also functions as a habitat for various marine species. The

setup is therefore placed above this barrier as illustrated in

Figure 4, which is not to scale. The barrier is 6 meters high

and slopes down towards the fairway between the pillars.

All cameras and lights are connected with cables which

provides power and connects the devices to a Digital Video

Recorder (DVR) system placed on the bridge. The DVR

system is connected to the Internet, allowing for remote real

time control and streaming from the cameras.

4. Dataset

Video data from the three cameras have been recorded

since February 2019, currently resulting in more than 4,000

hours of video data. As the turbidity of the water and the

activity from marine animals vary to a large degree, it is

water surface

bridge pillar

9m 15m

pipes

ice barrier

camera setup

boulder barrier

Figure 4: Drawing of the bridge pillar, boulder barrier, and

the placement of the camera setup. The drawing is not to

scale.

only a fraction of the recordings that is of interest seen from

a computer vision perspective. A varied subset of 89 video

clips captured between February 20 and March 25 has there-

fore been handpicked to be the foundation of the proposed

dataset. All the chosen clips were captured from a single

camera placed in the center position in the bottom of the

frame, pointing towards the seafloor. One light, located di-

rectly to the left of the camera, seen from the camera’s point

of view, has been turned on at all times. The light is oriented

towards the seafloor, but away from the camera’s field of

view in order to reduce backscatter.

The videos were categorized based on the main activity

of the respective video and subsequently manually anno-

tated with a bounding box annotation tool [3] resulting in a

total of 14,518 frames with 25,613 annotations. The distri-

bution of the annotations can be seen in Table 2 where the
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number of annotations and amount of videos, where each

class occur, are presented. It should be noted that multiple

classes can occur in the same video.

Class Annotations Video Occurrences

Big fish 3,241 30

Crab 6,538 29

Jellyfish 637 12

Shrimp 548 8

Small fish 9,556 26

Starfish 5,093 30

Table 2: Overview of the share of annotations and amount

of video occurrences for the six respective classes.

Professor Niels Madsen, who is a marine biologist with

expert knowledge on the local marine environment, has in-

spected the videos in order to help identify the various types

of marine animals. However, due to the turbid record-

ings, and the relatively similar visual appearance of multiple

fish species, it is extremely difficult to determine the exact

species. The fish have therefore been coarsely classified as

being either big fish or small fish.

The objects tagged as big fish are in most cases

lumpsuckers (Cyclopterus lumpus) and can be seen in a

gray/green or reddish variant depending on whether it is

a male or female. However, the sculpin (Myoxocephalus

scorpius) also visits the site and it can be difficult to tell the

difference between the two when the water is turbid.

The small fish are in most cases sticklebacks (Gasteros-

teus aculeatus) when schools of fish appear in front of the

camera. Other fish that have been observed include gobies

(Pomatoschistus), European sprat (Sprattus sprattus), her-

rings (Clupea harengus), and eelpouts (Zoarces viviparus).

Most images contain various sizes of particles in the wa-

ter, from dissolved matter to floating leaves and seaweed.

These objects are not of immediate interest and are consid-

ered as noise in the images.

An object has been placed in the scene in front of the

camera for other research purposes. For the first couple of

weeks a floating device is visible (seen in figure 5a), while

the videos from the last weeks contain a concrete block with

a visible test pattern of size 40x40cm (seen in figure 5c).

Example frames with all object classes of the Brackish

Dataset can be seen in Figure 5. The images also show

the variation of turbidity between the videos, e.g., figure 5h

shows high turbidity, while 5c has low turbidity.

Limfjorden, where the videos have been recorded, is a

180 km long strait located between The North Sea and Kat-

tegat. At the recording location the strait is approximately

500 m wide, up to 15 m deep, and at a distance of approx-

imately 20 km to Kattegat. The water in the strait is brack-

ish, which is a mixture between saltwater from the seas and

freshwater from streams which ends up in the strait. The

strength of the currents and winds in the strait can become

relatively high and stir up sediments, which increases the

turbidity. On other occasions, especially during summer,

the water can be calm, resulting in a layered split between

the heavy saline sea water and the lighter fresh water on top.

The mean water temperature per month measured 1 meter

below the surface can vary from 0.5◦C to 18 ◦C.

5. Evaluation

Two state-of-the-art CNN based object detectors

(YOLOv2 and YOLOv3 [36, 37]) are tested on the new

dataset in order to obtain baseline results for future refer-

ence. Both networks have been fine-tuned in the Darknet

framework [35]. YOLO is a convolutional neural network

based single-shot object detector, which divides each image

into regions and predicts bounding boxes and corresponding

probabilities for each region. The probability, as a measure

of confidence for a detection of a certain class, is used for

weighting of each bounding box. As a single-shot object

detector, YOLO processes the entire image and predicts all

relevant bounding boxes in a single pass through the net-

work, allowing for a high image per second processing rate.

5.1. Training

A brief explanation of the differences between the two

pre-trained object detectors are:

• The YOLOv2 detector is obtained from the VIAME

toolkit [12] and is pre-trained on ImageNet and fine-

tuned on fish datasets from NOAA Fisheries Strategic

Initiative on Automated Image Analysis.

• The YOLOv3 detector is used in its original version

pre-trained on the Open Images dataset [37].

The YOLOv2 detector is already fine-tuned on underwa-

ter images, but contains only the two classes: Vertebrates

and Invertebrates. Therefore, further fine-tuning is needed

in order to be able to evaluate this model on the proposed

dataset.

The YOLOv3 detector is trained on the Open Images

dataset, which contains 601 classes where five of those are

relevant: fish, starfish, jellyfish, shrimp, and crab.

Both models have subsequently been fine-tuned on the

proposed dataset, described in section 4, and tested with

both Open Images and Brackish dataset categories on the

proposed dataset. It should be noted that the only difference

between the two categories is that the fish class in Open

Images contains both the big fish and small fish from the

Brackish categories.

The dataset is split randomly into 80 % training, 10 %

validation and 10 % test data. Each network is trained for

30,000 iterations using their original training regime, only

adjusting the batch size and setting the input size to 416 ×

416, and with the earliest layer weights frozen.
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(a) Big fish (b) Big fish

(c) Crab (d) Crab

(e) Jellyfish (f) Jellyfish

(g) Shrimp (h) Shrimp

(i) Small fish (j) Small fish

(k) Starfish (l) Starfish

Figure 5: Example-frames from the dataset, which illustrate the large in-class variation as well as the variation in turbidity.
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5.2. Results

Object detectors are commonly evaluated based on the

mean Average Precision (mAP) metric, which is the aver-

age precision calculated per category, averaged over all cat-

egories. The prediction bounding boxes are filtered by their

Intersection over Union (IoU) with the ground truth bound-

ing boxes. The MS COCO dataset [27] is the front running

dataset used for object detection, segmentation, and more,

which evaluates the mAP under different conditions.

The primary metric is the AP@[IoU = 0.5:0.95], which

is referred to as AP. AP is calculated as the averaged mAP,

where the mAP values are calculated with an IoU thresh-

old of [0.5, 0.55, 0.6, ..., 0.90, 0.95]. A metric with the

IoU threshold set to 0.5 is also calculated, denoted AP50,

which is the primary metric of another large object detection

dataset, PASCAL VOC [14]. For all the metrics, only the

top 100 most confident predictions per image are included.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Threshold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

AP

Brackish Dataset Categories
YOLOv3-FT
YOLOv2-FT

Figure 6: The AP metric as a function of the thresholded

detection confidence, when using the Brackish dataset cate-

gories, for the fine-tuned models.

The AP is plotted against a prediction confidence thresh-

old for the proposed dataset in Figure 6. It can be seen

that as the threshold is increased, the AP decreases. As the

decrease is monotonic, it indicates that a large part of the

correct predictions are with a low confidence. Therefore, a

low confidence threshold of 0.01 is chosen when evaluating

the trained networks.

The AP and the AP50, which are the primary metrics of

MS COCO and PASCAL VOC, are used as performance

indicators. The networks have been evaluated on the new

Brackish dataset with the Open Images categories, see Ta-

ble 3, and the Brackish categories, see Table 4.

The results show that fine-tuning on the proposed

dataset increases performance dramatically, but also that the

achieved performance can still be improved.

Furthermore, a look into the per-class performance of the

Categories AP AP50

YOLOv3 Open Images 0.0022 0.0035

YOLOv2 fine-tuned Open Images 0.0748 0.2577

YOLOv3 fine-tuned Open Images 0.3947 0.8458

Table 3: Results of the models evaluated on the Open Im-

ages categories and compared by the AP and AP50 metrics.

Categories AP AP50

YOLOv2 fine-tuned Brackish 0.0984 0.3110

YOLOv3 fine-tuned Brackish 0.3893 0.8372

Table 4: Results of the models evaluated on the Brackish

categories and compared by the AP and AP50 metrics.

fine-tuned YOLOv3 network shows that the starfish cate-

gory has a significantly higher score than the others. This is

assumed to be due to both the distinctive shape and because

the starfish rarely moves in the videos, leading to multiple

annotations of starfish which are near identical.

The low score of shrimp and small fish is assumed to be

due to their relatively small size and fast movement, which

causes motion blur and loss of features.

Class AP AP50

Big fish 0.4621 0.8999

Crab 0.4205 0.9271

Jellyfish 0.3746 0.8205

Shrimp 0.3238 0.7662

Small fish 0.2449 0.6229

Starfish 0.5102 0.9867

Table 5: Per category results for the fine-tuned YOLOv3

model with the proposed Brackish dataset categories.

6. Future Work

The camera setup used to capture the proposed dataset

has been developed in a way that allows for easy main-

tenance, adjustments, and replacement. It is a permanent

setup that will be used to monitor the various species that

visit the area during the seasons. At the moment the three

cameras are pointing diagonally downwards toward the

riverbed, but there will be made ongoing modifications in

order to capture different types of dataset, including stereo

sequences.

The proposed dataset is part of an ongoing research

project where data is logged 24 hours a day from all three

cameras. However, the recordings are stored in a com-

pressed format in order to reduce the amount of data. In

the future, the plan is to expand the current dataset with un-

compressed recordings.
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The largest species that has been observed on the record-

ings is the harbor seal (Phoca vitulina), which is a protected

animal in national waters and of great interest for marine re-

searchers. The seal is not a part of the proposed dataset due

to the few encounters so far, but hopefully will be in the fu-

ture as more data is gathered and specific species are added

to the dataset in close collaboration with local marine biol-

ogists.

7. Conclusion

A new bounding box annotated image dataset of marine

animals, recorded in brackish waters, is presented in this

paper. The dataset consists of 14,518 frames with 25,613

annotations of the six classes: big fish, small fish, crab, jel-

lyfish, shrimp, and starfish. To the best of knowledge, the

proposed dataset is unique, as it is the only annotated image

dataset captured in temperate brackish waters.

Two state-of-the-art CNNs (YOLOv2 and YOLOv3) has

been fine-tuned on the proposed Brackish Dataset and eval-

uated in order to create a baseline for future reference. The

YOLOv2 object was pre-trained on Imagenet and fine-tuned

to fish datasets and it was obtained from the VIAME toolkit

[12]. The YOLOv3 detector was the original version pre-

trained on the Open Images dataset [37]. The evaluation is

based on the primary metrics of the MS COCO and PAS-

CAL VOC, which are both based on the mean Average Pre-

cision (mAP). The fine-tuned YOLOv3 network achieved

the best performance with AP ≈ 39% and AP50 ≈ 84%,

allowing for improvements to be made.

The proposed Brackish Dataset has been made

publicly available at https://www.kaggle.com/

aalborguniversity/brackish-dataset
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