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Abstract

Object re-identification (ReID) is an arduous task

which requires matching an object across different non-

overlapping camera views. Recently, many researchers are

working on person ReID by taking advantages of appear-

ance, human pose, temporal constraints, etc. However, ve-

hicle ReID is even more challenging because vehicles have

fewer discriminant features than human due to viewpoint

orientation, changes in lighting condition and inter-class

similarity. In this paper, we propose a viewpoint-aware tem-

poral attention model for vehicle ReID utilizing deep learn-

ing features extracted from consecutive frames with vehicle

orientation and metadata attributes (i.e., type, brand, color)

being taken into consideration. In addition, re-ranking with

soft decision boundary is applied as post-processing for re-

sult refinement. The proposed method is evaluated on CVPR

AI City Challenge 2019 dataset, achieving mAP of 79.17%
with the second place ranking in the competition.

1. Introduction

Object re-identification (ReID) is a challenging task in

computer vision community and gains a lot of attention in

various applications, such as pedestrian retrieval and public

safety monitoring [4, 38, 9, 33, 34]. Generally speaking,

ReID could be considered as a retrieval problem, i.e., given

a probe object, either an image or a video clip, we need to

search in the gallery for the same object that appears in mul-

tiple cameras. However, this retrieval is difficult because 1)

Different viewpoints of an object are distinct in appearance

and shape. 2) Intra-class variability due to background clut-

ters, resolution, illumination, and object size across cam-

eras. 3) Inter-class similarity of objects. Recently, nu-

merous methods have been proposed to solve person ReID

[37, 39, 15, 25] and vehicle ReID problems [18, 16, 31]. In

a ReID task, the correspondence of probe and gallery can-

didate is determined based on a measurement of similarity

distance. To overcome these difficulties, the state-of-the-art

methods apply metric learning on global features and the

training is end-to-end. People also explore tricks such as

fine-grain features [19], synthesized information [39], tem-

poral constraints [7] and re-ranking [40], etc.

As for vehicle ReID, though the problem has been stud-

ied by the research community for long, most existing meth-

ods take advantages of web images [5], which are less dis-

torted and in high resolution. In terms of traffic cameras,

studies on license plate [18] and images with fixed vehi-

cle orientation [32] have shown exceptional performance.

However, in real-world applications, the orientations and

lighting could be varied while license plates are usually oc-

cluded, for example, in the top-view or side-view. There-

fore, we focus on constructing reliable and discriminant fea-

tures for individual vehicles.

Our proposed method is focusing on image-to-video ve-

hicle ReID. As shown in 1, for each clip, frame-based fea-

tures, including CNN features for appearance and vehicle

structure features, are aggregated through a temporal atten-

tion model. The ReID network is trained end-to-end using

a metric learning method with batch sample triplet loss and

cross entropy loss. Finally, the metadata classification fea-

ture is used for soft-thresholding and re-ranking to refine

the results.

In summary, our contributions are threefold: 1) We pro-

pose a novel method for vehicle ReID which incorporates

vehicle appearance, orientation, attributes, and temporal in-

formation. 2) We purpose a vehicle similarity measurement

algorithm based on feature fusion and metadata re-ranking.
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Figure 1. Overview of the proposed vehicle ReID method. During

training, for each video clip, we first extract frame-level features,

including appearance and structure features. Then, a temporal at-

tention model (TA) is trained to obtain the aggregated clip-level

features (purple). These clip-level features are fused with struc-

tures features and used for training the ReID model by cross en-

tropy and batch sampling triplet losses. Finally, combining the

similarity of learning-based features with metadata re-ranking, we

refine the final ReID results.

3) Our vehicle ReID method achieves mAP of 79.17% and

rank-1 accuracy 82.51% in the CVPR 2019 AI City Chal-

lenge [1].

2. Related Works

2.1. Vehicle Feature Extraction

The feature extraction methods generally fall into two

primary categories, one is traditional keypoint-descriptor

based methods, like SURF [3], ORB [24], and the other is

the deep learning feature extractors, like CNN [30, 21, 36].

Comparing with traditional handcrafted features, CNN fea-

ture extractors usually perform better because they can

extract more discriminant features robustly by supervised

learning while training the neural networks. More specifi-

cally, the feature extraction stage is jointly optimized with

the following classification/regression stage in the deep

learning framework. However, most of the popular CNN

feature extractors are trained on different classes of objects

which may have apparent inter-class features. However, for

this task, we need to distinguish the differences within one

single vehicle class. To deal with this problem, we need to

retrain the CNN model, and more importantly, create more

discriminant features for different types of vehicles.

Thus, we include a unique feature for the vehicles – ve-

hicle keypoints, and visibility into our feature set. Vehi-

cle keypoints feature is a kind of object shape prior which

has been widely used for object and scene reconstruction

[42, 28, 22, 2]. Among these works, Ansari et al. [2] train a

keypoint localization network, which is based on a stacked-

hourglass architecture [23] using a synthesized dataset built

from 3D CAD models of vehicles. When combined with

visibility information, this keypoints feature can give us

a useful structure feature for each vehicle to improve our

ReID performance potentially.

Besides the above vehicle features, to deal with inter-

class similarity problem, we also consider vehicle attributes.

Vehicle classification, especially on brand or model, is a

fine-grained classification task. Several benchmark datasets

are focusing on car model classification [32, 13], however,

the samples are web images that are of relatively high res-

olution and better viewpoints comparing to traffic cameras.

The other problem is that the majority of vehicle types in

these datasets are sedans and SUVs, and limited in other

common categories such as pickup trucks, trucks, and bus.

On the other hand, in the traffic cameras, studies are con-

centrated on type ,and color features [12] due to the labeling

difficulties of attributes. Here, we propose a CNN classifier

to identify the vehicle type, brand and color using progres-

sive training combining both web image dataset and the AI

City Track2 traffic camera image dataset.

2.2. Video­based ReID

The typical ReID tasks can be divided into image-based

and video-based. Image-based ReID uses images as the

content in probe and gallery, while video-based ReID uses

videos. However, the principal solutions are similar. The

state-of-the-art methods apply metric learning with differ-

ent loss functions, such as hard triplet loss [11], cross en-

tropy loss [26], center loss [29], and their combination to

train classifiers [41]. For video-based ReID, we need to

consider the features from a clip, i.e., a small set of consec-

utive images [35, 17, 7]. Temporal information is important

for ReID in a video clip, as evidenced by the temporal at-

tention modeling proposed in [7] to give different attention

scores to different frames.

2.3. Re­Ranking

The purpose of re-ranking is to improve the ranking re-

sults from a previous ReID outcome. Usually, it is used

as a post-processing step in ReID tasks, which can be im-

plemented without any additional training. Many previous

works on re-ranking have been proposed for retrieval and

person ReID tasks [34, 40, 8]. Zhong et al. [40] propose

a re-ranking method with k-reciprocal encoding. They first

increase the k-reciprocal nearest neighbors into a more ro-
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bust set by adding selected positive samples which are more

similar to the previous candidates. Then, a Jaccard distance

is re-calculated for the new candidates set. It is a simple but

efficient idea for re-ranking in ReID problems. However, in

our scenarios, we have more information that we can ben-

efit from like vehicle metadata; therefore, this re-ranking

method is further improved in this paper.

3. Our Proposed Approach

In this section, we introduce our proposed method for ve-

hicle ReID based on video clips. Firstly, a feature extraction

method precisely for vehicles is described in both frame-

level and clip-level features. Then, a metadata classifier is

designed for classifying different types, colors, and brands.

After that, the network is trained using metrics learning with

hard triplet loss and cross-entropy loss. Finally, a novel

re-ranking method with soft decision boundary involving

metadata information is introduced for refining the ReID

rankings.

3.1. Feature Extraction

Frame-level Feature Extraction. To reduce noise, the

training images are fed into a prepossessing flow includ-

ing size check, image quality filtering and keypoint detec-

tion. The prepossessed frame features are then extracted

from a ResNet50 [10] network that is pre-trained on Ima-

geNet. The 2048-dim fully-connected layer before classifi-

cation layer is used to represent the appearance of the ve-

hicle. In addition, we use the keypoint localization method

described in [2] to obtain 36 points on the vehicle with se-

mantic meaning as structure features to infer the viewpoint.

An example of extracted vehicle keypoints is shown in Fig-

ure 2.

Vehicle Orientation Feature Descriptor. To describe the

vehicle orientation from the keypoints’ layout on the 2D

image, we leverage the 3D relationships between each key-

point on the 3D vehicle model. For each surface formed

by the keypoints on the 3D vehicle model (Figure 2), we

define its surface normal as the normal vector pointing out-

ward of the vehicle body. Using the right-hand rule, we can

calculate the signed-area of the projection of the surface on

the 2D image. If the signed-area is positive, we know the

surface is facing toward the camera and vice versa. The ex-

ample of positive and negative signed-areas are shown in

Figure 3. By concatenating the signed-areas of the projec-

tion of all the surfaces and performing L2-normalization,

we get the 18-dimensional vehicle orientation feature de-

scriptor fo. To demonstrate the descriptor, we use t-SNE

[20] to convert the descriptor into 2D space (Figure 4). We

can see that the feature descriptor well captures the vehicle

orientation and forms clusters of the front view, left/right

Figure 2. Example of vehicle keypoint detection and the surfaces

formed by the keypoints.

Figure 3. Example of positive (left) and negative (right) signed-

areas defined for vehicle orientation feature descriptor. For the

surface formed by points 1, 2, 3 and 4 on the cube, the surface nor-

mal is shown as the red arrow. Using the right-hand rule, when the

surface is facing toward the camera (left), the points are arranged

in counterclockwise order, resulting in a positive signed-area of

the projection of the surface, and vice versa.

side view, back view, ..., etc. Note that we only consider the

areas and ignore the in-plane rotation of the image because

the vehicles are usually standing upright on the ground.

Viewpoint-Aware Temporal Attention Model. After we

extract the frame-level features, we combine them into clip-

level features using a temporal attention modeling (TA) [7].

The structure of the temporal attention modeling is shown

in Figure 5. The spatial convolutional network is a 2D con-

volution operation and temporal convolutional network is a

1D convolution operation. We train these two networks to

get more reliable attention scores for the frames in video

clips. After the weighted average, we can get the clip-level

features fc.

3.2. Loss Function

Inspired from metric learning for face verification prob-

lems, FaceNet [6] proposes triplet loss to force the data

points from the intra-class to be closer to each other than

a data point from any inter-class. Triplet loss is used to

train a transformation to project an input image to an em-

bedding feature space so that the Euclidean distance of the

embedding features are optimized. Assume there is an an-

chor feature a, the same vehicle ya should be projected to

a positive feature xp, which is closer to anchors position,
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Figure 4. t-SNE [20] visualization of the car orientation descriptor. The feature descriptor well captures the vehicle orientation and forms

clusters of different views.

Figure 5. The structure of temporal attention model. The orienta-

tion features f i
o are expended and added up with the CNN feature

f i

CNN as the frame-level features f i

C , where i indicates the frame

index in a clip C. In parallel, f i
o is concatenated to f i

S , which

is the re-sized f i

CNN mid, and passed through the temporal con-

volutional layers to obtain attention score for each frame. The

clip-level feature fC is the weighted average of the frame-level

features.

instead of a negative feature xn belonging to another class

yb , by at least a margin m. Based on [14], we compared the

performance of different batch-based sampling approaches

for training triplet embedding, we adopt batch sample (BS)

[14] instead of batch hard (BH) [6] in the triplet genera-

tion. In terms of BS, it uses the multinomial distribution of

anchor-to-sample distances to sample data for training. The

idea of BS is to filter sampling outliers during the training.

The BS triplet loss in a mini-batch X is defined as,

LBStri(θ;X ) =
∑

all batches

∑

a∈B

ltriplet(a), (1)

where

ltriplet(a) = [m+
∑

p∈P (a)

wpDap −
∑

n∈N(a)

wnDan]+,

(2)

with wp and wn are the weighting of positive and neg-

ative samples, respectively, Dap and Dan are the distances

between the anchor sample to the positive sample and neg-

ative sample, respectively, and m is the defined margin.

Based on BS strategy, the weighting of positive and neg-

ative samples are defined as follows,

wp = P (xp == multinomialx∈P (a){Dax}),

wn = P (xn == multinomialx∈N(a){Dax}),
(3)

where xp and xn are positive and negative samples, respec-

tively.

Moreover, we also include cross-entropy (Xent) loss
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[26] in the training as follows,

LXent = −

P∑

i=1

log (prob(i))q(i), (4)

where q(i) is the one-hot ground truth label, prob(i) is the

probability of the probe vehicle belongs to vehicle i.
The overall loss function is a weighted combination of

BS triplet loss and cross-entropy loss,

LTotal = λ1LBStri + λ2LXent . (5)

3.3. Re­Ranking Strategy

Metadata classification. Metadata classification is a typ-

ical multi-label classification task. Here, vehicle type, brand

,and color are considered as vehicle metadata attributes. We

adopted the main structure of a 29-layer light CNN frame-

work proposed by Wu et al. [30]. Small kernel sizes of

convolution layers, network-in-network layers and resid-

ual blocks have been implemented to reduce the param-

eter space and improve performance. The max-feature-

map (MFM) operation is an extension of maxout activation,

which combines two feature maps and outputs element-wise

maximum one. We include CompCar [32] dataset and 8

cameras (1 hour each) of self-record traffic videos as part of

our training data.

The orientation and visibility of a vehicle are estimated

using the vehicle keypoints. The four wheels are marked

as Pfront,left, Pfront,right, Pback,left and Pback,right, the

driving direction of a vehicle is described as a vector point-

ing from the center of back axle to the center of front

axle, i.e., ~r = ((Pback,left + Pback,left)/2, (Pfront,left +
Pfront,left)/2). The orientation of a vehicle could be

simply modeled by the angle of ~r from horizontal. The

2D space are split into eight zones that are [350◦, 10◦),
[10◦, 80◦), [80◦, 100◦), ..., [280◦, 350◦), as in Figure 6. In

each zone, the visible surfaces of a vehicle are known and it

is straightforward to localize the areas semantically, shown

in Figure 7.

All images are preprocessed with orientation estimation

and the visible parts are cropped for data augmentation. We

enlarge the input size to be 512×512, the aspect ratio is kept

with zero padding in the boundary. Comparing to the origi-

nal version in [30], additional one network-in-network layer

is added and the size of fully-connected layer is extended to

2048-dim rather than 256-dim. The details of metadata la-

beling are described in 4.1. Due to the limited number in

labeled traffic data, we train the classifier in a progressive

way. The self-recorded data are fed into the model that is

pre-trained on CompCar and AI City training set, samples

with high confidence are included into the training set. The

model is trained and evaluated iteratively until it achieves a

decent accuracy on the validation set.

Figure 6. Visualization of orientation zones and vehicle surface

visibility.

Metadata Distance. After we get the initial ReID results,

metadata information can also be considered. The intu-

itive idea is that the samples with different metadata classes

would have larger distance. According to this idea, we pro-

pose a metadata distance given the metadata probabilities pi
and pj for samples i and j from classes ci and cj ,separately

s(pi, pj) = conf(pi)× conf(pj)× confu(pi, pj) (6)

where

conf(pi) =
DKL(pi||pU )

logNc

(7)

and

confu(pi, pj) = −logNc
P (ci = cj |pi, pj) (8)

are the classification confidence and confusion distance re-

spectively. The DKL(P ||Q) is the KL Divergence between

P and Q, Nc is the number of classes and pU is the uniform

distribution. Therefore, we have 0 ≤ conf(P ) ≤ 1. The

P (ci = cj |pi, pj) can be derived from the confusion ma-

trix so that the lower the P (ci = cj |pi, pj), the larger the

confusion distance.

By using metadata distance, we can obtain a new dis-

tance by combining the initial ReID distance and metadata

distance,

d′(p, gi) = d(p, gi) + γ ·
∑

n

sn(p, gi). (9)

where p is a probe image, gi is the i-th gallery image, γ is

a hyperparameter that can be fine-tuned, and n is metadata

category.

Re-ranking with k-reciprocal Encoding. Re-ranking is

a post-processing step typically used for ReID tasks. For
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Figure 7. Examples of vehicle keypoints detection and visibility

estimation. keypoints are marked in blue dots, occlusion parts are

estimated. The red, green, orange and purple outlines indicate the

front, back, left side and right side, respectively. The yellow ar-

row represents the driving direction ~r. Cropped views of visible

surfaces are shown as well.

this part, we basically adopt the re-ranking method pro-

posed in [40] and fine-tune the hyperparameters for our

case. Firstly, we generate k-reciprocal nearest neighbor set

for the original k-NN set as shown in Figure 8. Then, we re-

calculate the distance between probe and gallery by adding

Jaccard distance,

dJ(p, gi) = 1−
|R∗(p, k) ∩R∗(gi, k)|

|R∗(p, k) ∪R∗(gi, k)|
. (10)

Thus, the final distance d∗ is defined as

d∗(p, gi) = (1− λ)dJ(p, gi) + λd′(p, gi). (11)

Figure 8. Example of the k-reciprocal neighbors expansion pro-

cess. The positive vehicle G which is similar to C is added into

R∗(Q, 20).

4. Experiments

4.1. Dataset

The benchmark dataset [1] is captured by 40 traffic cam-

eras, including the scenario of intersections, street roads and

highways. The resolution and lightening condition vary for

each camera, and distortion is introduced if captured by

fish-eye cameras. A total of 666 vehicles are annotated

with distinct vehicle IDs, in which 333 vehicles are used

for training and the remaining 333 vehicles are for testing.

There are 56277 images in total. 18290 images are in the

testing set, 36935 images are in the training set and 1052

images are for query. On average, each vehicle has 81 im-

age signatures from 4.53 camera views. License plates are

masked in black for privacy consideration.

In addition to the original AI C19 ReID dataset, we also

spent great effort on labeling all vehicles in the training set

with their type, brand, and color. We finalize the labels

in the following categories: 1) Type: sedan, suv, minivan,

pickup truck, hatchback and truck; 2) Brand: Dodge, Ford,

Chevrolet, GMC, Honda, Chrysler, Jeep, Hyundai, Sub-

aru, Toyota, Buick, KIA, Nissan, Volkswagen, Oldsmobile,

BMW, Cadillac, Volvo, Pontiac, Mercury, Lexus, Saturn,

Benz, Mazda, Scion, Mini, Lincoln, Audi, Mitsubishi and

others; 3) Color: black, white, red, grey, silver, gold, blue,

green and yellow.

4.2. Vehicle ReID Performance

The performance of ReID is evaluated using mean aver-

age precision (mAP), which is the area below the Precision-

Recall curve, measuring the mean of the precision of all

query samples at different recall values. We also report

rank-1, rank-5, rank-10, rank-20 and rank-100 accuracy,

meaning the percentage of the queries that the top −x cor-

respondence in the gallery is true positive.

In the CVPR 2019 AI City Challenge Track2 (vehicle

ReID track), our method ranks second place among the total

84 submissions. The performance of top-10 algorithms is

shown in Table 1, detailed statistics of our method in Table 2
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Figure 9. Example results of our algorithm.

and comparisons with baseline method in Table 3. Example

Re-ID results of our algorithm are shown in Figure 9.

5. Conclusion

A novel vehicle ReID method based on vehicle clip fea-

ture extraction with temporal attention and metadata re-

ranking was proposed. We effectively design the represen-

tation of clip features in the aspects of appearance, struc-

ture, categories and temporal weighted aggregation, so that

our algorithm is made comprehensive, robust and efficient.

The proposed method achieves mAP of 79.17% on CVPR

AI City Challenge 2019 dataset.

Acknowledgement: The authors would like to thank
many people who helped in the improvement of the per-
formance of the proposed system: Yizhou Wang, Haotian
Zhang, Ping Zhang, Huihao Chen and Zexin Li. We also
thank STAR Lab in the University of Washington for pro-
viding traffic video dataset.
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Rank Team ID Team Name mAP Score

1 59 Zero One 0.8554

2 21 UWIPL 0.7917

3 97 ANU 0.7589

4 4 expensiveGPUs 0.7560

5 12 Traffic Brain 0.7302

6 53 Desire 0.6793

7 131 XINGZHI 0.6091

8 5 UWD RC 0.6078

9 78 MVM 0.5862

10 127 flyZJ 0.5827

Table 1. Competition results of AI City Challenge Re-ID, ours is

marked bold.

mAP Rank-1 Rank-5 Rank-10 Rank-20 Rank-100

0.7917 0.8251 0.8279 0.8289 0.8517 0.8907

Table 2. The mAP, rank-1, rank-5, rank-10, rank-20 and rank-100

performance of our method.

Methods mAP Rank-1

Baselines [27]

Resnet50 + Htri 30.3 44.3

Resnet50 + Xent 28.6 46.0

Resnet50 + Htri + Xent 33.0 51.8

Ours (Resnet50+TA+BStri+Xent+Rerank) 79.2 82.5

Table 3. Results of baseline method and our method. All backbone

network is pretrained on ImageNet. The mAP and ranking are in

percentage, best is marked in bold.
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