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Abstract

In this paper, we propose a new face alignment method,

called adaptive pose alignment (APA) which can greatly re-

duce the intra-class difference and correct the noise caused

by the traditional method in the alignment process, espe-

cially in unconstrained settings. Instead of aligning all

faces to the pre-defined, uniform frontal shape, we adap-

tively learn the alignment templates according to the facial

poses and then align each face of training or testing sets to

its related template. To further improve the face recogni-

tion performance, we propose a simple, yet effective feature

normalization method which can generate more discrimina-

tive feature representation of a face or template combined

with the APA method. Furthermore, we introduce a pose-

invariant face recognition pipeline that sequentially applies

APA based alignment, deep representation by Softmax or

Arcface, and the effective feature normalization procedure.

We empirically show that APA based images can accelerate

the training of deep face recognition model by aligning all

the images to the optimal templates. Moreover, experiments

show that the proposed method achieves the state-of-the-

art performance on challenging IJB-A, IJB-C and CPLFW

datasets.

1. Introduction

Face recognition performance using deep CNN has ex-

perienced a significant increase in recent years [24] [25]

[23][5]. A typical conventional face recognition pipeline

usually consists of four stages: face detection, facial land-

marks detection and face alignment, feature extraction, and

final feature comparison, where face alignment is a cru-

cial step for recognition performance, especially in uncon-

strained condition with large facial pose. The obtained faces

are often different on shape due to factors such as pose,

perspective transformation and so on, which will lead to a

serious decline on recognition performance. For example,

for the same model based CNNs, compared to the accu-

racy on LFW [10], the accuracy drops about 12%-20% on

CPLFW [31] or IJB-A [12]. The main reason for this re-

sult is that faces in IJB-A and CPLFW databases are much

more unconstrained in head pose, background, and perspec-

tive transformation, causing large difference within each

subject, even larger than the inter-subject variance. Fig.1

shows some face images sampled from LFW, IJB-A, IJB-C

[15] and CPLFW datasets and their corresponding pose dis-

tribution (yaw angle). We can see that faces in LFW have

near-frontal bias, while faces in other three datasets have

full pose distribution and some of them can not be detected

by Viola Jones Face Detector[26].

Under this condition, face alignment is an effective ap-

proach to alleviate this issue, and further facilitating the

recognition tasks [24] [8] [25]. Some works [17] [23] have

already indicated that face alignment can efficiently im-

prove the recognition performance. Before the feature ex-

traction step, in both training and evaluation, a better face

alignment will decrease the intra-class difference of each

subject, further making the classifier more discriminative.

At present, common adopted way to align faces is to use

a 2D transformation to calibrate facial landmarks to pre-

defined frontal templates or mean face mode. However,

such kind of alignment methods are not optimized under the

condition of large pose, which will cause geometric defor-

mation and bring some noise into the image. Furthermore,

some researchers have also proposed end-to-end framework

that adds alignment to the network, achieved good perfor-

mance on face recognition. Unfortunately, adding addi-

tional structures (e.g. STN [11]) to the network increases

the burden on the network and requires longer training time

to convergence.

To cope with the above issue, instead of aligning all

faces to the pre-defined frontal shape or adding additional

architecture to network, we propose a new face align-

ment method in this paper, namely adaptive pose align-

ment (APA), to reduce the intra-class difference in order

to boost the recognition performance. We adaptively learn

the optimal alignment templates according to the facial pose
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Figure 1. Face images analysis. Top: Sample images sampled from LFW (a), IJB-A (b), IJB-C (c) and CPLFW (d) datasets. Each row

presents faces of the same identity. Bottom: Pose distributions (yaw angle) on the four datasets.

and then align each face of training and testing set to its

related template, so that the intra-class difference and the

noise introduced by alignment process are minimized. Fur-

thermore, we propose a simple, yet effective feature nor-

malization method that combines with the APA, which can

further improve face recognition performance. We evalu-

ate the proposed methods on four popular challenging face

datasets. And we observe consistent margins, including the

IJB-A, IJB-C, and CPLFW datasets, compared to baseline

and other competing methods.

In summary, this work contributes to the following as-

pects:

• We propose a new face alignment method, called APA

which can greatly reduce the intra-class difference and

correct the noise caused by the traditional method in

the alignment process, especially in unconstrained set-

tings. The resulting compact, and yet discrimina-

tive face representation enhance the recognition per-

formance of advanced deep face recognition models,

even for the recently proposed VGGFace2 model [2]

that are known to be invariant to face alignment.

• We empirically show that APA based images can ac-

celerate the training of the deep face recognition model

by aligning all the images to the optimal template.

• We propose a pose-invariant face recognition pipeline

that sequentially applies APA based alignment, deep

representation by Softmax or Arcface [4], and an ef-

fective feature normalization procedure. Experimen-

tal results show that this pipeline achieves the state-

of-the-art performance on challenging IJB-A, IJB-C

and CPLFW databases, exceeding the previous state-

of-the-art by a large margin.

2. Proposed methods

2.1. Adaptive Pose Alignment (APA)

Instead of aligning all faces to near-frontal shape, we

propose to adaptively learn multiple pose-specific templates

as opposed to a single template to align faces: adaptive pose

alignment (APA), which indicates reducing the intra-class

difference, and preserving the face appearance with little ar-

tifact and information loss. The APA consists of three steps:

1) Facial pose estimation; 2) Generating the optimal refer-

ence templates based on the pose distribution of the testing

dataset. 3) Faces in training or testing dataset are adaptively

aligned. Its core is to adaptively generate reference tem-

plates that are suitable for face recognition. Then, each face

of training dataset or testing dataset are adaptively aligned

to its most related reference template.

2.1.1 Template Generation Adaptively

The main purpose of face alignment is to remove the un-

desired intra-class variability by aligning images to some

canonical shapes or configurations. In unconstrained set-

tings, not only do we need to consider intra-class variability,

but we also need to reduce the noise caused by the align-

ment such as the artifacts from similarity transformation or

affine transformation. Suppose we define the intra-class dif-

ference loss as d(k), the artifact loss of aligned faces as a(k),
so the total faces loss of alignment is Loss(k) = d(k)+a(k),
where k represents the number of aligned poses. For a train-

ing dataset, as the number of aligned templates increases,

the intra-class difference d(k) is increasing (Fig.2 left), es-

pecially for faces with large pose. But, artifact of aligned

faces will become smaller (Fig.2 right). The intra-class
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Figure 2. Analysis for large pose face alignment. Top left: As the

alignment template k increases, the intra-class distance becomes

larger (the intra-class similarity is decreasing). Top right: The

alignment template k becomes smaller, the artifacts of aligned face

becomes larger, especially when k = 1. Bottom: Finding the opti-

mal number (k∗) of alignment templates to minimize the total loss

of alignment.

similarity is the greatest when all images are aligned to the

frontal shape. However, the noise introduced by alignment

process is also the largest at this condition. Therefore, we

need to find an appropriate number of alignment templates

to balance the intra-class difference and information loss, so

that the aligned images are most favorable for face recogni-

tion (Fig.2 bottom)

k∗ = argmin
k

Loss(k)

= argmin
k
(d(k)+a(k)).

(1)

Differently from approaches that use just a single, frontal

template to align all faces [24] [8] [25], our idea is to

learn the alignment templates according to pose distribu-

tion. Firstly, we need to find a dataset that covers all the

possible poses. In each pose, there are as many people as

possible that come from different races. Secondly, it is nec-

essary to consider that CNN generalization power is usually

proportional to the training data size [13], thus we need to

trade-off data partitioning and clustering when determining

the number of reference templates k. We assume that we

have obtained the poses of all faces, and the pose is dis-

tributed from −90◦ to +90◦. We exploit face symmetry

property to mirror all face to one direction of yaw distri-

bution. In this way we can consider only one side of the

distribution, for example left side, reducing the number of

templates we need to learn. We can cluster all poses {θ}n
i

of reference dataset adaptively using k-means algorithm to

find the main k∗ templates:

Θ = kmeans({θ}n
i )

K
k=1, (2)

where Θ represents the collection of clustering centers, the

maximum K is 9. The object of K-means clustering is to en-

courage the sum of distances between features and cluster

centers to be the lowest, so that the average loss of trans-

forming faces with different poses to their nearest cluster-

ing center template is the lowest. In this paper, we use the

elbow method [6] to find the optimak k.

2.1.2 Pose Estimation

Pose estimation plays an important role in the APA method.

In this paper, we calculate the facial pose using the corre-

spondence between the 2D face and the 3D face model.

We use the MTCNN [30] to obtain the 2D labeled land-

marks pi = [xi,yi] of a face image. Then, we mark the corre-

sponding landmarks Pi = [Xi,Yi,Zi] to an aligned 3D generic

model. Therefore, a sparse correspondence between 3D and

2D space can be constructed. Weak perspective projection

[1] is used to estimate external camera parameters, assum-

ing the principal point in the image center. Finally, we refine

the focal length by minimizing landmark reprojection error

[p 1]T = f A[R|t3d ][P 1]T , (3)

where f is the scale factor, A is the orthographic projection

matrix, R is the 3×3 rotation matrix constructed with pitch

angle, yaw angle and roll angle, t3d is the translation vector.

From the projection vector M = [ f ,R, t3d ], we extract the

rotation matrix R. By decomposing R, we obtain the yaw

angle θ of the face across all the dataset.

2.1.3 Alignment Process

Once the optimal alignment templates are determined, all

images in dataset are aligned to the template that is asso-

ciated with it. Given an image of the training or testing

dataset, the same method is used to detect the facial land-

marks (lmd(X)) and its pose, where X represents a face.

And we use the resulting pose to find the optimal alignment

template with it

R∗ = argmin
i
(X −Ri)

2, i = 1,2, ...,N, (4)

where R is reference template, N is the maximum number

of reference templates. After finding the optimal template,

we mark landmarks on it (lmd(R)). Finally, we seek simi-

larity transformation T to align a face image to the optimal

reference template, such that:

T ∗ = argmin
T

‖T [lmd(X)|1]′ − [lmd(R∗)|1]‖2
2, (5)

where [lmd(X)|1] is simply an expansion of lmd(X) by

adding an all-one vector 1, and T is a homogeneous matrix

defined by rotation angle θ , scaling factor s, and translation

vector [tx, ty], as shown in Equ. 6



Figure 3. Face alignment examples using the APA method with k = 4. The images from left to right are from LFW, IJB-A, IJB-C and

CPLFW datasets. From top to bottom, the pose of the face gradually increases.

T =





scosθ −ssinθ tx
ssinθ scosθ ty

0 0 1



 . (6)

Through the above process, all faces will be aligned to

its related template, and all faces are considered only one

side. Fig.3 lists some aligned examples using APA (k = 4)

sampled from four different datasets.

2.2. Feature Normalization

The proposed feature normalization method is based on

following two observations. First of all, for most deep net-

works, the image will be flipped randomly along vertical

axes for data augmentation during training. Second, be-

cause the face is symmetrical, all faces are aligned to one

side when using APA method (Fig.3). In the ideal state, the

extracted facial features should also be symmetrical, which

provides us a new idea. Suppose we extract the features of

left and right faces of a person, so the feature of frontal face

of the person can be obtained. We use fl to represent the

feature of the original aligned image, and fr represents the

image feature after mirroring during testing. Therefore, the

feature of a face can be expressed as:

f = ( fl + fr)/2. (7)

Note that for set-to-set face recognition (for instance IJB-A

dataset), fl and fr represent a feature vector after template

fusion.

In addition, for real world applications, there always ex-

ists a dataset bias between the training dataset and testing

dataset. In this paper, we use a simple, yet effective method

to alleviate the bias for boosting face recognition accuracy,

that is, centralizing the facial features that need to be veri-

fied or identified to the origin of the reference space during

testing. For each feature of testing dataset, we define a new

feature to replace the original feature:

f i = fi − f re f , i = 1, ...,N, (8)

where f re f represents the mean feature of the reference

data. By doing this, all features are distributed on same

reference space. In this space, each feature has the same

mean, and comparison between features is more fair.

2.3. Pose­invariant Face Recognition Pipeline

Training

 data

Verification

 pair

APA

Face alignment CNN

Softmax or ArcFace

flip
FN

Distance

metric

Feature extraction

Figure 4. Pose-invariant face recognition pipeline.

The proposed APA method can be used for training

dataset or testing dataset. Through experiments, we find

that if faces are aligned during training and testing simul-

taneously, the recognition performance is the best. There-

fore, we propose a pose-invariant face recognition pipeline

(Fig.4). During training, we first use the proposed APA

method to align all the faces in the training dataset. Then,

all aligned images are used to train deep network, for exam-

ple VGG or ResNet network. The loss function can choose

Softmax or Arcface. After the model is trained, we can eval-

uate it using the same aligned images. During the testing

phase, we first align the images of probe set in the same

manner. We then flip the corresponding images along the

vertical axes. Thus, everyone will obtain two aligned im-

ages. And we fed them into the trained network to extract

features. Finally, the features are normalized using the pro-

posed feature normalization method. The normalized fea-

tures are use to calculate the similarity of the two faces.



3. Experiment and Evaluation

3.1. Models and Training Details

The proposed method can be used on any CNNs based

face recognition. In this paper, we choose two classic net-

works to evaluate our method, SE-ResNet-50 [9] (SENet50

for short) and LResNet100-IR [4]. To the best of our knowl-

edge, Cao et al [2] achieved the state-of-the-art results on

IJB-A dataset using SENet50 and VGGFace2 dataset [2].

LResNet100-IR is an advanced version of the ResNet net-

work [7], proposed by Deng et al [4], which get state-of-the

art performance in the MegaFace Challenge. VGGFace2

[2] is selected as training dataset, which contains over nine

thousand identities with between 80 and 800 images for

each identity. Loss function uses Softmax and Arcface [4].

Combining the above networks, loss functions, and training

data, we mainly train five models, which forms two base-

lines: model-A and model-C.

• model-A - SENet50 trained with softmax loss, VG-

GFace2 dataset with no alignment (equivalent to not

using the APA method)

• model-B - SENet50 trained with softmax loss, APA

(k = 4) based VGGFace2 dataset

• model-C - LResNet100-IR trained with Arcface loss,

VGGFace2 dataset with no alignment

• model-D - LResNet100-IR trained with Arcface loss,

APA (k = 1) based VGGFace2 dataset

• model-E - LResNet100-IR trained with Arcface loss,

APA (k = 4) based VGGFace2 dataset

Note that the above models are trained from scratch, and

weight initialization uses Xavier method. The mean value

of each channel is subtracted for each pixel. Stochastic gra-

dient descent (SGD) is used with mini-batches of size 256

on four GPUs. The initial learning rate is set to 0.1, and this

is decreased twice with a factor of 10 when errors plateau.

3.2. Data Processing with APA Method

The choice of reference dataset is important for APA

method. Inspired by [13], we choose the CASIA-WebFace

[29] dataset that contains 10,575 subjects with a total of

494,414 images as our reference dataset. The CASIA-

WebFace dataset is a relatively large known public dataset

for face recognition. Most of the faces in CASIA-WebFace

are centered on the image, which does not require to de-

tect the bounding boxes of faces. Moreover, accurate fa-

cial landmarks can be detected. The size of each face is

250×250.

During both training and testing, we use MTCNN [30]

to detect face and landmarks. The bounding box is then

extended by a factor of 0.3 to include the whole head and

cropped. All cropped faces are resized to 250×250, which

is consistent with the size of the reference template. For

faces that MTCNN cannot detect, we use the bounding box

and landmarks provided by the dataset. Then, all faces are

aligned according to the proposed APA method. Finally,

a center region of 200× 200 pixels is cropped from each

well-aligned face and resized to fit the input of the network.

In this paper, we resize it to 224× 224× 3 (SENet50) or

112×112×3 (LResNet100-IR) respectively (Fig. 3).

3.3. Experiments on IJB­A dataset

3.3.1 Janus Benchmark A (IJB-A)

The IJB-A dataset is a publicly available challenging face

dataset which contains 500 subjects with a total of 25,791

images (5,396 still images and 20,395 video frames) in to-

tal, 11.4 images and 4.2 videos per subject on average.

There are 10 training and testing splits. Each training split

contains 333 subjects, and its corresponding testing split

takes the other 167 subjects.

In all experiments, except for special instructions, results

on the IJB-A average over 10 splits. Template encodings are

constructed by averaging media encoding over a template,

and media encodings are constructed by averaging features

across a video [16] [17] [3], then unit normalizing. The

similarity between two subjects is computed by the cosine

distance.

3.3.2 The Effect of k

The k is a key in the APA method. In this subsection, we in-

vestigate the effect of k through extensive experiments on

IJB-A dataset. By varying k from 1 to 9, we use APA

method to align nine groups of images of IJB-A dataset.

After alignment, we use the off-the-shelf VGG-Face [17]

model to extract the 4096-d features of the penultimate layer

directly. There are three main reasons for using this trained

model. First, training nine models is burdensome and time-

consuming. In addition, VGG-Face descriptor has reported

fairly good results on the face verification task of LFW

benchmark. Moreover, it used over 2.6M faces without

alignment to train network, which is suitable for challeng-

ing face datasets, like IJB-A. Therefore, we directly extract

features using VGG-Face model rather than training new

network. Fig. 5 shows the comparison of the recognition

results on TAR@FAR=0.1% and Rank-1. We can see that

when k = 4, both two results achieve the best performance.

3.3.3 Effectiveness of APA

Accuracy on IJB-A. We evaluate the effectiveness of APA

by comparing three groups of experiments. The results

are reported in Table1. In the first set of experiments, we

directly extract features of IJB-A dataset using VGGFace

model [17]. The second and third groups are tested us-

ing our trained models. It is obvious from the experimen-



Table 1. Recognition performance comparison on different models for standard 1:1 face verification and 1:N face identification on the

IJB-A.

Model Method
1:1 Verification TAR 1:N Identification TPIR

FAR=0.001 FAR=0.01 FAR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

VGGFace [17]

without APA 0.5869±0.0566 0.8154±0.0249 0.9576±0.0074 0.4575±0.0568 0.7030±0.0285 0.9098±0.0102 0.9681±0.0068 0.9806±0.0047

APA (k = 1) 0.6268±0.0489 0.8331±0.0207 0.9606±0.0066 0.4887±0.0572 0.7395±0.0239 0.9176±0.0093 0.9695±0.0055 0.9821±0.0041

APA (k = 4) 0.6435±0.0517 0.8467±0.0229 0.9673±0.0053 0.4907±0.0576 0.7567±0.0303 0.9306±0.0091 0.9785±0.0060 0.9863±0.0042

SENet + Softmax

without APA - model-A 0.8842±0.0237 0.9514±0.0103 0.9828±0.0036 0.8164±0.0561 0.9218±0.0089 0.9780±0.0037 0.9903±0.0021 0.9928±0.0019

APA (k = 4) - model-B 0.8993±0.0294 0.9710±0.0070 0.9936 ±0.0016 0.8332±0.0499 0.9466±0.0100 0.9831±0.0039 0.9945±0.0021 0.9964±0.0015

LResNet100-IR + Arcface

No alignment - model-C 0.9564 ±0.0093 0.9779±0.0040 0.9902±0.0015 0.9177±0.0431 0.9697±0.0066 0.9822±0.0032 0.9911±0.0023 0.9929±0.0022

APA (k = 1) - model-D 0.9616±0.0063 0.9803±0.0024 0.9907 ±0.0017 0.9245±0.0718 0.9725±0.0040 0.9828±0.0037 0.9891±0.0022 0.9919±0.0026

APA (k = 4) - model-E 0.9661±0.0094 0.9873±0.0021 0.9948 ±0.0018 0.9306±0.0347 0.9794±0.0038 0.9913±0.0033 0.9960±0.0024 0.9973±0.0001
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Figure 5. Recognition performance varies with the k on IJB-A

dataset.

tal results that whether using the existing model (VGGFace

model) or the retrained model (model-A∼ E), when using

APA(k = 4), the performance on IJB-A is better than k=1 or

no alignment. Specially, it achieves TAR ∼ 5.7% improve-

ment on FAR=0.001 using VGGFace model and ∼ 1.5%

using SENet with softmax.
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Figure 6. Comparison of intra-class similarity changes. Top: Com-

parison of image pairs. Bottom: The corresponding value of co-

sine distance.

Change of intra-class similarity The main purpose of

the APA is to remove the undesired intra-class variability

and increase the intra-class similarity. We design an exper-

iment to verify changes of the intra-class similarity. We se-

lect all images of one person whose Subject ID is 6 from the

IJB-A dataset and extract their features using the model-A

and model-B. Then, we calculate the cosine distance be-

tween a frontal face and other faces. We select nine groups

of images as an example, where their pose is changing from

small to large. Fig.6 shows the relationship of similarity

changes. It can be seen that after using the APA, the intra-

class similarity is significantly improved. Moreover, when

the face is more profile, the greater the change is in similar-

ity. The most obvious change of reducing the intra-class

variability is that all features of the person will become

more compact. It can be seen from the variance between

individuals within a group. We first calculate the mean of

the features of the same subject f = 1
N ∑ fi. Then, variance

is obtained by var = 1
N ∑( fi − f )2. The variance of the two

sets of features is 0.0067 and 0.0052 respectively, which is

obviously reduced, illustrating that APA does increase the

intra-class similarity.

Analysis of APA. Why APA improves the performance

of face recognition? The purpose of APA is to reduce the

intra-class differences so that the scores of the same sbu-

ject that need to verify pairs become more larger and the

scores of the different subjects become more smaller. Thus,

the accuracy will be improved. Fig.7 shows the frequency

distributions of the similarity scores for face verification on

split1 of IJB-A based on model-A and model-B. From the

comparison results, we can see two obvious changes after

using APA. First, the scores of the positive pairs are im-

proved. For example, the number of positive pairs with a

threshold less than 0.4 is significantly reduced. Second, the

scores of the negative pairs are greatly reduced. Thus our

APA method does improve pose-invariance for faces with

large pose.

(a) (b)

Figure 7. Frequency comparison of similarity scores for set-to-set

face verification on split1 of IJB-A dataset. Low scores represent

negative sample pairs, and high scores represent positive sample

pairs.



Table 2. Recognition performance comparison about feature normalization for standard 1:1 face verification and 1:N face identification on

the IJB-A.

Model FN
1:1 Verification TAR 1:N Identification TPIR

FAR=0.001 FAR=0.01 FAR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

VGGFace [17] + APA (k = 4)
- 0.6435±0.0517 0.8467±0.0229 0.9673±0.0053 0.4907±0.0576 0.7567±0.0303 0.9306±0.0091 0.9785±0.0060 0.9863±0.0042√

0.7142±0.0318 0.8783±0.0201 0.9783±0.0056 0.6197±0.0461 0.8257±0.0172 0.9374±0.0094 0.9817±0.0052 0.9899±0.0037

SENet + Softmax + APA (k = 4) - model-B
- 0.8993±0.0294 0.9710±0.0070 0.9936 ±0.0016 0.8332±0.0499 0.9466±0.0100 0.9831±0.0039 0.9945±0.0021 0.9964±0.0015√

0.9132±0.0226 0.9723±0.0073 0.9928 ±0.0014 0.8771±0.0294 0.9571±0.0066 0.9843±0.0041 0.9951±0.0014 0.9971±0.0017

LResNet100-IR + Arcface + APA (k = 4) - model-E
- 0.9661±0.0094 0.9873±0.0021 0.9948 ±0.0018 0.9306±0.0347 0.9794±0.0038 0.9913±0.0033 0.9960±0.0024 0.9973±0.0001√

0.9734±0.0061 0.9899±0.0018 0.9965 ±0.0013 0.9442±0.0418 0.9834±0.0041 0.9928±0.0030 0.9968±0.0015 0.9977±0.0001

Table 3. Performance comparison on the IJB-A with existing methods. ’-’ implies that the result is not reported for that method. The best

results are given in bold.

Method
1:1 Verification TAR 1:N Identification TPIR

FAR=0.001 FAR=0.01 FAR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

VGG-Face [17] 0.620±0.043 0.834±0.021 0.954±0.005 0.454±0.058 0.784±0.024 0.925±0.008 0.972±0.005 0.983±0.003

PAMs [13] 0.652±0.037 0.826±0.018 - - - 0.840±0.012 0.925±0.008 0.946±0.007

Masi et al. [14] 0.725 0.886 - - - 0.906 0.962 0.977

Template Adaptation [3] 0.836±0.027 0.939±0.013 0.979±0.004 0.774±0.049 0.882±0.016 0.928±0.010 0.977±0.004 0.986±0.003

All-In-One+TPE [21] 0.823±0.020 0.922±0.010 0.976±0.004 0.792±0.020 0.887±0.014 0.947±0.008 - 0.988±0.003

NAN [28] 0.881±0.011 0.941±0.008 0.978±0.003 0.817±0.041 0.917±0.009 0.958±0.005 0.980±0.005 0.986±0.003

L2-softmax [20]+TPE [22] 0.910±0.013 0.951±0.006 0.979±0.003 0.873±0.024 0.931±0.010 0.961±0.007 - 0.983±0.003

TDFF [27]+TPE [22] 0.921±0.005 0.961±0.007 0.989±0.003 0.881±0.039 0.940±0.009 0.964±0.007 0.988±0.003 0.992±0.003

VGGFace2 (SENet) [2] 0.904±0.020 0.958±0.004 0.985±0.002 0.847±0.051 0.930±0.007 0.981±0.003 0.994±0.002 0.996±0.001

VGGFace2-ft (SENet) [2] 0.921±0.014 0.968±0.006 0.990±0.002 0.883±0.038 0.946±0.004 0.982±0.004 0.993±0.002 0.994±0.001

GridFace [32] 0.921±0.008 0.839±0.014 - - - 0.929±0.010 0.962±0.005 -

Ranjan et al.[18] 0.952 0.969 0.984 0.92 0.962 0.975 0.986 0.989

ArcFace [4] (model-C) 0.9564±0.0093 0.9779±0.0040 0.9902 ±0.0015 0.9177±0.0431 0.9697±0.0066 0.9922±0.0032 0.9911±0.0023 0.9929±0.0022

VGG-Face [17] + APA(k=4) 0.7142±0.0318 0.8783±0.0201 0.9783±0.0056 0.6197±0.0461 0.8257±0.0172 0.9374±0.0094 0.9818±0.0052 0.9899±0.0037

model-B - APA(k=4) 0.9132±0.0226 0.9723±0.0073 0.9928 ±0.0014 0.8771±0.0294 0.9571±0.0066 0.9843 ±0.0041 0.9951 ±0.0014 0.9971 ±0.0017

model-E - APA(k=4) 0.9734±0.0061 0.9899±0.0018 0.9965±0.0013 0.9442±0.0418 0.9834±0.0041 0.9928±0.0030 0.9968±0.0015 0.9977±0.0001

3.3.4 The Effect of Feature Normalization

Further improvement is obtained by applying our proposed

feature normalization method. In this experiment, the mean

feature of IJB-A training set of each split is selected as the

central reference feature f re f . In table 2, we report the

improvement for three types of CNN models that we used

(VGGFace [17], model-B and model-E). This table shows

that significant improvement in performance is given by the

feature normalization.

3.3.5 Training Time

The APA method can not only improve the quality of

trained CNN based face recognition model, but it also

shorten the training time of the CNN. In this section, we

compare the training process of the model-C and model-

E. Fig.8 shows the loss curve and training time comparison

of the two models. They are trained with a mini-batch size

of 256 on four GPUs. We start with a learning rate of 0.1,

divide it by 10 at 9K and 13K iterations, and terminational

iteration is set to 14.6K. Note that the convergence of the

model-C is very slow, so we only iterate 12k. It has been

shown that using APA method converges much faster than

randomly cropping images method (no alignment), which

suggests that a good alignment method can simplify the op-

timization. Specially, The training time of model-E is 1.5

times faster than the model-C.

3.3.6 Comparison with State-of-the-art Results

In Table 3, we report a comparison with the state-of-the-art

results on IJB-A dataset. It is clear to see that we have sig-

nificantly improved the recognition rate on IJB-A verifica-

tion and identification and obtain the state-of-the-art results.

Specially, it achieves TAR 97.34% at FAR=0.001, which
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Figure 8. Comparison of loss and training time of LResNet100-IR

network trained with VGGFace2 dataset using two different data

processing methods: randomly cropping faces and using the APA

method to align faces. (a) Loss curve changes. (b) comparison of

training time.

improve over [2] of about 5.4% and about 3% compared to

the state-of-the-art result [4].

3.4. Experiments on IJB­C Dataset

The IJB-C dataset [15] is an extension of the IJB-A

dataset [12]. The IJB-C dataset contains 3,531 unique sub-

jects with a total of 31,334 still images (21,294 face and

10,040 non-face), averaging to ∼ 6 images per subject, and

117,542 video frames collected in unconstrained settings,

averaging to ∼ 33 frames per subject and ∼ 3 videos per

subject. Included with the protocols are two disjoint gal-

leries, gallery 1 (G1) and gallery 2 (G2). These galleries

are disjoint from each other so that opened-set identification

scenarios can be tested. Since the dataset contains two set

of galleries G1 and G2, we report the average performance

of both the gallery sets.

We first use the trained model, provided by Cao et.al

[4] to test on IJB-C dataset. The ResNet-50 (with and

without Squeeze-and-Excitation blocks [9]) is trained on



Table 4. 1:1 Face Verification Evaluation on IJB-C.

Method
IJB-C 1:1 Verification TAR

FAR=10−7 FAR=10−6 FAR=10−5 FAR=10−4 FAR=10−3 FAR=10−2 FAR=10−1

GOTS [15] - 0.030 0.0661 0.1467 0.3304 0.6199 0.8093

FaceNet [23] - 0.2095 0.3330 0.4869 0.6645 0.8176 0.9245

VGGFace [17] - 0.3220 0.4369 0.5975 0.7479 0.8713 0.9564

Crystal loss (model-A) [18] 0.6596 0.7646 0.8625 0.9191 0.9572 0.9783 0.9914

Ranjan et al.[19] 0.559 695 0.869 0.925 0.959 0.979 0.992

VGGFace2(ResNET-50)[2] 0.4295 0.5191 0.6465 0.7607 0.8649 0.9367 0.9763

VGGFace2 ft(ResNET-50)[2] 0.4073 0.5644 0.6881 0.7932 0.8866 0.9463 0.9811

VGGFace2(SENet)[2] 0.4012 0.5353 0.6893 0.8143 0.9019 0.9569 0.9876

VGGFace2 ft(SENet)[2] 0.4169 0.5320 0.6948 0.8116 0.8995 0.9567 0.9874

ArcFace [2] (model-C) 0.5996 0.6877 0.8082 0.8873 0.9418 0.9762 0.9923

model-B - APA(k=4) 0.4590 0.5741 0.7228 0.8436 0.9257 0.9732 0.9935

model-E - APA(k=4) 0.6937 0.7833 0.8550 0.9206 0.9623 0.9842 0.9945

Table 5. 1:N Face Identification Evaluation on IJB-C.

Method
IJB-C 1:N Identification TPIR

FPIR=0.001 FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

GOTS [15] 0.0266 0.0578 0.1560 0.3785 - 0.6024

FaceNet [23] 0.2058 0.3240 0.5098 0.6922 - 0.8136

VGGFace [17] 0.2618 0.4506 0.6275 0.7860 - 0.8920

Crystal loss (model-A) [18] 0.7842 0.8609 0.9191 0.9456 - 0.9753

Ranjan et al.[19] - 0.873 0.9255 0.949 0.9695 0.9755

VGGFace2(ResNet-50)[2] 0.5310 ±0.0166 0.6450±0.0228 0.7648±0.0237 0.8619±0.0175 0.9211±0.0108 0.9396±0.0088

VGGFace2 ft(ResNet-50)[2] 0.5852 ±0.0131 0.6950±0.0177 0.8005±0.0199 0.8814±0.0227 0.9344±0.0178 0.9486 ±0.0138

VGGFace2(SENet)[2] 0.5671 ±0.0042 0.6676±0.0211 0.7790 ±0.0259 0.8745±0.0181 0.9304±0.0101 0.9468±0.0101

VGGFace2 ft(SENet)[2] 0.5728 ±0.0068 0.6914±0.0291 0.8165 ±0.0207 0.8875±0.0208 0.9377 ±0.0172 0.9515±0.0131

ArcFace [4] (model-C) 0.7019 ±0.0160 0.8077±0.0161 0.8933 ±0.0197 0.9357±0.0161 0.9657 ±0.0111 0.9748±0.0081

model-B - APA(k=4) 0.5906±0.0205 0.7206 ±0.0197 0.8565 ±0.0195 0.9146±0.0259 0.9554±0.0156 0.9671±0.0119

model-E - APA(k=4) 0.7604±0.0319 0.8577±0.0339 0.9272±0.0208 0.9560±0.0155 0.9764±0.0098 0.9823±0.0057

VGGFace2 dataset, on MSCeleb-1M dataset, and on their

union. Networks are learned from scratch on VGGFace2

( scratch); Networks are first pretrained on MS1M and

then fine-tuneed on VGGFace2 dataset ( ft) and the trained

model can be downloaded from the Internet 1. All experi-

mental results are shown in Table 4 and Table 5. From the

two tables we can see that for two different baseline, after

using the APA method, recognition performance have been

significantly improved, especially for 1:1 face verification.

3.5. Experiments on LFW and CPLFW Datasets

Furthermore, we evaluate our proposed method with re-

cently reported face verification methods [2] on LFW [10]

and CPLFW [31] datasets. The LFW dataset contains

13,233 web-collected images from 5749 different identi-

ties. We evaluate our methods following the standard pro-

tocol of unrestricted with labeled outside data. The Cross-

Pose LFW (CPLFW) dataset is a renovation of LFW dataset

[10]. It deliberately searches and selects 3,000 positive face

pairs with pose difference to add pose variation to intra-

class variance. Negative pairs with same gender and race

are also selected to reduce the influence of attribute differ-

ence between positive/negative pairs. The CPLFW dataset

is more focused on cross-pose face recognition, and is more

challenging than LFW dataset. We compare our proposed

method with some recent state-of-the-art methods on LFW

and CPLFW datasets (Table 6). We can see that the pro-

posed methods obtain state-of-the-art performance, achiev-

1http://www.robots.ox.ac.uk/˜vgg/data/vgg_

face2/

ing an accuracy of 99.68% on LFW dataset and 91.75% on

CPLFW dataset.

Table 6. Verification accuracy of different methods on LFW and

CPLFW.
Method LFW CPLFW

VGG-Face [31] 97.75% 77.90%

FaceNet [23] 99.63% -

senet50 ft [31] 99.42% 84.45%

model-B 99.63% 86.92%

model-E 99.68% 91.97%

4. Conclusion

In this paper, we propose a APA face alignment method

to perform face recognition with images containing extreme

pose variation. Our method shows that aligning all face to

multi-template is better than single, frontal template, which

can not only reduce intra-class variability but also correct

the noise caused by alignment process. Furthermore, we

also propose a simple, yet effective feature normalization

method. It can be combined with the APA method to gen-

erate better feature representation of a face or template. Ex-

periments on IJB-A and IJB-C datasets achieve state-of-the-

art results for both face verification and face identification

tasks.
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