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Abstract

Drowsiness can put lives of many drivers and workers

in danger. It is important to design practical and easy-to-

deploy real-world systems to detect the onset of drowsiness.

In this paper, we address early drowsiness detection, which

can provide early alerts and offer subjects ample time to

react. We present a large and public real-life dataset1 of

60 subjects, with video segments labeled as alert, low vig-

ilant, or drowsy. This dataset consists of around 30 hours

of video, with contents ranging from subtle signs of drowsi-

ness to more obvious ones. We also benchmark a tempo-

ral model2 for our dataset, which has low computational

and storage demands. The core of our proposed method is

a Hierarchical Multiscale Long Short-Term Memory (HM-

LSTM) network, that is fed by detected blink features in se-

quence. Our experiments demonstrate the relationship be-

tween the sequential blink features and drowsiness. In the

experimental results, our baseline method produces higher

accuracy than human judgment.

1. Introduction

Drowsiness detection is an important problem. Success-

ful solutions have applications in domains such as driv-

ing and workplace. For example, in driving, National

Highway Traffic Safety Administration in the US estimates

that 100,000 police-reported crashes are the direct result

of driver fatigue each year. This results in an estimated

1,550 deaths, 71,000 injuries, and $12.5 billion in mone-

tary losses [4]. To put this into perspective, an estimated 1

in 25 adult drivers report having fallen asleep while driving

in the previous 30 days [30, 31]. In addition, studies show

that, when driving for a long period of time, drivers lose

their self-judgment on how drowsy they are [23], and this

can be one of the reasons that many accidents occur close

to the destination. Research has also shown that sleepiness

can affect workers’ ability to perform their work safely and

efficiently [1, 22]. All these troubling facts motivate the

1Available on: sites.google.com/view/utarldd/home
2Code available on: https://github.com/rezaghoddoosian

Figure 1. Sample frames from the RLDD dataset in the alert (first

row), low vigilant (second row) and drowsy (third row) states.

need for an economical solution that can detect drowsiness

in early stages. It is commonly agreed [28, 20, 18] that

there are three types of sources of information in drowsi-

ness detection: Performance measurements, physiological

measurements, and behavioral measurements.

For instance, in the driving domain, performance mea-

surements focus on steering wheel movements, driving

speed, brake patterns, and lane deviations. An example is

the Attention Assist system by Mercedes Benz [3]. As prac-

tical as these methods can be, such technologies are often-

times reserved for high-end models, as they are too expen-

sive to be accessible to the average consumer. Performance

measurements at workplace can be obtained by testing

workers’ reaction time and short-term memory [22]. Phys-

iological measurements such as heart rate, electrocardio-

gram (ECG), electromyogram (EMG), electroencephalo-

gram (EEG) [16, 27] and electrooculogram (EOG) [27] can

be used to monitor drowsiness. However, such methods are

intrusive and not practical to use in the car or workspace

despite their high accuracy. Wearable hats have been pro-

posed as an alternative for such measurements [2], but they

are also not practical to use for long hours.

Behavioral measurements are obtained from facial

movements and expressions using non-intrusive sensors like

cameras. In Johns’s work [12], blinking parameters are

measured by light-emitting diodes. However, this method



is sensitive to occlusions, where some object such as a hand

is placed between the light emitting diode and the eyes.

Phone cameras are an accessible and cheap alternative to

the aforementioned methods. One of the goals of this pa-

per is to introduce and investigate an end-to-end processing

pipeline that uses input from phone cameras to detect both

subtle and more clearly expressed signs of drowsiness in

real time. This pipeline is computationally cheap so that it

could ultimately be implemented as a cell phone application

available for the general public.

Previous work in this field mostly focused on detecting

extreme drowsiness with explicit signs such as yawning,

nodding off and prolonged eye closure [19, 20, 24]. How-

ever, for drivers and workers, such explicit signs may not

appear until only moments before an accident. Thus, there

is significant value in detecting drowsiness at an early stage,

to provide more time for appropriate responses. The pro-

posed dataset represents subtle facial signs of drowsiness as

well as the more explicit and easily observable signs, and

thus it is an appropriate dataset for evaluating early drowsi-

ness detection methods.

Our data consists of around 30 hours of RGB videos,

recorded in indoor real-life environments by various cell

phone/web cameras. The frame rates are below 30 fps,

which makes drowsiness detection more challenging, as

blinks are not observed as clearly as in high frame-rate

videos. The videos in the dataset are labeled using three

class labels: alertness, low vigilance, and drowsiness

(Fig.1). The videos have been obtained from 60 partici-

pants. The need for research in early drowsiness detection

is further illustrated by experiments we have conducted,

where we asked twenty individuals to classify videos from

our dataset into the three predefined classes. The average

accuracy of the human observers was under 60%. This

low accuracy indicates the challenging nature of the early

drowsiness detection problem.

In addition to contributing a large and public realistic

drowsiness dataset, we also implement a baseline method

and include quantitative results from that method in the ex-

periments. The proposed method leverages the temporal

information of the video using a Hierarchical Multiscale

LSTM (HM-LSTM) network [7] and voting, to model the

relationship between blinking and state of alertness. The

proposed baseline method produces higher accuracy than

human judgment in our experimental results.

Previous work on drowsiness detection produced results

on datasets that were either private [9] or acted [19, 20].

By “acted” we mean data where subjects were instructed to

simulate drowsiness, compared to “realistic” data, such as

ours, where subjects were indeed drowsy in the correspond-

ing videos. The lack of large, public, and realistic datasets

has been pointed out by researchers in the field [18, 19, 20].

Our work is motivated to some extent by the driving do-

main (i.e., camera angle and distance in our dataset, and the

calibration period in our method as explained in Sec. 4.2).

However, our dataset has not been obtained from driving

and it does not capture some important aspects of driving

such as night lighting and camera vibration due to car mo-

tion. Given these aspects of our dataset, we do not claim

that our dataset and results represent driving conditions. At

the same time, the data and the proposed baseline method

can be useful for researchers targeting other applications

of drowsiness detection, for example in workplace environ-

ments.

The proposed dataset offers significant advantages over

existing public datasets for drowsiness detection, regardless

of whether those existing datasets have been motivated by

the driving domain or not: (a) it is the largest to date public

drowsiness detection dataset, (b) the drowsiness samples are

real drowsiness as opposed to acted drowsiness in [29], and

(c) the data were obtained using different cameras. Each

subject recorded themselves using their cell phone or web

camera, in an indoor real-life environment of their choice.

This is in contrast to existing datasets [29, 16] where record-

ings were made in a lab setting, with the same background,

camera model, and camera position.

Other contributions of this paper can be summarized as

follows: (a) introducing, as a baseline method, an end-to-

end real time drowsiness detection pipeline based on low

frame rates resulting in a higher accuracy than that of human

observers, and (b) combining blinking features with Hier-

archical Multiscale Recurrent Neural Networks to tackle

drowsiness detection using subtle cues. These cues, which

can be easily missed by human observers, are useful for de-

tecting the onset of drowsiness at an early stage, before it

reaches dangerous levels.

2. Related Work

Drowsiness Detection has been studied over several

years. In the rest of this section, a review of the available

datasets and existing methods will be provided.

2.1. Datasets

As pointed out above, there are numerous works in

drowsiness detection, but none of them uses a dataset that

is both public and realistic. As a result, it is difficult to

compare prior methods to each other and to decide what

the state of the art is in this area. Several existing meth-

ods [12, 17, 26, 28, 34] were evaluated on a small number of

subjects without sharing the videos. In some cases [11, 20]

the subjects were instructed to act drowsy, as opposed to

obtaining data from subjects who were really drowsy.

Some datasets [33, 32, 15] have been created for short

and general micro expression detection which are not ap-

plicable specifically for drowsiness detection. The NTHU-

driver drowsiness detection dataset is a public dataset which



Figure 2. The model design and configuration.

contains IR videos of 36 participants while they simulate

driving [29]. However, it is based on subjects pretending

to be drowsy, and it is an open question whether and to

what extent videos of pretended drowsiness are useful train-

ing data for detecting real drowsiness, especially at an early

stage.

The DROZY dataset [16], contains multiple types of

drowsiness-related data including signals such as EEG,

EOG and near-infrared (NIR) images. An advantage of the

DROZY dataset is that drowsiness data are obtained by sub-

jects who are really drowsy, as opposed to pretending to be

drowsy. Compared to the DROZY dataset, our dataset has

three advantages: First, we have a substantially larger num-

ber of subjects (60 as opposed to 14). Second, for each sub-

ject, we have data showing that subject in each of the three

predefined alertness classes, whereas in the DROZY dataset

some subjects are not recorded in all three states. Third, in

DROZY all videos were captured using the same camera

position and background, under controlled lab conditions,

whereas in our dataset each subject used their own cell

phone and a different background. Compared to DROZY,

our dataset also has the important difference that it provides

color video, whereas DROZY offers several other modali-

ties, but only NIR video.

Last but not least, Friedrichs and Yang [9], used 90 hours

of real driving to train and evaluate their method, but their

dataset is private and not available as a benchmark.

2.2. Drowsiness Detection Methods

Features in non-intrusive drowsiness detection by cam-

eras are divided into handcrafted features or features learned

automatically using CNNs. Regarding handcrafted features,

the most informative facial region about drowsiness is the

eyes, and commonly used features are usually related to

blinking behavior. McIntire et al. [17] show how blink fre-

quency and duration normally increase with fatigue by mea-

suring the reaction time and using an eye tracker. Svens-

son [27] has shown that the amplitude of blinks can also

be an important factor. Friedrichs and Yang [9] investigate

many blinking features like eye opening velocity, average

eye closure speed, blink duration, micro sleeps and energy

of blinks as well as head movement information. They re-

port a final classification rate of 82.5% on their own private

dataset, which is noticeably larger than the 65.2% accuracy

that we report in our experiments. However, all the features

in [9] are extracted using the Seeing Machines sensor [5]

that uses not only video information (with the frame rate of

60 fps) but also the speed of the car, GPS information and

head movement signals to detect drowsiness. In contrast, in

our work the data come from a cell phone/web camera.

Recent research examines the effectiveness of Deep

Neural Networks for end-to-end feature extraction and

drowsiness detection, as opposed to the works that use

handcrafted features with conventional classifiers or re-

gressors such as regression and discriminant analysis

(LDA) [26], or fitting a 2D Gaussian with thresholding [12].

The results of the mentioned studies were not validated

based on a large or public dataset.

Park et al. [19] fine-tune three CNNs and apply an SVM

to the combined features of those three networks to classify

each frame into four classes of alert, yawning, nodding and

drowsy with blinking. The model is trained on the NTHU

drowsiness dataset that is based on pretended drowsiness,

and tested on the evaluation portion of NTHU dataset which

includes 20 videos of only four people, resulting in 73%

drowsiness detection accuracy. We should note that the

accuracy we report in our experiment is 65.2%, which is

lower that the 73% accuracy reported in [19]. However, the

method of [19] was evaluated on pretended data, where the

signs of drowsiness tend to be easily visible and even exag-

gerated. Also, the work of Park et al. does not consider

pooling the temporal information in the videos and clas-

sifies each frame independently, thus it can only classify

based on the clear signs of drowsiness.



Bhargava et al. [20] show how a distilled deep network

can be of use for embedded systems. This is relevant to the

baseline method proposed in this paper, which also aims

for low computational requirements. The reported accuracy

in [20] is 89% using three classes (alert, yawning, drowsy),

based on training on patches of eyes and lips. Similar to

Park et al.’s work, Bhargava et al.’s network also classifies

each frame independently, thus not using temporal features.

The dataset they used is private, and based on acted drowsi-

ness, so it is difficult to compare those results to the results

reported in this paper.

3. The Real-Life Drowsiness Dataset (RLDD)

3.1. Overview

The RLDD dataset was created for the task of multi-

stage drowsiness detection, targeting not only extreme and

easily visible cases, but also subtle cases of drowsiness. De-

tection of these subtle cases can be important for detecting

drowsiness at an early stage, so as to activate drowsiness

prevention mechanisms. Our RLDD dataset is the largest to

date realistic drowsiness dataset.

The RLDD dataset consists of around 30 hours of RGB

videos of 60 healthy participants. For each participant we

obtained one video for each of three different classes: alert-

ness, low vigilance, and drowsiness, for a total of 180

videos. Subjects were undergraduate or graduate students

and staff members who took part voluntarily or upon receiv-

ing extra credit in a course. All participants were over 18

years old. There were 51 men and 9 women, from different

ethnicities (10 Caucasian, 5 non-white Hispanic, 30 Indo-

Aryan and Dravidian, 8 Middle Eastern, and 7 East Asian)

and ages (from 20 to 59 years old with a mean of 25 and

standard deviation of 6). The subjects wore glasses in 21 of

the 180 videos, and had considerable facial hair in 72 out of

the 180 videos. Videos were taken from roughly different

angles in different real-life environments and backgrounds.

Each video was self-recorded by the participant, using their

cell phone or web camera. The frame rate was always less

than 30 fps, which is representative of the frame rate ex-

pected of typical cameras used by the general population.

3.2. Data Collection

In this section we describe how we collected the videos

for the RLDD dataset. Sixty healthy participants took part

in the data collection. After signing the consent form, sub-

jects were instructed to take three videos of themselves by

their phone/web camera (of any model or type) in three dif-

ferent drowsiness states, based on the KSS table [6] (Table

1), for around ten minutes each. The subjects were asked to

upload the videos as well as their corresponding labels on an

online portal provided via a link. Subjects were given am-

ple time (20 days) to produce the three videos. Furthermore,

1- Extremely alert

2- Very alert

3- Alert

4- Rather alert

5- Neither alert nor sleepy

6- Some signs of sleepiness

7- Sleepy, no difficulty remaining awake

8- Sleepy, some effort to keep alert

9- Extremely sleepy, fighting sleep

Table 1. KSS drowsiness scale

they were given the freedom to record the videos at home

or at the university, any time they felt alert, low vigilant

or drowsy, while keeping the camera set up (angle and dis-

tance) roughly the same. All videos were recorded in such

an angle that both eyes were visible, and the camera was

placed within a distance of one arm length from the subject.

These instructions were used to make the videos similar to

videos that would be obtained in a car, by phone placed in

a phone holder on the dash of the car while driving. The

proposed set up was to lay the phone against the display of

their laptop while they are watching or reading something

on their computer. After a participant uploaded the three

videos, we watched the entire videos to verify their authen-

ticity and to make sure that our instructions were followed.

In case of any question, we contacted the participants and

asked them to share more details about the situation under

which they recorded each video. In some cases, we asked

them to redo the recordings and if the videos were clearly

not realistic (people faking drowsiness as opposed to being

drowsy) or off the standard, we simply ignored those videos

for quality reasons. The three classes were explained to the

participants as follows:

1) Alert: One of the first three states highlighted in the

KSS table in Table 1. Subjects were told that being alert

meant they were experiencing no signs of sleepiness.

2) Low Vigilant: As stated in level 6 and 7 of Table 1,

this state corresponds to subtle cases when some signs of

sleepiness appear, or sleepiness is present but no effort to

keep alert is required.

3) Drowsy: This state means that the subject needs to

actively try to not fall asleep (level 8 and 9 in Table 1).

3.3. Content

This dataset consists of 180 RGB videos. Each video is

around ten minutes long, and is labeled as belonging to one

of three classes: alert (labeled as 0), low vigilant (labeled

as 5) and drowsy (labeled as 10). The labels were provided

by the participants themselves, based on their predominant

state while recording each video. Clearly there is a subjec-

tive element in deciding these labels, but we did not find a

good way to remedy that problem, given the absence of any

sensor that could provide an objective measure of alertness.

This type of labeling takes into account and emphasizes the

transition from alertness to drowsiness. Each set of videos



was recorded by a personal cell phone or web camera re-

sulting in various video resolutions and qualities. The 60

subjects were randomly divided into five folds of 12 partic-

ipants, for the purpose of cross validation. The dataset has

a total size of 111.3 Gigabytes.

3.4. Human Judgment Baseline

We conducted a set of experiments to measure human

judgment in multi-stage drowsiness detection. In these ex-

periments, we asked four volunteers per fold (20 volunteers

in total) to watch the unlabeled and muted videos in each

fold and write down a real number between 0 to 10 estimat-

ing the drowsiness degree per video (see Table 1). Before

the experiment, volunteers (8 female and 12 male, 3 un-

dergraduates and 17 graduate students) were shown some

sample videos that illustrated the drowsiness scale. Then,

they were left alone in a room to watch the videos (they

were allowed to rewind back or fast forward the videos at

will) and annotate them. In order to make sure that each

judgment was independent of the other videos of the same

person, volunteers were instructed to annotate one video

of each subject before annotating a second video for any

subject. Results of these experiments are demonstrated in

section 5.3 and compared with the results of our baseline

method. Observers (aged 26.1 ± 2.9 (mean ± SD)) were

from computer science, psychology, nursing, social work

and information systems majors.

4. The Proposed Baseline Method

In this section, we discuss the individual components

of our proposed multi-stage drowsiness detection pipeline.

The blink detection and blink feature extraction are de-

scribed first. Then we discuss how we integrate a Hierarchi-

cal Multiscale LSTM module into our model, how we for-

mulate drowsiness detection initially as a regression prob-

lem, and how we discretize the regression output to obtain

a classification label per video segment. Finally, we discuss

the voting process that is applied on top of classification re-

sults of all segments of a video.

4.1. Blink Detection and Blink Feature Extraction

The motivation behind using blink-related features such

as blink duration, amplitude, and eye opening velocity, was

to capture temporal patterns that appear naturally in human

eyes and might be overlooked by spatial feature detectors

like CNNs (as it is the case for human vision shown in

our experiments). We used dlib’s pre-trained face detec-

tor based on a modification to the standard Histogram of

Oriented Gradients + Linear SVM method for object detec-

tion [8].

We improved the algorithm by Soukupová and Cech [25]

to detect eye blinks, using six facial landmarks per eye de-

scribed in [13] to extract consecutive quick blinks that were

initially missed in Soukupová and Cech’s work. Kazemi

and Sullivan’s [13] facial landmark detector is trained on

an “in-the-wild dataset”, thus it is more robust to vary-

ing illumination, various facial expressions, and moderate

non-frontal head rotations, compared to correlation match-

ing with eye templates or a heuristic horizontal or vertical

image intensity projection [25]. In our experiments, we

noticed that the approach of [25] typically detected con-

secutive blinks as a single blink. This created a problem

for subsequent steps of drowsiness detection, since multiple

consecutive blinks can be a sign of drowsiness. We added

a post-processing step (Blink Retrieval Algorithm), and ap-

plied on top of the output of [25], so as to successfully iden-

tify the multiple blinks which may be present in a single de-

tection produced by [25]. Our post-processing step, while

lengthy to describe, relies on heuristics and does not con-

stitute a research contribution. To allow our results to be

duplicated, we provide the details of that post-processing

step as supplementary material.
The input to the blink detection module is the entire

video (with a length of approximately ten minutes in our
dataset). In a real-world application of drowsiness detec-
tion, where a decision should be made every few minutes,
the input could simply consist of the last few minutes of
video. The output of the blink detection module is a se-
quence of blink events {blink1, ...,blinkK}. Each blinki

is a four-dimensional vector containing four features de-
scribing the blink: duration, amplitude, eye opening veloc-
ity, and frequency. For each blink event blinki, we de-
fined starti, bottomi, and endi as the “start”, “bottom”
and “end” points (frames) in that blink (Fig.3a) explained
in the Blink Retrieval Algorithm. Also, for each frame k,
we denoted:

EAR[k] =
|| ~p2 − ~p6||+ || ~p3 − ~p5||

|| ~p1 − ~p4||
(1)

where ~pi is the 2D location of a facial landmark from the
eye region (Fig.3b). Using this notation, we define four
main scale invariant features that we extract from blinki.
These are the features that we use for our baseline drowsi-
ness detection method:

Durationi = endi − starti + 1 (2)

Amplitudei =
EAR[starti]− 2EAR[bottomi] + EAR[endi]

2
(3)

Eye Opening Velocityi =
EAR[endi]− EAR[bottomi]

endi − bottomi

(4)

Frequencyi = 100×
Number of blinks up to blinki

Number of frames up to endi
(5)

4.2. Drowsiness Detection Pipeline

Preprocessing: A big challenge in using blink features
for drowsiness detection is the difference in blinking pattern



(a) (b)

Figure 3. (a) The EAR sequence during an entire blink and the

start, bottom and end points. (b) The eye landmarks to define EAR

for each frame.

across individuals [9, 11, 27, 21], so features should be nor-
malized across subjects if we are going to train the whole
data together at once. In order to tackle this challenge, we
use the first third of the blinks of the alert state to compute
the mean and standard deviation of each feature for each in-
dividual, and then use Equation 6 to normalize the rest of
the alert state blinks as well as the blinks in the other two
states of the same person(m) and feature(n):

Featuren,m =
Featuren,m − µn,m

σn,m

(6)

Here, µn,m and σn,m are the mean and standard deviation

of feature n in the first third of the blinks of the alert state

video for subject m.

We do this normalization for both the training and test

data of all subjects and features. A similar approach has

been taken in [11, 27]. This normalization is a realistic con-

straint: when a driver starts driving a new car or a worker

starts working, the camera can use the first few minutes

(during which the person is expected to be alert) to com-

pute the mean and variance, and calibrate the system. This

calibration can be used for all subsequent trips or sessions.

The detector decides the state of the subject relative to the

statistics collected during the calibration stage. We should

clarify that, in our experiments, the alert state blinks used

for normalization are never used again either for training or

testing. After the per-individual normalization, we perform

a second normalization step, where we normalize each fea-

ture so that, across individuals, the distribution of the fea-

ture has a mean of zero and a variance of one.
Feature Transformation Layer: Instead of defining a

large number of features initially, and then selecting the
most relevant ones[9], we let the network use the four main
blink features and learn to map them to a higher dimen-
sional feature space to minimize the loss function. The goal
of the fully connected layer before the HM-LSTM module
is to take each 4D feature vector at each time step as in-
put and transform it to an L dimensional space with shared
weights (W ∈ R

4×L) and biases (b ∈ R
1×L) across time

steps. Define T as the number of time steps used for the
HM-LSTM Network and fi ∈ R

1×L for each blink at each
time step i , so that:

F = ReLU(BW + b) (7)

where F =
[

f
T
1 , fT2 , ..., fT

T

]T
, b =

[

b
T ,bT , ...,bT

]T
,

b ∈ R
T×L and B =

[

blink
T
1 ,blink

T
2 , ...,blink

T
T

]T

.

HM-LSTM Network: Our approach introduces a tem-

poral model to detect drowsiness. The work by[28], using

Hidden Markov Model (HMM), suggests that drowsiness

features follow a pattern over time. Thus, we used an HM-

LSTM network[7] to leverage the temporal pattern in blink-

ing. It is also ambiguous how each blink is related to the

other blinks or how many blinks in succession can affect

each other. To remedy this challenge, we used HM-LSTM

cells to discover the underlying hierarchical structure in a

blink sequence.

Chung et al. [7] introduces a parametrized boundary de-

tector, which outputs a binary value, in each layer of a

stacked RNN. For this boundary detector, positive output

for a layer at a specific time step signifies the end of a seg-

ment corresponding to the latent abstraction level for that

layer. Each cell state is “updated”, “copied” or “flushed”

based on the values of the adjacent boundary detectors. As

a result, HM-LSTM networks tend to learn fine timescales

for low-level layers and coarse timescales for high-level lay-

ers. This dynamic hierarchical analysis allows the network

to consider blinks both in short and long segments, depend-

ing on when the boundary detector is activated for each cell.

For additional details about HM-LSTM, we refer the read-

ers to [7].

The HM-LSTM network takes each row of F as input at

each time step and outputs a hidden state hl ∈ R
1×H only

at the last time step for each layer l. H is the number of

hidden states per layer.
Fully Connected Layers: We added a fully connected

layer (with W1,l ∈ R
H×L1 as weights and b1,l ∈ R

1×L1 as
biases) to the output of each layer l with L1 units to capture
the results of the HM-LSTM network from different hierar-
chical perspectives separately. Define e1l ∈ R

1×L1 for each
layer, so that:

e1l = ReLU(hlW1,l + b1,l) (8)

Then, we concatenated e1l ∀ l ∈ {i|i = 1, 2, ..., L} to form

e1 = [e11, e12, ..., e1L], where e1 ∈ R
1×(L1.L) and L is the

number of layers.

Similarly, as shown in Fig. 2, e1 is fed to more fully

connected layers (with ReLU as their activation functions)

in FC2,FC3 and FC4, resulting in e4 ∈ R
1×(L4), where L4

is the number of units in FC4.
Regression Unit: A single node at the end of this net-

work determines the degree of drowsiness by outputting a
real number from 0 to 10 depending on how alert or drowsy
the input blinks are (Eq.9). This 0 to 10 scale helps the
network to model the natural transition from alertness to
drowsiness unlike the previous works [19, 20], where inputs
were classified directly into different classes discretely.

out = 10× Sigmoid(e4Wo + bo) (9)



Here, Wo ∈ R
L4×1 and bo ∈ R

1×1 are the regression

parameters, and out ∈ R
1×1 is the final regression output.

Discretization and Voting: When someone is drowsy,
it does not mean that all their blinks will necessarily repre-
sent drowsiness. As a result, it is important to classify the
drowsiness level of each video as the most dominant state
predicted from all blink sequences in that video. As the first
step, we used Eq.10 to discretize the regression output to
each of the predefined classes.

class(out) =







Alert, 0.0 ≤ out < 3.3
LowV igilant, 3.3 ≤ out ≤ 6.6

Drowsy, 6.6 < out ≤ 10
(10)

Suppose there are K blinks in video V. Using a sliding win-

dow of length T, each T consecutive blinks form a blink

sequence that is given as input to the network (Eq.7), result-

ing in possibly multiple blink sequences. The most frequent

predicted class from these multiple sequences would be the

final classification result of video V. The positive effect of

voting is shown later in our results.
Loss Function: Our model learns not to penalize pre-

dictions (outi) that are within a certain distance
√
∆ of true

labels (ti) for all N training sequences, and instead penal-
izes less accurate predictions quadratically by their squared
error. As a result, our model is more concerned about classi-
fying each sequence correctly rather than perfect regression.
This attribute helps us to jointly do regression and classifi-
cation by minimizing the following loss function:

loss =

∑N

i=1
max(0, |outi − ti|

2 −∆)

N
(11)

5. Experiments

5.1. Evaluation Metrics

We designed four metrics to fully evaluate our model

from different views and at various stages of the pipeline.

Blink Sequence Accuracy (BSA): This metric evaluates

the results before “the voting stage” and after “discretiza-

tion” across all test blink sequences.
Blink Sequence Regression Error (BSRE): We define

BSRE as follows:

BSRE =

∑M

i=1
Cs

i |outi − Si|
2

M
(12)

In the above equation, Cs
i is a binary value, equal to 0

if the i-th blink segment has been classified correctly, and

equal to 1 otherwise. Eq.12 penalizes each wrongly classi-

fied blink sequence i by a term quadratic to the distance of

the regressed output to the nearest true state border (Si) de-

fined in Eq.10. Blink sequences classified correctly do not

contribute to the BSRE error.

Video Accuracy (VA): “Video Accuracy” is the main

metric of accuracy, it is equal to the percentage of entire

(a) (b)

Figure 4. The effect of blink sequence size and ∆ to the accuracy

metrics.

videos (not individual video segments) that have been clas-

sified correctly.
Video Regression Error (VRE): VRE is defined as:

V RE =

∑Q

j=1
Cv

j |
1

Kj

∑Kj

i=1
(outi,j)− Sj |

2

Q
(13)

In the above, Q is the total number of videos in the test

set, and Cv
j is a binary value, equal to 0 if the j-th video

has been classified correctly and equal to 1 otherwise. Kj

is the number of all blink sequences in video j. Correctly

classified videos do not contribute at all to the VRE error.

For a fixed VA, the value of VRE indicates the margin of

error for wrongly classfied videos.

5.2. Implementation

We used one fold of the RLDD dataset as our test set, and

the remaining four folds for training. After repeating this

process for each fold, the results were averaged across the

five folds. For parameter T defined in Section 4.2, which

specifies the number of consecutive blinks provided as in-

put to the network, we used a value of 30 (Fig. 4a). Videos

with less than 30 blinks were zero padded. Blink sequences

were generated by applying this sliding window of 30 blinks

on each video, with a stride of two. If the window size is

too large, the long dependency on previous blinks can sig-

nificantly delay the correct output while transitioning from

one state to the other.

We annotated all sequences with the label of the video

they were taken from. Our model was trained on around

7000 blink sequences (depending on the training fold) us-

ing Adam optimizer [14] with a learning rate of 0.000053,

∆ of 1.253 (Fig.4b), and batch size of 64 for 80 epochs in

all five folds. We also used batch normalization and L2 reg-

ularization with a coefficient (λ) of 0.1. The HM-LSTM

module has four layers with 32 hidden states for each layer.

More details about the architecture is shown in Fig.2.

5.3. Experimental Results

In this section, we evaluate our baseline method with re-

spect to the human judgment benchmark explained in sec-

tion 3.4. Due to lack of a state-of-the-art method on a re-

alistic and public dataset, we compare our baseline method

with two variations of our pipeline to show that the whole



Model Evaluation Metric

BSRE VRE BSA VA

HM-LSTM network 1.90 1.14 54% 65.2%

LSTM network 3.42 2.68 52.8% 61.4%

Fully connected layers 2.85 2.17 52% 57%

Human judgment — 2.01 — 57.8%

Table 2. This table numerically compares the performance of our

model with two simplified versions of the network and human

judgment using four predefined metrics. The above values are the

final averaged values across all test folds.

pipeline performs best with HM-LSTM cells. The first ver-

sion has the same architecture, as our network, with typical

LSTM cells [10] used instead of HM-LSTM cells. The sec-

ond version is a simpler version with the same architecture

after removing the HM-LSTM module, where the input se-

quence is fed to a fully connected multilayer network.

The results of our comparison with these two variations

and the human judgment benchmark are listed in Table 2.

This table shows the final cross validation results of drowsi-

ness detection by the predefined metrics. This compari-

son not only highlights the temporal information in blinks,

but also shows the 4% increase in accuracy we gained af-

ter switching to HM-LSTM from typical LSTM cells. As

indicated by BSRE and VRE metrics in Table 2, the mar-

gin of error for regression is also considerably lower in the

HM-LSTM network compared to the other two. The results

for LSTM and HM-LSTM networks suggest that tempo-

ral models provide better solutions for drowsiness detection

than simple fully connected layers.

As mentioned before, all blink sequences in each video

were labeled the same. However, in reality, not all blinks

represent the same level of drowsiness. This discrepancy

is an important reason that BSA is not high, and “voting”

makes up for that resulting in a higher accuracy in VA.

Fig.5a shows that the middle class (low vigilant) is, as

expected, the hardest to classify, where it is mostly misclas-

sified for “drowsy”. On the other hand, our model classifies

alert and drowsy subjects very confidently with over 80%

accuracy, and rarely misclassifies alertness for drowsiness

or vice versa. This means, that the results are mostly reli-

able in practice.

In addition, our model detects early signs and subtle

cases of drowsiness better than humans in the RLDD dataset

by just analyzing the temporal blinking behavior. The de-

tailed quantitative results for all folds and the final aver-

aged values are listed in Table 3 and Table 2 respectively.

Our drowsiness detection model has approximately 50,000

trainable parameters. Storing those parameters does not oc-

cupy much memory space, and thus the model can be easily

stored on even low-end cell phones. In terms of running

time (at the evaluation stage, after training ), the end-to-end

(a) (b)

Figure 5. Confusion matrices for: (a) our proposed model and (b)

human judgment results (video accuracy).

Case Metric-Fold

A-f1 R-f1 A-f2 R-f2 A-f3 R-f3 A-f4 R-f4 A-f5 R-f5

PM 0.64 2.42 0.61 1.04 0.70 0.58 0.64 0.85 0.67 0.81

HJ 0.62 1.37 0.59 2.3 0.60 1.96 0.53 2.32 0.55 2.07

A-f i: VA for fold i

R-f i: VRE for fold i

Table 3. Results of our Proposed Model (PM) and Human Judg-

ment (HJ) measured by VA and VRE

system processes approximately 35-80 frames per second

( for the frame size range of 568x320 to 1920x1080), on

a Linux workstation with an Intel Xeon CPU E3-1270 V2

processor running at 3.5 GHz, and with 16GB of memory.

6. Conclusions

In this paper, we presented a new and publicly available

real-life drowsiness dataset (RLDD), which, to the best of

our knowledge, is significantly larger than existing datasets,

with almost 30 hours of video. We have also proposed

an end-to-end baseline method using the temporal relation-

ship between blinks for multistage drowsiness detection.

The proposed method has low computational and storage

demands. Our results demonstrated that our method out-

performs human judgment in two designed metrics on the

RLDD dataset.

One possible topic for future work is to add a spatial deep

network to learn other features of drowsiness besides blinks

in the video. In general, moving from handcrafted features

to an end-to-end learning system is an interesting topic, but

the amount of training data that would be necessary is not

clear at this point. Overall, we hope that the proposed pub-

lic dataset will also encourage other researchers to work on

drowsiness detection and produce additional and improved

results, that can be duplicated and compared to each other.
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[6] T. Åkerstedt and M. Gillberg. Subjective and objective

sleepiness in the active individual. International Journal of

Neuroscience, 52(1-2):29–37, 1990. 4

[7] J. Chung, S. Ahn, and Y. Bengio. Hierarchical multiscale

recurrent neural networks. arXiv preprint arXiv:1609.01704,

2016. 2, 6

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In Computer Vision and Pattern Recogni-

tion, 2005. CVPR 2005. IEEE Computer Society Conference

on, volume 1, pages 886–893. IEEE, 2005. 5

[9] F. Friedrichs and B. Yang. Camera-based drowsiness refer-

ence for driver state classification under real driving condi-

tions. In Intelligent Vehicles Symposium (IV), 2010 IEEE,

pages 101–106. IEEE, 2010. 2, 3, 6

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997. 8

[11] J. Jo, S. J. Lee, K. R. Park, I.-J. Kim, and J. Kim. Detect-

ing driver drowsiness using feature-level fusion and user-

specific classification. Expert Systems with Applications,

41(4):1139–1152, 2014. 2, 6

[12] M. Johns et al. The amplitude-velocity ratio of blinks: a

new method for monitoring drowsiness. Sleep, 26(SUPPL.),

2003. 1, 2, 3

[13] V. Kazemi and J. Sullivan. One millisecond face alignment

with an ensemble of regression trees. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1867–1874, 2014. 5

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 7

[15] X. Li, T. Pfister, X. Huang, G. Zhao, and M. Pietikäinen.
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