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Abstract

Automated facial expression classification has

widespread application in multiple domains such as

human computer interaction, health and entertainment,

biometrics, and security. There are six basic facial ex-

pressions: Anger, Disgust, Fear, Happiness, Sadness, and

Surprise, apart from a neutral state. Most of the research in

expression classification has focused on adult face images,

with no dedicated research on automating expression

classification for children. To the best of our knowledge,

this is the first research which presents a deep learning

based expression classification approach for children. A

novel supervised deep learning formulation, termed as

Mean Supervised Deep Boltzmann Machine (msDBM) is

proposed which classifies an input face image into one

of the seven expression classes. The proposed approach

has been evaluated on two child face datasets - Radboud

Faces and CAFE, along with experiments on the adult face

images of the Radboud Faces dataset. Experimental results

and analysis reinforces the challenging nature of the task at

hand, and the effectiveness of the proposed msDBM model.

1. Introduction

Facial expressions are caused by the movement of facial

muscles, and often convey the emotional state of a person.

Based on the commonality in the change of facial muscles,

there exist six forms of universally accepted emotions since

1992: anger, disgust, fear, happiness, sadness, and sur-

prise [10]. Expressions are one of the earliest forms of com-

munication, and recent literature has focused on automat-

ing the task of expression classification [2, 13, 29]. How-

ever, since each individual has a unique way of expression,

the classification task suffers from the inherent challenge of

low inter-class and large intra-class variations. Automated

facial expression classification [5,31] has widespread appli-

cation in different domains such as human computer inter-
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Figure 1: Images depicting the variations observed for

Anger and Happy in adults and children. All images are

taken from the Internet.

action, affective computing, health, and entertainment. It

can also be used for monitoring patients incapable of other

modes of communication, and for building automated psy-

chological profiles. In literature, it has been studied that

the expressions of each individual are unique [8], and thus

can be utilized as ancillary information for biometric recog-

nition as well. Moreover, due to the increased intra-class

variations caused by varying expressions, expression nor-

malization has also aided in improving the performance of

existing face recognition models [33, 51].

While facial expression classification has garnered sig-

nificant attention over the past few years, most of the re-

search has focused on expression classification in adults

with limited attention to child expression classification.

Children are known to be more expressive in case of pos-

itive emotions, while projecting ambiguous expressions in

case of negative emotions [15, 26]. Figure 1 presents sam-

ple face images for two expressions of angry and happy, for

adults and children. Owing to the expressive nature of chil-

dren, large variations can be observed between samples of

the same class, thereby rendering the problem of automated

expression classification further challenging in their case.

With the advancement in technology and its increased

applicability in our routine life, there exist several scenarios



which demand an automated expression recognition system,

particularly for children. Such a system has utility in day-

care centres or crèches to alert the attendants or supervisors

in case of an unusual expression. In case a child is hurt,

in pain, or is hungry, the child will emote an expression

such as sadness, which can be detected through an auto-

mated system. Similarly, e-learning systems for classrooms

or distance learning platforms can also benefit from an au-

tomated expression recognition system, where expressions

can be utilized to assess the understanding of students. Au-

tomated expression classification can also be used in mul-

tiple scenarios related to mental illness. Certain illnesses

induce a difference in the pattern of emotions experienced

by a person, which can be recognized via the expressions

being presented by the individual. Major depressive dis-

order or seasonal affective disorder results in consistently

feeling sad for an elongated period, while the bipolar dis-

order leads to constant sudden variation in emotions, which

can be observed through an individual’s expressions. We

believe that an automated child expression classification al-

gorithm can be used to detect such conditions at an early

stage. Early detection could result in early intervention and

assistance for children from a young age. Moreover, such

a system could also be used by autistic kids to understand

their peers and not get isolated due to their inability to as-

sess expressions. Wide scale applicability of an automated

facial expression recognition system in day to day life and

medical conditions makes it a necessity in the coming times,

thus demanding dedicated research attention.

1.1. Research Contributions

In this research, we address the unexplored and demand-

ing task of automated facial expression classification for

children. Inspired from the feature learning capabilities

of deep learning models and their ability to encode hierar-

chical feature representations, the Mean Supervised Deep

Boltzmann Machine (msDBM) is proposed. It incorpo-

rates supervision in the otherwise unsupervised DBM ar-

chitecture, and models the inter-class and intra-class vari-

ations during the feature learning process. To the best of

our knowledge, this is the first work where an automated

pipeline is proposed for face expression recognition in chil-

dren, with dedicated focus on modeling the inter and intra-

class variations. Experiments are performed on two child

expression datasets: Radboud Faces dataset [20] and Child

Affective Facial Expression (CAFE) dataset [25]. Both the

datasets contain child face images imitating the six basic ex-

pressions of anger, disgust, fear, happy, sad, and surprise,

along with a neutral state. The experimental results and

analysis showcase the challenging nature of the given prob-

lem and the effectiveness of the proposed model.

2. Automated Expression Classification in

Adults

In literature, researchers have focused primarily on per-

forming automated expression classification in adult face

images. Ekman et al. [11] developed a Facial Action

Coding System (FACS) to understand and define facial

movements in images. FACS has been widely used by

researchers in order to perform expression classification

[14, 22, 40, 46, 49]. Subspace learning techniques such as

Principal Component Analysis (PCA) and Linear Discrimi-

nant Analysis (LDA) on whole images have also been used

for expression recognition [3, 6, 36].

Gu et al. [12] proposed a method for developing person-

independent expression classification, inspired by the hu-

man ability to perceive emotions. Gabor filters are applied

on local patches to obtain features, followed by PCA and

LDA. These features are then provided to independent lo-

cal classifiers, outputs of which are concatenated to obtain

a global feature. This is followed by PCA and LDA on the

global feature for classification. A non-negative matrix fac-

torization based supervised approach was proposed by Zhi

et al. [50]. A sparseness constraint is introduced in non-

negative matrix factorization. Further, the neighborhood of

the samples is preserved by minimizing the graph preserv-

ing criterion. With the recent Emotion Recognition in the

Wild challenge, many studies have focused on multi-modal

expression classification where apart from the face image,

researchers also utilize the voice component to predict the

expression of the subject more accurately. Sikka et al. [37]

proposed a multiple kernel learning based technique for fus-

ing information of the two modalities. Kahou et al. [19] pro-

posed EmoNets wherein face images are classified using a

combination of Convolutional Neural Networks for feature

extraction and a Support Vector Machine (SVM) for clas-

sification, while results on audio are predicted using Deep

Belief Networks. The authors also explore relational au-

toencoders to learn spatio-temporal information and a shal-

low network trained on features around the mouth region.

More recently, deep learning based techniques have been

explored for static face images [7, 18, 23, 29, 48]. Liu et

al. [24] proposed a Boosted Deep Belief Network, which

learns expression related discriminative features, which are

selected to form a boosted and strong classifier. Gui et

al. [13] devised a curriculum learning based deep learning

framework to efficiently perform the given task. The au-

thors create a curriculum from the training data, i.e. divide

the data into easy and hard: the easier samples are used to

train the model first, followed by the harder ones. Curricu-

lum learning is used to fine-tune pre-trained CNN models.

Ng et al. [30] presented a transfer learning based approach,

where CNNs pre-trained on the ImageNet dataset [9] un-

dergo a two-step supervised fine-tuning process. The first
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Figure 2: Mean face images for seven expressions generated

from the Radboud Faces dataset [20].

step of fine-tuning is performed specific to the task on an

additional emotion recognition dataset, and the second stage

fine-tuning is performed with the specific training set of the

given dataset being used for evaluation. Yang et al. [45] pro-

posed a de-expression learning procedure. A neutral face

image is generated for the input image, and the residue deep

learning features in the intermediate layer are used for ex-

pression classification.

Inspired by the capabilities of deep learning based mod-

els and addition of supervision in traditionally unsupervised

models [38, 39, 44, 47], a novel supervised deep learning

based framework is presented for the task of expression

classification in children. The proposed model and its pre-

liminaries are discussed in detail in the following section.

3. Proposed Mean Supervised Deep Boltzmann

Machine

The proposed Mean Supervised Deep Boltzmann Ma-

chine (msDBM) incorporates supervision in the tradition-

ally unsupervised Deep Boltzmann Machine (DBM) [34]. It

models the inter-class and intra-class variations at the time

of feature learning. The following subsection presents some

preliminaries, followed by a detailed explanation of the pro-

posed model.

3.1. Preliminaries

A DBM is a hierarchical model built using the funda-

mental unit of the Restricted Boltzmann Machine (RBM).

RBMs are probabilistic bipartite graphs, consisting of a vis-

ible and a hidden layer. The visible layer (v) corresponds

to the input data, while the hidden layer (h) corresponds to

the learned representation. For binary input data, a visible

layer of n dimension, and a hidden layer of m dimension,

the energy function of a Restricted Boltzmann Machine is

modeled as follows:

E(v, h) = −

n
∑

i=1

aivi −

m
∑

j=1

bjhj −

n
∑

i=1

m
∑

j=1

viwi,jhj (1)

where, a and b are the visible and hidden layer bias vectors,

respectively. Using the energy function, a probability dis-

tribution is defined over the hidden and visible vectors as

follows:

P (v, h) =
1

Z
e−E(v,h) (2)

where, Z is a normalization constant, termed as the par-

tition function, which corresponds to the sum of e−E(v,h),

over all possible configurations of the hidden and visible

layers. Following this, the probability which a network as-

signs to a given visible vector is further calculated as:

P (v) =
1

Z

∑

h

e−E(v,h) (3)

For n given vectors, a Restricted Boltzmann Machine thus

optimizes the following loss function:

ℓRBM =

n
∑

i=1

P (vi) (4)

In case of real-valued data, Equation 1 is modified to cre-

ate the Gaussian-Bernoulli RBM [17]. As can be observed,

RBMs are unsupervised feature learning models, which do

not utilize the class information at the time of feature learn-

ing. In literature, researchers have proposed supervised ex-

tensions to RBMs in order to learn classification oriented

features. In 2008, Larochelle and Bengio [21] presented

the Discriminative Restricted Boltzmann Machine (DRBM)

which minimizes the joint probability of the input sample

and the class label. DRBM is thus presented as a model

capable of learning discriminative features, and performing

classification as well. In 2017, Sankaran et al. [35] built

upon the DRBM by proposing Class Sparsity Signature

based Restricted Boltzmann Machine (cssRBM), which in-

corporates a ℓ2,1 norm based regularizer to the loss function

of the DRBM. This enforces a signature onto features be-

longing to the same class, thereby reducing the intra-class

variations.

3.2. Proposed msDBM

Existing techniques incorporate class information during

feature learning in order to reduce the intra-class variations,

or model the relationship between the input sample and the

class label. In this research, we propose to incorporate su-

pervision by modeling both inter-class, and intra-class vari-

ations during the feature learning process of a RBM. In

terms of expression recognition, Figure 2 presents the mean

face images of seven expressions, obtained from the Rad-

boud Faces Dataset [20]. It can visually be observed that the

mean images vary significantly from each other, and thus

can be distinguished with ease. Motivated by these visual

differences, this research incorporates these differences at

the feature level in RBMs. In order to achieve this, the loss

of a traditional RBM is modified to incorporate terms for

minimizing the intra-class variations, and maximizing the

inter-class variations in terms of the mean feature vectors.

This is performed by utilizing the distance of the learned

feature from the mean feature of a particular class. For a

sample vc, belonging to class c, the distance between its

corresponding hidden representation, hc, and the mean rep-

resentation of class c is minimized as follows:

ℓ = ℓRBM + λc‖hc −mc‖22 (5)



where, λc is the intra-class regularization constant for class

c, and mc corresponds to the mean feature vector of class c,

calculated as follows:

mc = µ(Hc) (6)

where, Hc corresponds to a matrix containing feature vec-

tors of class c, and µ refers to the mean operator. In Equa-

tion 5, the additional term promotes the minimization of

intra-class variations by forcing feature vectors of a par-

ticular class closer to the mean representation. However,

it does not maximize the inter-class variations. In order to

maximize the inter-class variations, the distance of the hid-

den representation from the mean representation of all other

classes is also incorporated in the loss function. For a n

class problem, this is performed as follows:

ℓmsRBM = ℓRBM + λc‖hc − µ(Hc)‖22−

νc
n
∑

i=1,i 6=c

‖hc − µ(Hi)‖22
(7)

where, νc is the class-specific inter-class regularization con-

stant for the cth class, and H
i refers to the learned repre-

sentations of all the samples of the ith class. Thus, the loss

function of the proposed model consists of three terms: the

first term is the standard RBM loss, which aims to learn a

meaningful representation for the given input, the second

and the third terms are responsible for minimizing the intra-

class variations and maximizing the inter-class variations,

respectively. It is important to note that since the entire loss

function is minimized, the second term is added to the loss,

while the third term is subtracted. The proposed model thus

learns representations such that the learned features of one

class are closer to each other as compared to the represen-

tations of other classes, thereby introducing discriminabil-

ity during the feature learning process. We believe that in-

corporating such supervision at the time of feature learning

facilitates learning of discriminative features for different

classes, which further helps at the time of classification. For

example, for a two-class classification problem containing

images of classes happy and sad, the loss function of the

proposed model for a sample belonging to class happy is

written as follows:

ℓmsRBM = ℓRBM + λhappy‖hhappy − µ(Hhappy)‖22−

νhappy‖hhappy − µ(Hsad)‖22
(8)

where, hhappy is the learned representation of a sample be-

longing to class happy. Therefore, the proposed model aims

to learn hhappy such that it is close to the mean representa-

tion of class happy, and different from the mean represen-

tation of class sad. Figure 3 presents a diagrammatic repre-

sentation of the proposed msRBM for a two class problem.

h1 h2 h3 h4

v1 v2 v3Visible Layer

Hidden Layer

Mean Representation

Input Data

Learned 

Representation

Figure 3: Representation of the proposed msRBM model

for a two-class classification problem. v corresponds to the

visible layer (input) and h corresponds to the hidden layer

(representation). The proposed model learns features such

that samples belonging to one class are closer to the mean

representation of that class, but at a distance from the mean

representation of the other class.

The proposed model can be extended to multiple layers

to create the Mean Supervised Deep Boltzmann Machine.

A DBM is created by stacking multiple RBMs, such that

the input to the kth layer RBM is the learned feature repre-

sentation from the RBM at (k− 1)th layer. The input to the

first RBM is the training data. msDBM is created similarly,

where the model learns mean supervised features at each

layer in a hierarchical manner. For a l-layered msDBM, the

loss function of the proposed architecture is thus written as:

ℓmsDBM = ℓDBM +

l
∑

k=1

(

λc
k‖h

c
k − µ(Hc

k)‖
2
2−

νck

n
∑

i=1,i 6=c

‖hc
k − µ(Hi

k)‖
2
2

)

(9)

where, hc
k represents the feature vector of a sample v be-

longing to class c, at the kth layer. Similarly, Hi
k refers to

the representations of all samples of class i, at the kth layer.

νck refers to the inter-class regularization constant for the cth

class at the kth layer. The above model can be trained in a

greedy layer-by-layer manner [4], where only a single layer

is optimized at a time, while keeping the remaining fixed.

As with traditional techniques, Contrastive Divergence [16]

is applied for solving the proposed model. Since the addi-

tional term is easily differentiable, its derivative is used for

performing gradient descent in order to learn the optimal

parameters of msDBM.

4. Expression Classification using msDBM

The proposed msDBM is used for feature extraction to

perform expression classification using the pipeline demon-

strated in Figure 4. Pre-processing is performed on the in-

put images, which is then provided to the proposed msDBM

model. msDBM is trained using Equation 9 for a seven class

problem of Anger, Disgust, Fear, Happy, Neutral, Sad, and
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Figure 4: Pipeline used for expression classification in children using the proposed msDBM model.

Angry Disgust Sad SurpriseNeutralHappyFear

(i) Children

(ii) Adults

Figure 5: Sample images of two subjects from the Radboud

Faces dataset [20] presenting six facial expressions, along

with a neutral state.

Surprise. The learned features are given as input to a Ran-

dom Decision Forest (RDF) classifier which is trained for

performing seven-class classification. At the time of test-

ing, a test image is projected on the learned msDBM model

to obtain the representation of the given sample. This is

followed by classification using the trained RDF model.

Face detection is performed on all images using Viola

Jones face detector [43], followed by geometric normaliza-

tion. The images are re-sized to a dimension of 64 × 64,

and converted to gray-scale. A two layer msDBM model is

used for feature extraction having dimensionality [k, k
4 ,

k
4 ],

where k is the size of the input image. Since the input data

consists of real values, the msRBM model is built over the

Gaussian Bernoulli RBM, extended to msDBM. The model

is trained for 100 epochs, and data augmentation is per-

formed on the training and fine-tuning set by flipping across

the y-axis and introducing illumination variations.

4.1. Datasets Used

There exists only two datasets containing images of chil-

dren with expression variations: Radboud Faces Dataset

[20], and CAFE dataset [25]. Out of these, the Radboud

Faces dataset was released in 2010, containing a mix of

adult and children face images having expression variations.

Recently, in 2014, the CAFE dataset was released, which

contains images pertaining to 154 children. The proposed

model has been evaluated on these two datasets for expres-

sion classification in children and adults. Details regarding

each dataset, along with the experimental protocols are ex-

plained below:

Radboud Faces Dataset (RaFD) [20] contains a total of

8,040 images corresponding to 67 subjects (57 adults and

10 children). A subset of the dataset containing six expres-

sions: Anger, Disgust, Fear, Happy, Sad, Surprise, and a

Neutral state are used in this experiment for all subjects.

For each expression, three frontal images are provided in

the dataset. Owing to the availability of both adult and chil-

dren images, this dataset is used to report performance for

child expression classification, as well as adult expression

classification.

Child Affective Facial Expression (CAFE) Dataset [25]

contains images pertaining to 154 subjects belonging to an

age range of 2-8 years. There are a total of 1,192 images

for six expressions: Anger, Disgust, Fear, Happy, Sad, Sur-

prise, and a Neutral state. Two images are captured for each

expression: with the mouth open and with mouth closed,

except for the Surprise class. Since all children were not

able to imitate all emotions successfully, some images were

manually eliminated while creating the dataset, resulting in

an imbalanced number of images across expressions.

4.2. Experimental Protocols

Child Expression Recognition: The proposed msDBM

model is pre-trained with 1197 images corresponding to the

adults from the Radboud Faces dataset. This pre-trained

model is used for performing experiments on the Radboud

Faces and CAFE dataset independently. For each dataset,

images pertaining to children are divided into fine-tuning

and testing set. Data pertaining to 70% subjects (children)

make up the test set, while the remaining subjects form the

fine-tuning partition. This is repeated five times for five

times random sub-sampling cross validation. Mutual ex-

clusion of subjects is maintained in the fine-tuning and test

partitions.

Adult Expression Recognition: Face images of 70% of the

subjects belonging to the Radboud Faces dataset are used



Table 1: Confusion matrix of the proposed msDBM model for expression classification on Radboud Faces dataset (children).

Predicted

A
ct

u
a

l

Anger Disgust Fear Happy Neutral Sad Surprise

Anger 58.1% 6.7% 0.0% 7.6% 15.2% 12.4% 0.0%

Disgust 2.9% 93.3% 0.0% 1.9% 1.9% 0.0% 0.0%

Fear 0.0% 0.0% 74.3% 1.0% 12.3% 1.0% 11.4%

Happy 0.0% 9.5% 0.0% 90.5% 0.0% 0.0% 0.0%

Neutral 0.0% 20.0% 1.0% 4.7% 67.6% 6.7% 0.0%

Sad 15.2% 9.5% 12.4% 1.9% 19.1% 41.9% 0.0%

Surprised 0.0% 0.0% 4.8% 0.0% 1.0% 0.0% 94.2%

for training the model, while the remaining 30% subjects

are used as the test set. Five-times random sub-sampling

cross-validation is performed for this experiment as well.

5. Results and Observations

Comparison has been performed with other deep learn-

ing feature extractors, namely Deep Boltzmann Machine

(DBM) [34] and Stacked Denoising Autoencoder (SDAE)

[42]. A pre-trained Convolutional Neural Network (CNN)

based feature extractor, VGG-face [32], has also been used

for comparison. Results are shown by using the pre-trained

model directly and also by fine-tuning it for the given task.

Since the proposed model incorporates supervision in the

feature learning process, comparison has also been per-

formed with Discriminative Restricted Boltzmann Machine

(DRBM) [21]. In order to maintain consistency, the archi-

tecture of all feature learning models are exactly as those

of the proposed msDBM model. Other than deep learning

techniques, comparison has also been performed with two

common techniques used in literature: Principle Compo-

nent Analysis (PCA) [41] and Dense Scale Invariant Feature

Transform (DSIFT) [27]. For all comparative techniques,

as with msDBM, feature extraction is followed by learning

a RDF classifier. A commercial API, Microsoft Cognitive

Services [1] has also been used for performing comparison

on the Radboud Faces dataset1. In order to understand the

statistical significance of the results obtained by the pro-

posed msDBM model, McNemar test [28] has been per-

formed. The results obtained by the proposed model are

compared with those obtained via other comparative algo-

rithms. The p-values obtained via the McNemar test have

also been reported and all claims are made at a confidence

interval of 95%.

5.1. Child Expression Classification on the Radboud
Faces Dataset

Table 2 presents the results obtained on the Radboud

Faces dataset; the mean class-wise accuracy and standard

1The license agreement of the CAFE dataset does not allow us to use

the API.

Table 2: Mean expression classification accuracy (%) on

the Radboud Faces dataset (children) for five times random

sub-sampling.

Algorithm Accuracy (%) p-Value

DBM [34] 71.7 ± 2.0 0.068

Discriminative RBM [21] 69.5 ± 4.2 0.010

SDAE [42] 70.0 ± 2.0 0.003

VGG-Face (CNN) [32] 52.2 ± 2.1 < 0.001

Fine-Tuned VGG-Face (CNN) [32] 67.4 ± 4.7 < 0.001

PCA [41] 68.4 ± 0.7 0.0004

DSIFT [27] 69.4 ± 4.2 0.018

Microsoft Cognitive [1] 17.7 ± 2.5 < 0.001

Proposed msDBM 75.0 ± 1.5 -

deviation across five folds is reported. It can be observed

that the proposed two layer msDBM achieves a classifica-

tion accuracy of 75.0%, which is at least 3.3% better than

other comparative unsupervised feature extractors. The im-

provement in performance obtained over traditional DBM

can be attributed to the additional terms incorporated in the

proposed msDBM algorithm. An improvement of 5.5%

is also observed in comparison to the existing supervised

RBM model (Discriminative RBM). Table 2 also presents

the p-values of the McNemar test. It can be observed that

the results obtained via the proposed msDBM model are sta-

tistically different from other comparative techniques (ex-

cept DBM) at a confidence interval of 95%.

Comparison has also been drawn with a commercial

API, Microsoft Cognitive Services [1], where the API gives

a classification accuracy of only 17.7%. All face images

were detected by the software, and there was no failure to

process. It is important to note that the API has shown

to perform well on adult faces, however, its performance

on child face images further reinstates the need for dedi-

cated attention and need for specialized approaches for the

given problem. It is also interesting to note that the per-

formance of CNN-based feature extractor, VGG-Face, is

52.2%,when a model pre-trained on large-scale face images

is used. When the model is fine-tuned with child expression

faces, the performance improves to 67.4%. This suggests

that deep learning based based models need to be trained



Table 3: Confusion matrix of the proposed msDBM model for expression classification on the CAFE dataset.

Predicted

A
ct

u
a

l

Anger Disgust Fear Happy Neutral Sad Surprise

Anger 36.3% 17.3% 6.3% 24.2% 7.7% 1.9% 6.3%

Disgust 33.4% 31.7% 5.0% 15.3% 11.4% 1.8% 1.4%

Fear 2.6% 3.0% 35.2% 16.1% 13.4% 1.9% 27.8%

Happy 6.0% 3.3% 6.9% 73.7% 4.7% 0.3% 5.1%

Neutral 4.5% 5.3% 8.0% 1.3% 69.5% 3.2% 8.2%

Sad 17.2% 8.1% 13.1% 6.4% 27.6% 21.8% 5.8%

Surprised 2.8% 1.3% 13.9% 4.4% 9.5% 0.6% 67.5%

Figure 6: Sample images from the Radboud Faces dataset

[20] misclassified by the proposed msDBM model.

Figure 7: Bar graph representing the mean class-wise accu-

racies obtained on the CAFE dataset of the proposed model,

along with other comparative techniques.

specifically for performing expression classification in chil-

dren, as opposed to utilizing models trained on large-scale

face image databases.

Upon analyzing the confusion matrix (Table 1) for the

proposed msDBM algorithm, it can be observed that the

proposed model performs least on the expression of sad,

while performing over 90% for disgust, happy, and sur-

prise. Figure 6 also presents some mis-classifications of

the proposed model for the classes of sad, disgust, surprise,

and fear. Most of these images appear to have a mix of

Table 4: Case study: Effect of combining anger and disgust

into one class. Mean class-wise expression classification

accuracy (%) on the CAFE dataset for five times random

sub-sampling.

Algorithm Accuracy (%) p-Value

DBM [34] 54.6 ± 0.9 < 0.001

Discriminative RBM [21] 37.4 ± 1.5 < 0.001

SDAE [42] 53.9 ± 0.6 0.261

VGG-Face (CNN) [32] 41.3 ± 1.1 < 0.001

Fine-Tuned VGG-Face (CNN) [32] 44.2 ± 1.5 < 0.001

PCA [41] 44.7 ± 0.8 0.024

DSIFT [27] 51.7 ± 1.3 0.831

Proposed msDBM 56.0 ± 0.5 -

two expression, as opposed to just one. For example, most

of the sad mis-classifications are because of the subtle ex-

pression changes brought about by the subject, and similar-

ity with the neutral expression, resulting in a large number

of images being mis-classified as neutral. Similarly, sev-

eral imitations of the fear expression demonstrate similarity

with the surprise class; an effect of which can also be ob-

served from the confusion matrix, where most of the mis-

classifications of surprise are into fear.

5.2. Child Expression Classification on the CAFE
Dataset

Figure 7 presents the mean class-wise expression classi-

fication accuracies obtained for all the models, across five

times random sub-sampling. It is important to note that

the CAFE dataset contains images of children between the

age of 2-8 years, while the Radboud Faces dataset contains

images of teenagers. The expression variations observed

in CAFE dataset are thus more challenging than those of

Radboud Faces dataset. The proposed two layer msDBM

achieves an average classification accuracy of 48.0%, which

displays an improvement over other comparative models by

at most 14% (Figure 7). Table 3 presents the confusion

matrix obtained using the proposed msDBM model. It is

observed that the model achieves a large mis-classification



percentage of the facial expression disgust into anger, and

vice versa. Moreover, consistent with earlier findings on the

Radboud Faces dataset, a large mis-classification percent-

age of surprise into fear and vice versa is also observed.

Effect of Combining Expressions: Upon visually in-

specting the mis-classifications, we observe very less inter-

class variations between anger and disgust, and surprise

and fear2. For example, Figure 8 presents the mean im-

ages corresponding to anger and disgust classes from the

CAFE dataset. It can be observed that these images ap-

pear visually similar, especially for the upper part of the

face. Moreover, the human evaluation reported in the origi-

nal publication [26] was also analyzed, and a large overlap

between the expressions of anger and disgust was found in

the human responses. Building upon the above findings, as

a case study, experiments are performed by combining the

expressions of anger and disgust into one class. From Table

4, it can be observed that all models yield improved perfor-

mance upon combining the two classes. The proposed ms-

DBM achieves a mean class-wise classification accuracy of

56.0%, outperforming other comparative models.

It is interesting to observe that the proposed model yields

an improvement of over 18% over the Discriminative RBM

model, thereby motivating the inclusion of the inter-class

and intra-class terms in the proposed formulation. The en-

hanced performance observed across all models upon com-

bining anger and disgust into one class suggests low inter-

class variations across the combined classes, thereby rein-

forcing the challenging nature of child expression classifi-

cation. A standard deviation of less than 1% is observed for

all experiments, which suggests that the proposed model is

robust to the training-testing partitions, and not biased to-

wards one particular data distribution. The low child ex-

pression classification performance across models presents

a need for dedicated and focused research in this area.

5.3. Adult Expression Classification on the Rad­
boud Faces Dataset

The effectiveness of the proposed model has also been

evaluated on the adult face images of the Radboud Faces

dataset. The proposed msDBM model achieves a mean

classification accuracy of 85.9% over random five times

sub-sampling cross validation. Table 5 reports the classi-

fication accuracy of the proposed model, along with other

comparative techniques. Improvement is observed from

other techniques, including the CNN-based feature extrac-

tor (VGG-Face) pre-trained on adult face images. Upon

analyzing the results, we observe that the proposed model

achieves an accuracy of almost 100% across all five folds

for the happy expression, whereas the least accuracy is ob-

tained for sad expression. The p-values obtained via the

2The samples cannot be shown in the paper due to restrictions from the

license agreement.

Anger Disgust

Figure 8: Mean images obtained from the CAFE dataset

[25] for anger and disgust expressions.

Table 5: Mean class-wise expression classification accuracy

(%) on the Radboud Faces dataset (adults) for five times

random sub-sampling.

Algorithm Accuracy (%) p-Value

DBM [34] 83.9 ± 4.2 0.003

Discriminative RBM [21] 83.8 ± 5.7 0.005

SDAE [42] 82.6 ± 2.8 < 0.001

VGG-Face (CNN) [32] 69.2 ± 3.9 < 0.001

Fine-tuned VGG-Face (CNN) [32] 80.3 ± 1.9 < 0.001

PCA [41] 83.6 ± 3.9 0.009

DSIFT [27] 80.4 ± 2.8 < 0.001

Proposed msDBM 85.9 ± 2.2 -

McNemar test further demonstrate statistical difference of

the proposed model in comparison with other algorithms,

for a confidence interval of 95%.

6. Conclusion

This research addresses the important and challenging

yet unexplored problem of expression classification of child

face images. A novel supervised deep learning model,

termed as Mean Supervised Deep Boltzmann Machine (ms-

DBM) is proposed for the given task. The model learns

discriminative representations by minimizing the intra-class

variations and maximizing the inter-class variations with re-

spect to the mean feature vectors. The performance of the

proposed model is evaluated on two challenging datasets:

Radboud Faces and CAFE, for child and adult expression

classification. Experimental results motivate the utility of

the proposed msDBM model for automated facial expres-

sion classification. While the proposed model achieves

state-of-the-art performance on both the datasets, however,

its performance suggests that automated expression classi-

fication on children (especially in the range of 2-8 years)

requires further research and dedicated attention.
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