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Abstract

We thoroughly analyse regression-based face alignment

methods and introduce a novel stacked multi-target net-

work for robust facial landmark localisation. The primary

heatmap regression-based network concentrates on locat-

ing the coarse position of pre-defined landmarks while the

secondary coordinate regression-based network is respon-

sible for modelling fine sub-pixel features. Specifically, we

elaborate the differences among widely-used Cross Entropy

related loss functions and propose a new Bilateral Inhibi-

tion Cross Entropy loss function, which enlarges the margin

between elements in the output heatmaps.

Besides, in order to deal with the discrepancy between

optimization and evaluation, we propose to dynamically ad-

just the radius of kernel function during the training pro-

cess. We demonstrate that training with decreasing radius

in temporal order performs much better than assigning it

spatially, i.e. decreasing radius along the stages of stacked

hourglass networks. Finally, we innovatively limit the out-

put of the secondary coordinate regression network to a

reasonable range by importing the hinge loss to refine the

coarse coordinate locations for sub-pixel accuracy. Exten-

sive experiments on public datasets such as 300-W, COFW,

and AFLW demonstrate that our proposed method performs

superiorly to the state-of-the-art approaches.

1. Introduction

Facial landmark localisation, also known as face align-

ment, refers to locating pre-defined facial landmarks, such

as mouth corners and face contours on an input face im-

age. It is the foundation of many interesting algorithms

in human face related visual tasks, e.g., face recognition

[27, 32, 42, 13], 3D face reconstruction [16, 38], face

beautification [25], and emotion estimation [41, 26]. In

face recognition algorithm, researchers usually utilize fa-

cial landmark localisation method to align input human face

to an approximate canonical shape and reduce the image-

embedding mapping complexity [37].

Figure 1. The margin of cross entropy and proposed Bilateral Inhi-

bition Cross Entropy loss function. Figure (a) represents a ground

truth heatmap generated by an arbitrary kernel function. Figure

(b) shows the margin of predicted heatmap instructed only by the

Non-zero area of ground truth heatmaps. Figure (c) depicts the

margin of our proposed Bilateral Inhibition Cross Entropy loss,

which adds extra penalty to predicted heatmap pixels whose cor-

responding ground truth probability equals zero. The green arrow

indicates the impact from non-zero area in gt heatmap to fit pre-

dicted heatmap for ground truth, while the brown arrow shows the

impact from zero area in gt heatmap to inhibit the probability error

between corresponding pixels. (Best view in colour.)

In the past decades, researchers have devoted a lot of ef-

forts to developing an accurate localisation algorithm for

face images captured under large poses and illumination

variations. Among the evolution of omnigenous meth-

ods, Active Shape Model (ASM) [11], Active Appearance

Model (AAM) [10], and Constrained Local Model (CLM)

[12] stand out for their simplification and effectiveness. It

achieves satisfactory results for face landmark localisation

under constrained condition. However, human face im-

ages in real-world scenarios appear with large poses, ex-

pressions, and illumination variations. To deal with these

problems, cascaded-regression based approaches have been

proposed to achieve refined localisation accuracy. Kazemi



et al. [21] introduces an ensemble of essential regression

trees and then incorporates them in a streamlined formula-

tion into a cascade framework. Wu et al. [44] proposes a

constrained joint cascade regression framework which up-

dates landmark locations and the activation probabilities of

action unit iteratively.

Recently, deep neural networks have achieved great

progress in a variety of computer vision tasks, including

pose estimation [30, 31], face recognition [27, 47], and im-

age segmentation [35, 8]. As with face alignment task, dif-

ferent types of networks [5, 17, 14] have been put forward to

achieve high performance in unconstrained scenarios. Ac-

cording to the format of network output, these alignment

algorithms can be divided into two mainstream categories,

coordinate regression and heatmap regression. In the case

of coordinate regression-based facial landmark localisation

methods [17], the network outputs a vector of 2L real num-

bers for the 2D coordinates of L landmarks. In practice,

cascading strategy is usually integrated to ensemble mul-

tiple coordinate regression networks for improved perfor-

mance in unconstrained scenarios. In heatmap regression-

based facial landmark localisation approaches [29, 48], a

network outputs a heatmap with the same size of input im-

age for each target landmark. Generally, softmax manipu-

lation is implemented on output heatmaps and the intensity

of a pixel in the heatmap indicates the probability that it

belongs to a target landmark [19, 34].

However, there are several crucial issues which has

not been considered and carefully studied in heatmap

regression-based algorithms. Firstly, appropriate kernel

function parameters need to be manually designed to gen-

erate proper ground truth heatmap labels. A careless choice

of the parameters would result in a serious deteriorated per-

formance. Secondly, we argue that more attention need to

be paid to the metric discrepancy between training (usually

Cross Entropy loss) and evaluation process (Euclidean dis-

tance) in heatmap regression methods. A wrongly targeted

objective in the optimization (training) process would guide

the network to a sub-optimal result. Besides, the commonly

used Cross Entropy loss only brings penalty to the non-zero

elements in the ground truth heatmaps and has no impact

on the zero elements. This slows down the convergence of

training procedure, and makes it difficult to find the optimal

result. Last but not least, we have to redeem the localisation

accuracy attenuation caused by the conversion from target

sub-pixel floating-point label to integer coordinate outputs

generated by argmax manipulation.

To address these issues, in this paper, we propose a new

stacked multi-target network (SMT-Net) for robust facial

landmark localisation and introduce solutions to the above

three questions. The main contributions of our work are

summarized as follows:

• We explore a multi-target network combined with

heatmap and coordinate regression to learn the pri-

mary heatmap regression error and secondary sub-

pixel residuals jointly.

• We propose two methods of dynamically adjusting a

kernel radius to shrinking the discrepancy between

probability heatmap similarity metric in training pro-

cess and coordinate euclidean distance metric in eval-

uation process.

• We detailedly analyse the widely-used Cross Entropy

(CE) related loss functions and introduce a novel Bi-

lateral Inhibition Cross Entropy (BICE) loss (Fig.1) to

penalize misaligned landmarks whose corresponding

ground truth probability equals zero. We theoretically

prove that BICE loss enlarges the margin of elements

in network output probability heatmaps and matches

subsequent argmax manipulation.

2. Related Works

Coordinate Regression model inputs a detected human

face image and outputs the 2D coordinate vector consisting

of 2L elements. It usually utilizes a classical Convolutional

Neural Networks (CNN) model to extract hierarchical fea-

ture and mapping it to target label [17, 28]. Researchers

usually combine cascade regression and neural networks to

achieve accurate facial landmark localisation. In detail, a

face image is first input to a stage-one network and out-

put the rough initial facial landmarks, followed by an affine

transformation operation, it is aligned to a canonical shape.

Then we refine the landmark coordinate by feeding aligned

image to a stage-two network [39, 28]. In [17], authors dis-

cuss different loss functions which are critical in the train-

ing process of a regression network. Feng et al. presents a

systematic analysis of different loss functions (L1, L2, and

smooth L1 loss functions) and proposes new wing loss func-

tion to improve the network training capability for small

range errors. Besides, researchers usually utilize multi-task

framework to jointly improve performance on all the asso-

ciated computer vision tasks [51].

Heatmap Regression based methods have achieved

promising results recently and showed the effectiveness for

facial landmark detection in the wild. Rather than directly

estimating coordinate vectors, heatmap regression methods

output probability heatmaps for each pre-defined landmark.

[48] proposes a Convolutional Experts Constrained Local

Model (CE-CLM) algorithm that uses convolutional experts

network to model complex landmark appearance that is af-

fected by expression, makeup, and accessories. [29] points

out that fully-convolutional neural networks are not able to

aggregate global context due to their constrained receptive

field. They introduce a subnet to bring in extra global-

context information and achieve good performance. Al-

though these methods have achieved promising results on



Figure 2. The architecture of our proposed SMT-Net. Two hourglass networks are stacked and supervised by ground truth heatmaps

individually. For each hourglass network, sub-pixel coordinates regression is performed (length equals 2L, L denotes number of landmarks)

with the global context feature obtained from centre of hourglass network. The whole network is optimized with two loss functions.

Specifically, Lossc (L2 loss + hinge loss) is used for Coordinate network and Lossh (BICE loss) is used for Heatmap network. Dotted

lines represent the skip connections between feature maps of the same resolution.

public datasets, the calculation of two separated networks is

usually computationally expensive.

As mentioned above, coordinate regression and heatmap

regression approaches exhibit different advantages and own

different areas of expertise. Intuitively, we combine both

approaches, heatmap network for coarse target and coordi-

nate network for refined target, into a stacked multi-target

framework. With the help of alignment residuals trained

by euclidean distances, chen et al. [9] conclude that the

discrepancy between training and testing is relieved. In

[9], chen et al. also construct a small sub-network to pro-

duce residual features from the middle layer of the net-

work and estimate the alignment errors of the current out-

put heatmaps. However, in this case, the whole network is

sometimes dominated by sub-network which weakens the

contribution of powerful hourglass network. Instead, in this

paper, we draw a hinge loss into the L2 loss function to

limit the coordinate network output to a relative reasonable

range. In addition, we also analyse the difference of cross

entropy related loss functions and introduce a more effec-

tive BICE loss. Detailed discussion of primary heatmap net-

work and secondary coordinate network will be illustrated

in section 3.3 and 4.

How to choose a proper kernel function radius is also

a problem that is worthy people’s attention. In previous

heatmap regression-based algorithms, authors [23] design

a chessboard distance with power function following two

rules: the probability of pixel located at grounding truth co-

ordinate is the largest and pixel value becomes smaller if

it is away from the grounding truth coordinate. Supposing

the base of power function equals 0.5, the probability of

pixel approximately equals zero (more accurate is 1e−3) if

it is away from more than 10 pixels. The non-zero area that

is useful for model optimization only occupies a little pro-

portion. Considering ideal situation where the probability

heatmap is a impulse response only activated at ground truth

location, the model optimization becomes difficult it dis-

cards lots of available global structure information. In this

paper, we suggest to dynamically adjust the kernel radius

in training process, which reduces the Region-of-Interest

gradually to balance training and testing.

In this paper, we creatively propose an Stacked Multi-

Target Network (Fig.2) to jointly utilize heatmap-based

multi-scale local feature and coordinate-based global con-

text information. In addition, two loss functions are care-

fully designed for primary heatmap regression target and

secondary coordinate regression target specifically. To our

best knowledge, the proposed approach is the first work to

study the margins of output heatmaps with different loss

functions. This study brings in a novel BICE loss function

for heatmap regression-based facial landmark localisation.

3. Stacked Multi-Target Network

3.1. Framework

As mentioned above, the target of heatmap regression-

based facial landmark localisation is to find a nonlin-

ear mapping that outputs probability heatmaps, followed

by argmax manipulation to obtain the coordinates of pre-

defined landmarks:

Φh : I → P → t (1)



where I ∈ R
H×W×3 represents the input colour image

cropped by a face detector, P ∈ R
Hs×Ws×L denotes the

output heatmaps and t ∈ R
2L denotes corresponding facial

landmarks vector [x1, y1, x2, y2, ..., xL, yL]
T . L represents

the number of landmarks and (xl, yl) denotes the coordi-

nates of the lth landmark.

We usually utilize a CNN model with designed loss func-

tion Lossh() to learn the mapping Φh. The target of training

process is to find a Φ which minimizes:

N
∑

i=1

Lossh(Φ(Ii), Qi) (2)

where Qi ∈ R
Hs×Ws×L is the target heatmap generated by

a kernel function Qi = K(ti) of the ith sample.

We empirically utilize a stacked hourglass network

which is able to extract high-level and pixel-wise features

at different scales. The input is a 256× 256× 3 colour im-

age and the output P is a tensor with shape 64 × 64 × L,

where L=68 for 300-W and COFW dataset and L=19 for

AFLW dataset. Since the shape of hourglass network out-

put is the same as the input, a pixel located at (j, k) in the

predicted heatmap can be mapped to the same position of

corresponding input image. We adhere following principles

to obtain the coordinates: the l-th channel of CNN output

feature maps predicts the location of l-th facial key point

and the coordinate of the largest value in the l-th feature

map represents the l-th facial key point (xl, yl).

The ultimate goal of face alignment is to identify the

coordinates of pre-defined landmarks. Nevertheless, both

heatmap and coordinate regression network have draw-

backs. Heatmap regression network outputs a heatmap eval-

uating each pixel’s probability belonging to a pre-defined

landmark and thus requires argmax manipulation which suf-

fers precision drop from floating-point to integer coordi-

nates. Coordinate regression based network is not able to

capture pixel-wise information that is crucial for facial land-

mark detection. We intuitively incorporate two networks to

SMT-Net and make improvements on individual network.

As shown in Fig. 2, our SMT-Net starts with a 7 × 7
convolution with stride = 2, pad = 3, a residual layer, a

pooling layer, and three consecutive residual blocks to bring

the resolution down from 256 to 64. All residual blocks are

replaced with the parallel and multi-scale block [4]. Two

hourglass network [30] is stacked to capture hierarchical

representation from an input 64 × 64 × 256 feature map.

For each hourglass network, we design a regression branch

educed from the centre-layer feature maps of hourglass net-

work followed by two fully connected layers to regress co-

ordinates gradually. The ultimate loss function is formu-

Method (σ = 4) Normalized Mean Error (%)

Baseline network 6.23

Spatial, δ = 0.5 6.15

Spatial, δ = 1 6.31

Temporal, δ = 0.5 6.17

Temporal, δ = 1 6.12

Table 1. A comparison of spatial and temporal category between

different δ values on 300-W challenge dataset. To simplifica-

tion the experiments, a two stages stacked hourglass network and

Adam optimizer with weight decay = 5 × 10
−4 is applied for

training a baseline network.

lated as follows:

N
∑

i=1

(Lossh(Φh(Ii),Qi) + Lossc(Φc(Ii), ti,c))

ti,c = ti − ti,h

(3)

Respectively, Lossh and Lossc represent the loss func-

tion for heatmap and coordinate regression-based networks.

Φh and Φc denote the image-to-target mapping function

parametrized by consecutive dense CNN layers. ti and ti,h
denote the ground truth landmark and current heatmap net-

work output coordinates generated by argmax operation.

ti,c denotes non-negligible target residuals for the coordi-

nate regression network.

3.2. Dynamically adjusting kernel radius

In Heatmap Regression based networks, there is a cru-

cial issue to quantify the similarity between the predicted

probability heatmap P and the ground truth probability

heatmap Q. In [23], Lai et al. suggests that a good ground

truth possibility heatmap should meet the following require-

ments: (1) the probability for the index (xl, yl) is the largest

one in a heatmap. (2) the probability should be smaller if the

pixel is farther away from (xl, yl). Therefore, researchers

usually utilize gaussian or power kernel function to generate

a ground truth probability heatmap. Noted that, in previous

methods, kernel function radius is usually fixed in training

process. Researchers empirically choose possible optimal

value of kernel radius σ to fit for different input image size.

Considering the following two boundary conditions: 1) σ is

large enough which makes all elements of target heatmap

probability heatmap equal one. In this case, target label is

not able to instruct the model updating and the optimization

process collapses. 2) σ is small enough which makes all

elements of target heatmap probability heatmap equal zero

except the pixel located at (xl, yl). It degrades to one-hot la-

bel and discards structure information around ground truth

landmarks which is effective to guide the optimization of

model parameters.

To deal with these problems, we propose to adjust kernel



Method NME (%)

only heatmap network 6.22

heatmap+coordinate, θ = 5 6.33

heatmap+coordinate, θ = 0.5 6.16

Table 2. A comparison of different θ values in Loss c on 300-W

challenge dataset. Results show that performance promotes if we

restrict coordinate network output to a reasonable range.

radius dynamically in training process spatially or tempo-

rally. Spatial category: We assign decreasing radius σ with

step size δ to N-stacked hourglass network from stack-one

to stack-N. In the first few stacked networks, they output

the coarse landmark locations of input images. The latter

stacked networks take advantage of current location infor-

mation and output fine-grained face landmark localisation

results. Temporal category: We first utilize an initialized

kernel radius σ, in this paper σ = 4, to train a stage-one

network. Subsequently, we use a decreased σ′ = σ − δ (δ
denotes a step value) to continue training from a convergent

epoch of last step. Finally, we repeatedly implement the

continue training manipulation until the result of face align-

ment not improves. In our experiment, the mean error is

no longer significantly decreasing after three iterations. Ta-

ble 1 detailedly describes the results of different parameters

used in our experiments on adjusting radius dynamically.

Experiments results demonstrate that either spatial cat-

egory or temporal category is effective in training process.

Noted that the Normalized Mean Error (NME) errors be-

come worse if we change σ severely in spatial category,

which indicates different stages of stacked hourglass net-

work is closely related. A relatively large δ makes the latter

hourglass network more difficult to utilize the information

generated by previous networks.

3.3. Constrain on coordinate network output

In Coordinate Regression based methods, the output of

CNN network is a real number that is able to measure the

errors of sub-pixels. However, in heatmap regression based

algorithms, the output is an integer coordinate that can not

obtain the sub-pixel location precision. In [9], Chen et al.

proposes to regress the sub-pixel residual from the centre

output of a hourglass network. Though it is able to obtain

the real localisation value consisting of integer heatmap out-

put and floating-point regression layer output, it injures the

backbone hourglass network because it does not draw re-

striction on the output of regression layers. We reimplement

the experiments in [9] and find that the output of regression

layer sometimes dominates the locations of coordinates,

which means that the secondary sub-network squeezes the

information for heatmap network optimization.

In this paper, we creatively propose to draw a penalty to

coordinate network output with large values. An intuitive

idea is to utilizing hinge loss as follows:

Lossc = L2(ti,c − pi,c) + Losshg (4)

where

Losshg =
L
∑

l=1

max(0, |pl,cx| − θ) +max(0, |pl,cy| − θ)

(5)

[p1,cx, p1,cy, p2,cx, p2,cy, ..., pL,cx, pL,cy]
T is the output of

coordinate network and θ is designed to restrain the range

of coordinate network output between −θ and θ. The ex-

perimental results shown in table 2 demonstrate our method

outperforms the others.

4. Bilateral Inhibition Cross Entropy Loss

Researchers utilize hourglass network or Fully Convolu-

tional Networks (FCN) to capture feature of different scales

and achieve promising results on different public available

datasets. In the case of training heatmap regression-based

model with cross entropy loss, we pursuit to draw CNN

output heatmap and target probability heatmap closer. In

[23, 4], authors propose to utilize softmax loss and sigmoid

cross-entropy pixel-wise loss to measure the probability-

distance between the l-th feature map and the l-th ground

truth coordinate. Noted that in [4], Bulat et al. claims that

the use of sigmoid cross-entropy pixel-wise loss increases

the gradients by 10-15x compared to the L2 loss and offers

a noticeable improvement in localisation precision. The ob-

jective function of cross entropy loss is formulated as

CE(Qi, Pi) = −
∑

l

Qi,llog(Pi,l) (6)

where Pi,l and Qi,l are the predicted and ground truth

heatmap of lth landmark for ith face image. While cross

entropy loss is widely used in existing heatmap regression-

based facial landmark detection systems, it only obtains loss

value when the element Qj,k
i,l of target heatmap is not equal

to zero. (j, k) represents a pixel in the heatmap that is lo-

cated at jth column and kth row. In the following content of

this paper, we simply utilize Ql ∈ R
Hs×Ws denotes a CNN

output heatmap.

In previous papers, the Gaussian kernel is widely

used to obtain the ground truth heatmap Qj,k
l =

N((j, k); (xl, yl), σ
2I), where (xl, yl) is the ground truth

location of the lth landmark, and σ is designed to control

the variance of the response. It can be formulated as:

Qj,k
l = exp−

djk

2σ2 , djk =
√

(j − xl)2 + (k − yl)2 (7)

According to the three-sigma rule, the value is nearly

equal to zero when djk > 3σ. In the case of a target

heatmap with size of 64*64 and σ = 4 (shown in Fig.3),



Figure 3. Example of a ground truth heatmap generated by gaus-

sian kernel fucntion. Gaussian kernel radius is set to 4 and

heatmap size equals 64 × 64. Different cases are shown in the

figure. (a) All non-zero area of gaussian kernel is inside image.

(b) Landmark locates on the boundary of the image, thus only half

of non-zero area is inside. (c) Landmark locates on the corner

with only quarter of non-zero area inside. (d) Landmark locates

outside the image thus all heatmap pixels equal zero. (Best view

in colour.)

neglecting landmarks which exceed face bounding box, the

maximal proportion of non-zeros is
π(3∗4)2

64∗64 ≈ 11.04%
(Figure 3(a)) and the minimal proportion of non-zeros is
1

4
π(3∗4)2

64∗64 ≈ 2.76% (Figure 3(c)). We conclude that at least

90% elements in a ground truth heatmap is approximately

equal to zero. However, CE loss only brings unilateral in-

hibition (from non-zero side) to samples and is not able to

make an impact on pixels when Qj,k
l = 0.

Inspired by lateral inhibition in neurobiology which de-

picts the capacity of an excited neuron to reduce the activity

of its neighbours [43], we introduce a bilateral inhibition

cross entropy loss function which brings penalty to both

zero and non-zero pixels and further improves the accuracy

of facial landmark detection systems. It can be written as

the following equation:

Lossh =BICE(Qi, Pi)

=−
∑

l

(Qi,llog(Pi,l) + (1−Qi,l)log(1− Pi,l))

(8)

To illustrate the effectiveness of the proposed BICE loss,

a theoretical analysis is conducted to study and compare

the margins of both CE and BICE functions. Once we ob-

tain the ground truth heatmaps, we utilize cross entropy loss

to judge whether the hourglass net output is accurate. We

usually implement softmax manipulation on CNN output

heatmaps Ql, QSl = softmax(Ql), to ensure that the sum-

mation of a output heatmap is equal to one. However, an-

other ground truth heatmap which is generated by a kernel

function does not always satisfy this constraint. In this case,

similarity evaluation between network outputs and ground

truth heatmaps is not strictly a cross entropy loss. We utilize

unilateral cross entropy (UCE) to denominate this loss func-

tion where only one side (i.e. the CNN output heatmaps)

satisfies the definition of probability distribution and the

other side (i.e. the ground truth heatmaps) is not satisfied.

As mentioned in [43], lateral inhibition increases the

contrast and sharpness in visual response. Similarly, our

proposed BICE loss also enlarges the margin between ele-

ments in predicted heatmaps. Let’s start with a binary clas-

sification case as a toy example to analyse the margin of

unilateral cross entropy loss firstly.

Considering UCE loss, the optimization objective func-

tion can be written as:

argmin
p1,p2

−(q1 log p1 + q2 log p2), p1 + p2 = 1 (9)

where q1, q2 denote two items of the ground truth heatmaps,

p1, p2 denote two elements of the network softmax layer

output probability which satisfies p1 + p2 = 1.

We can obtain:

p1 =
q1

q1 + q2

p2 =
q2

q1 + q2

(10)

Obviously, the margin between p1 and p2 is:

MCE =
|q1 − q2|

q1 + q2
(11)

In the case of q1 + q2 = 1, which means q satisfies the

definition of probability distribution, UCE loss degrades to

widely-used CE loss.

As for the proposed BICE loss, the optimization objec-

tive is:

argmin
p1,p2

−(q1 log p1 + (1− q1) log(1− p1)

+q2 log p2 + (1− q2) log(1− p2))
(12)

We can obtain:

p1 =
1 + (q1 − q2)

2

p2 =
1 + (q2 − q1)

2

(13)

Thus the margin between p1 and p2 is:

MBICE = |q1 − q2| (14)

In the case of q1 + q2 >= 1, where the summa-

tion of target heatmap elements is greater than or equal to

one, the margin of BICE loss is obviously larger than or

equal to conventional UCE loss. This implies that the pro-

posed BICE loss would perform better in most cases where

q1 + q2 > 1.



5. Experimental Results

5.1. Datasets

The 300 Faces in the Wild (300-W) dataset [36] is a

widely used 68-point benchmark dataset, which consists of

3,148 train images and 689 test images. We utilize all the

3,148 samples for training and perform testing on (i) Com-

mon set, (ii) Challenge set, and (iii) Full set. (i) Common

set includes 554 images come from subsets of LFPW [3]

and HELEN [24]. (ii) Challenge set consists of 135 sam-

ples from IBUG. (iii) Full set is a mixture of the above two

datasets that includes 689 images.

The Caltech Occluded Faces in the Wild (COFW)

dataset [6] consists of 1,345 images which are annotated

with 29 facial landmarks. To evaluate our algorithm pre-

cisely, we use the re-annotated test set with 68 facial land-

marks for comparison [18]. Specifically, we conduct exper-

iments on 507 images in the test subset which are occluded

to different degrees.

The Annotated Facial Landmarks in the Wild (AFLW)

dataset [22] contains 24,386 in-the-wild faces with large

head pose which is a challenging dataset for facial landmark

localisation. Each image is annotated with 19 landmarks

(without two ears). We follow AFLW-Full protocol [53],

and use 4,386 images for a cross-dataset test to evaluate our

proposed method.

5.2. Evaluation metrics

We adopt a widely used normalized error metric to evalu-

ate our proposed method and compare with state-of-the-art

methods. It measures normalized distance errors between

model-generated and ground truth locations. The calcula-

tion of the normalized error Ei for the ith given sample is

formulated as:

Ei =
1
L

∑L

l=1 |ti,l − pi,l|2

di
(15)

where pi,l and ti,l represent the predicted and target coor-

dinates respectively. l represents the lth landmark of total

L landmarks and di denotes the normalization term that en-

sures the NME scores across faces of different size are fairly

weighted. We utilize the inter-ocular distance (or outer eye

corner distance) suggested in [28] as the normalization term

of 300-W and COFW datasets. For the AFLW dataset, we

follow [28] to use face size as the normalization term.

For Normalized Mean Error, it is calculated as follows:

NMEi =
1

N

N
∑

i=1

Ei (16)

where N is the total numbers of all test samples. For Nor-

malized Median Error (NMDE), it is calculated as follows:

NMDEi = median(Ei) (17)

Method Challenge Common

CLNF[2] 6.37 / 4.93 / 1.44 3.47 / 2.51 / 0.96

SDM[46] −/10.73/− −/3.31/−
CFAN[49] 8.38 / 6.99 / 1.39 −/− /−
DRMF[1] 10.36 / 8.64 / 1.72 4.97 / 4.22 / 0.75

CFSS[52] 5.97 / 4.49 / 1.48 3.20 / 2.46 / 0.74

TCDCN[50] 6.87 / 5.56 / 1.31 4.11 / 3.32 / 0.79

3DDFA[54] 12.31 / 8.34 / 3.97 7.27 / 5.17 / 2.1

PO-CR[40] −/3.33/− −/2.67/−
CE-CLM[48] 5.62 / 4.05 / 1.57 3.13 / 2.23 / 0.9

FC-LGCN[29] 5.55 / 4.36 / 1.19 3.04 / 2.34 / 0.7

Ours 5.41 / 4.34 / 1.07 3.35 / 2.87 / 0.48

Table 3. Normalized median mean error with (68 points)/without

(49 points) face outline for 300-W Challenge and Common

datasets. The difference of errors between 68 and 49 points is

also evaluated to demonstrate the robustness of methods.

5.3. Implementation details

In our experiments, two stacked hourglass network [30]

is applied as the backbone network. To enhance the ability

of representing hierarchical features, we enlarge the chan-

nel number from 256 to 512 in down-sampling process and

back to 256 in up-sampling process. The experiments are

conducted with Pytorch framework on a server equipped

with 8 × Nvidia Tesla V100 GPU cards. Adam solver with

weight decay 5× 10−4 is applied for network training. Ini-

tial learning rate is set to 0.01 and later drops to 1 × 10−4

at epoch 120 and epoch 200.

In data augmentation, we crop human faces with default

tight bounding box and randomly rotate each training image

between [−30◦, 30◦]. Besides, with the probability of 50%

, we randomly flip each training image, translate the bound-

ing box between [-5%, 5%] of the box size, scaling with

proportion between [-7%, 7%] and inject a random Gaus-

sian blur with σ = 1 for each training image.

For end-to-end training, we resize the cropped face im-

ages to 256× 256× 3. After several convolution, residual,

and pooling blocks, the input shape of hourglass network is

resized to 64× 64× 256 as shown im Fig.2. In details, we

set the stack number equals two, σ = 4 and δ = 1 for kernel

radius and θ = 0.5 for hinge loss.

5.4. Comparison with state­of­the­art

Following [48], we evaluate our method using the inter-

ocular distance normalized median per image error. Since

coordinate error is very sensitive to outliers, the median is

a more robust evaluation metric than the mean of errors.

Results of landmark localisation on the 300-W dataset is

shown in Table 3. Our method outperforms all previous

baselines in the most difficult 68-point Challenge scenario.

The Challenge scenario contains images with large poses

and illumination variations and is not yet well tackled in



Method Common Challenge Full Set

SDM[46] 5.57 15.40 7.52

ESR[7] 5.28 17.00 7.58

LBF[33] 4.95 11.98 6.32

CFSS[52] 4.73 9.98 5.76

MDM[39] 4.83 10.14 5.88

TCDCN[50] 4.80 8.60 5.54

Two-StageOD[28] 4.36 7.56 4.99

Two-StageGT[28] 4.36 7.42 4.96

RDR[45] 5.03 8.95 5.80

Pose-Invariant[20] 5.43 9.88 6.30

SBR[15] 3.28 7.58 4.10

SANOD[14] 3.41 7.55 4.24

SANGT[14] 3.34 6.60 3.98

Ours 3.44 5.75 3.89

Table 4. A comparison of different methods on 300-W dataset.

Normalized Mean Error(%) metric is used for evaluation.

some approaches.

For 300-W Common set, we obtain comparable results

without the help of model fitting in a post-processing step,

as adopted in [29]. Compared with FC-LGCN model with-

out model fitting, we outperforms it in challenge dataset

with or without face outlines. It suggests that our pro-

posed method outperforms FC-LGCN in wild scenarios.

We also calculate the performance drop from 68 points to

49 points without face outline [46], and the results show

that our method achieves superior performance and depicts

good generalization ability to both facial outline points and

interior points.

To compare with other methods which is evaluated by

Normalized Mean Error metric, we also conduct related

experiments on three public available datasets (300-W,

COFW, and AFLW). In our experiments, inter-ocular dis-

tance [14, 28] is still applied as the normalization term for

300-W and COFW-68 and width (or height) of the face

bounding box as the normalisation term for AFLW.

As shown in Table 4, our approach achieves 5.75% mean

error and outperforms all the other approaches in 300-W

Challenge and Full set which demonstrates the effectiveness

of out method towards large pose human face images.

Additionally, to comprehensively evaluating the robust-

ness of our method, we conduct cross-dataset experiments

utilizing the model we trained on 3,148 300-W training im-

ages without any data from other datasets. We evaluate our

algorithm on COFW-68 dataset and AFLW dataset respec-

tively. Since original COFW dataset contains less than 68

landmarks, we utilize re-annotated COFW-68 dataset pro-

duced by [18]. Thanks to the generalization ability of our

proposed model, we achieve the best result on COFW-68

and AFLW-Full dataset. Superior results to SAN [14] and

SBR [15] on AFLW dataset which has different annotation

Method COFW-68 AFLW-Full

RCPR[6] 8.76 3.73

TCDCN[50] 7.66 −
HPM[18] 6.72 −
CFSS[52] 6.28 3.92

Two-StageOD(CVPR17)[28] − 2.33

Two-StageGT(CVPR17)[28] − 2.17

SBR(CVPR18)[15] − 2.14

SAN(CVPR18)[14] − 1.91

Ours 5.32 1.87

Table 5. A comparison of different methods on COFW dataset.

Normalized Mean Error(%) metric is used for evaluation

protocols demonstrate the robustness of our method on a

large scale dataset. The results is shown in Table 5. Noted

that our method is not trained with AFLW dataset and we

use two-stacked hourglass network which is half size of

most hourglass based networks.

6. Conclusion

In this paper, we propose a Stacked Multi-Target network

and suggest to dynamically adjust kernel function radius

temporally or spatially during training process to compen-

sate the discrepancy between heatmap optimization and co-

ordinate evaluation. Besides, we introduce to utilize hinge

loss and constrain the output of sub-network coordinate re-

gression in a reasonable range to avoid damage to primary

hourglass network. Finally, we theoretically analyse dif-

ferent loss functions used in heatmap regression-based fa-

cial landmark localisation methods and propose a new loss

function named Bilateral Inhibition Cross Entropy loss. The

introduced loss function not only brings bilateral inhibition

into CNN output heatmaps but also enlarges the margin be-

tween elements in output maps. Empirical evaluations on

three datasets show that our proposed method performs ef-

fectively and robustly.
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