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Abstract

As one of the major branches in Face Recognition (FR),

2D-3D Heterogeneous FR (HFR), where face comparison

is achieved across the texture and shape modalities, has be-

come more important. This paper proposes a novel deep

learning based end-to-end approach, namely Deep Coupled

Spectral Regression (DCSR), for such an issue. It jointly

makes use of both the advantages of CNN based deep fea-

tures and CSR based common subspace. Specifically, from

2D texture and 3D depth face maps, DCSR extracts more

powerful features by a deep network with the cross-modality

triplet loss, which show much better uniqueness and ro-

bustness than the hand-crafted ones. Further, DCSR learns

the shared space between different modalities with the con-

straints of sample labels, and is thereby more discriminative

than the widely used unsupervised methods. More impor-

tantly, the two steps above are integrated through a couple

layer to explicitly optimize the weights of deep features and

projection directions rather than a simple combination. Ex-

periments are carried out on the FRGC v2.0 database, and

the results reported clearly demonstrate the competency of

our proposed method. Its generalization ability is also val-

idated by additional experiments conducted on the CASIA

NIR-VIS 2.0 database.

1. Introduction

Face Recognition (FR) is one of the most popular top-

ics in the domain of computer vision and pattern recog-

nition. The last several decades have witnessed its large

progress. Traditional FR scenarios, e.g. 2D-2D or 3D-3D

FR [11, 6, 15, 27], demand gallery and probe data in the

same modality, i.e., 2D texture and 3D shape, or even re-

quire the data captured by the same type of sensing devices.

In contrast to them, Heterogeneous FR (HFR) matches face

images of different modalities [19], such as visible light-

ing faces vs. near infrared faces [4], face photos vs. face
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Figure 1. Illustration of 2D-3D HFR in the scenario of identifica-

tion (left) and verification (right). The green boxes denote correct

decisions.

sketches [29], and face texture maps vs. face shape maps.

It has received increasing attention due to its scientific chal-

lenges and application potentials. Recently, along with the

popularization of 3D FR using portable depth cameras (e.g.

unlocking at iPhone), 2D-3D HFR has been investigated

more extensively, which aims to provide a solution to FR

where different views of faces are available in the 2D tex-

ture and 3D shape modality respectively. It becomes more

useful since various new 2D, 3D, and RGB-D sensors are

emerging, and plays a crucial role in retrieving faces across

data for biometric, forensic, and entertainment systems. See

Figure 1 for an illustration of 2D-3D HFR in the scenario of

identification (1:N) and verification (1:1).

In HFR, there exist two major issues, i.e. facial represen-

tation in different modalities and mapping learning between

different facial features. For the former, in 2D-3D HFR, a

number of features have been attempted, including holis-

tic ones, e.g. Principal Component Analysis (PCA) coeffi-

cients produced on original pixels [5] and local ones, e.g.

Local Binary Patterns (LBP) [9, 8] and Oriented Gradient

Maps (OGM) [10, 7]. Wang et al. substantially improve

this step by a deep model [24], namely Convolutional Neu-

ral Networks (CNNs), which hierarchically builds deep fa-



cial representations on both 2D texture maps and 3D shape

maps. The deep features prove more effective compared

with the previous hand-crafted ones and present high tol-

erance to face alignment. For the latter, subspace learning

techniques are usually exploited to generate the common

space across 2D and 3D face maps, and Canonical Correla-

tion Analysis (CCA) [5, 8, 7, 24] as well as its kernel ver-

sion [26] are major representatives. Current methods report

promising performance; however, they generally work in a

person dependent manner where the identity in the test set

is required to enroll in the training phase, which degrades

the generalization ability to unseen persons. Lei and Li

[13] propose Coupled Spectral Regression (CSR) for HFR

between facial images acquired under visible and near in-

frared lightings, and they adopt a supervised approach with

a similar idea to Linear Discriminant Analysis (LDA) where

inter-class distances are increased and intra-class ones are

reduced, thus leading to a more discriminative shared sub-

space than that in the CCA family.

In this paper, we propose a novel deep learning ap-

proach to 2D-3D HFR, called Deep Coupled Spectral Re-

gression (DCSR). It jointly makes use of both the advan-

tages of CNN based deep features and CSR based com-

mon subspace. Specifically, DCSR extracts more power-

ful features from 2D texture and 3D depth face maps by a

deep CNN model with the cross-modality triplet loss, which

show much better uniqueness and robustness than the hand-

crafted ones. Meanwhile, DCSR sufficiently exploits labels

of samples, and the common space learned between differ-

ent modalities is thus more discriminative and better gener-

alized than Deep CCA [24]. More importantly, DCSR is an

end-to-end model, integrating the two steps above through

a couple layer to explicitly optimize the weights in deep

features and projection directions rather than a simple com-

bination of CNN and CSR. Extensive experiments are con-

ducted on the FRGC v2.0 database, and the results are state-

of-the-art, demonstrating the effectiveness of the proposed

method. In addition, the results reported on CASIA NIR-

VIS 2.0 show that the proposed method has a good general-

ization ability to other HFR problems.

In summary, the contributions are three-fold as follows:

• A new end-to-end supervised deep learning approach,

namely DCSR, is proposed for 2D-3D HFR.

• For joint optimization in feature extraction and map-

ping learning, a novel layer structure, called couple

layer, is designed, which combines CNN and CSR ef-

fectively and efficiently.

• State-of-the-art results are reached on the FRGC v2.0

database in 2D-3D HFR, and the scores of NIR-VIS

HFR achieved on the CASIA NIR-VIS 2.0 database

are also comparable to the best ones so far reported.

The rest of the paper is organized as follows. Section

2 briefly reviews the most related work of 2D-3D HFR in

the literature. Section 3 introduces the proposed Deep Cou-

pled Spectral Regression (DCSR) in detail, and Section 4

displays and analyzes the experimental results. Section 5

concludes the paper.

2. Related Work

To the best of our knowledge, the first attempt on 2D and

3D face matching dates back to 2005. Riccio and Dugelay

claim that facial geometry is intrinsic and remains stable in

2D and 3D data, and with the help of a set of pre-defined

fiducial points, they calculate several geometrical invariants

to associate facial texture and shape images [22]. Promis-

ing results are delivered on a small database with 50 people,

but when the number of identities greatly enlarges, the dis-

criminability of this feature tends to be problematic. Fur-

thermore, precisely localizing those landmarks on both 2D

and 3D faces, especially in the wild, is itself a difficult task.

Rama et al. [21] present a 2D-3D HFR method, where

3D data used for training are cylindrical (180◦ in the yaw

axis) texture images of whole faces rather than their depth

maps and ordinary 2D facial images are employed for test.

Partial Principal Component Analysis (P2CA) is applied for

feature extraction in a low dimensional subspace. An accu-

racy of more than 90% is reached on a dataset of 18 per-

sons, even if pose variations occur (in the yaw direction).

However, the claimed 3D data actually offer texture clues,

therefore, this method is more sensitive to lighting changes.

In [26], Yang et al. exploit CCA to generate the mapping

between the 2D texture and 3D depth maps of faces. Instead

of applying CCA on facial images globally, a patch based

strategy is utilized to divide faces into some uniform blocks,

and CCA operates on individual pairs of patches of the two

modalities and their contributions are then combined for de-

cision making. They further enhance this approach by Ker-

nel CCA (KCCA), and a result around of 85% is reported on

the samples of 28 subjects. Unlike the previous studies, the

experiment is carried out in a person independent way. Nev-

ertheless, raw pixel based features are often criticized for its

robustness, which leaves much space for improvement.

Huang et al. [5, 8] regard textured 3D face models as

gallery samples and 2D face texture images as probe ones,

and build the framework consisting of two separate match-

ing processes, i.e. 2D-2D FR and 2D-3D HFR, whose sim-

ilarity scores are fused for prediction. In their 2D-3D HFR

phase, they incorporate LBP facial features into CCA to im-

prove the performance in the presence of lighting changes.

In the subsequent, they replace LBP features with the bi-

ological vision inspired feature, namely OGM, for perfor-

mance gain [7]. Their method achieves state of the art re-

sult on the comprehensive FRGC v2.0 dataset but under the

person dependent setting. Additionally, it requires sophisti-



cated preprocessing on illumination and pose variations.

Zhang et al. [28] proposed a framework, which com-

bines the generative capacity of Conditional Generative Ad-

versarial Nets (cGAN) and the discriminative power of deep

CNN features for cross-modality learning. Firstly, they con-

duct 3D depth image reconstruction from a single 2D tex-

ture image with cGAN, and the recovered depth informa-

tion enables a straightforward comparison in the 3D space.

To extract features of different modalities and provide pre-

trained models for cross-modality learning, two discrimina-

tive CNN models are trained individually. They further en-

hance the recognition performance by fusing multi-modal

matching results. While attractive, this method highly de-

pends on the quality of the reconstructed 3D depth map,

especially with the same identity information preserved in

the 2D image.

Wang et al. [24] introduce Deep CCA in 2D-3D HFR,

where CNN based deep features are computed on both the

2D texture and 3D shape maps for facial representation. The

hierarchically learned features are expected to be more dis-

criminative and less affected by the changes in illumination

and head pose. When the deep features are extracted, they

are fed into CCA simultaneously, and the correlation gradi-

ent is calculated to optimize the deep neural network. This

framework indicates that the deep features are superior to

hand-crafted ones, while similar to [7], the good results are

only produced in person dependent experiments.

Despite great progress made in 2D-3D HFR as the in-

creasing performance shows, the conventional methods ba-

sically use hand-crafted features, which limit both the ac-

curacy and robustness. Deep features prove more effective,

but the succeeding mapping is learned in an unsupervised

way, leaving room for improvement. Meanwhile, they gen-

erally work in a person dependent manner, where identities

in the gallery and probe sets overlap with each other. Un-

der this assumption, they cannot work well in the real world

(e.g. the open-set recognition scenario), which requires a

strong generalization ability. Compared to them, the pro-

posed method adopts a DCSR framework, which represents

2D and 3D faces more comprehensively and learns the het-

erogeneous mapping more accurately.

3. Deep Model for 2D-3D HFR

In this section, we present our deep common subspace

learning framework for 2D-3D HFR. We first briefly revisit

the original CSR method, and then describe our proposed

DCSR in detail.

3.1. Coupled Spectral Regression

The Coupled Spectral Regression (CSR) method, pro-

posed by Lei and Li [13], aims at generating a projection

which can map heterogenous data (i.e., visible lighting faces

and near infrared faces) into a common subspace, and it

proves more discriminative for face identification and ver-

ification than the CCA related methods, as it makes use of

sample labels for supervision.

Formally, given two heterogeneous sample sets

{X1, X2}, where X1 = [x1
1, . . . , x

1
n], X

2 = [x2
1, . . . , x

2
n],

and n denotes the size of the sample set, we generate their

low-embeddings {Y 1, Y 2}, where Y 1 = [y11 , . . . , y
1
n]

T ,

Y 2 = [y21 , . . . , y
2
n]

T , and Y 1, Y 2 ∈ R
n×d. With linear

assumption, the low-embeddings can be defined as

Y 1 = X1TA1, Y 2 = X2TA2, (1)

where A1 and A2 are the projection matrices for X1 and

X2 respectively.

The objective function of CSR is formulated as

{A1, A2} = argmin
A1,A2

{
1

n
‖Y 1 −X1TA1‖2

+
1

n
‖Y 2 −X2TA2‖2 + η‖A1 −A2‖2

+ λ(‖A1‖2 + ‖A2‖2)}.

(2)

The first two terms in (2) are the approximation errors. The

third term η‖A1 − A2‖2 penalizes the difference between

A1 and A2, and the last term λ(‖A1‖2 + ‖A2‖2) contains

the shrinkage regularizers that help avoid overfitting. The

parameters η and λ balance the fitting accuracy and the gen-

eralization performance.

Please refer to [13] for more details of the CSR method.

3.2. Deep Coupled Spectral Regression

Although CSR delivers a more discriminative subspace

for heterogeneous face data than CCA and its variants do

[13] [14], its performance heavily relies on the design of

hand-crafted features for facial representation. To solve

this problem, we propose to incorporate deep features, i.e.

CNNs, into CSR, which are reputed to be more powerful

to automatically learn non-linear representations from raw

data.

We denote the features of different modalities gener-

ated by two different CNNs as F 1 = Φ1(X
1) and F 2 =

Φ2(X
2) respectively. The objective function of CSR can

then be rewritten as

LCSR =
1

n

n
∑

i

(‖Y 1
i − f1

i

T
A1‖2 + ‖Y 2

i − f2
i

T
A2‖2)

+ η‖A1 −A2‖2 + λ(‖A1‖2 + ‖A2‖2).

(3)

where n is the batch size, f1
i ∈ F 1 and f2

i ∈ F 2.

The gradient based optimization algorithm is widely

used in training the neural network. The keypoint in op-

timizing the objective function is to compute its gradient
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Figure 2. Architecture of the couple layer. It takes two input layers

and generates two output layers. Meanwhile it delivers the shrink-

age regularizer to the optimizer.

with respect to the projection matrices A1 and A2. We use

LCSR to represent the objective function, and its gradient

with respect to A1 can be derived as

∂LCSR

∂A1
=

1

n

n
∑

i

(
∂‖Y 1

i − f1
i

T
A1‖2

∂A1
+

∂‖Y 2
i − f2

i

T
A2‖2

∂A1
)

+ η
∂‖A1 −A2‖2

∂A1
+ λ

∂(‖A1‖2 + ‖A2‖2)

∂A1

=
2

n

n
∑

i

f1
i (f

1
i

T
A1 − Y 1

i )

+ 2η(A1 −A2) + 2λA1.

(4)

Similarly, the gradient of the objective function with re-

spect to A2 can be written as

∂LCSR

∂A2
=

2

n

n
∑

i

f2
i (f

2
i

T
A2 − Y 2

i )

+ 2η(A2 −A1) + 2λA2.

(5)

3.3. Couple Layer

Different from traditional neural networks, our DCSR

method has the objective function that contains constraints

learning

anchor

positive

negative

anchor

positive

negative

Figure 3. The cross-modality triplet loss encourages the faces of

the same identity to be projected closer to each other, while en-

larges the margin between the ones of different identities.

on the projection matrices, namely the Shrinkage regular-

izer that avoids overfitting and the regularizer which penal-

izes the difference between these matrices.

For joint optimization in feature extraction and mapping

learning, we build a simple yet effective layer structure,

called the couple layer. The overall structure is shown in

Figure 2. The couple layer contains the two projection ma-

trices A1 and A2, and has two input layers. The output

of the couple layer is the same as that of the traditional

fully connected layer, which employs linear transformation

to process data. Moreover, we deliver the aforementioned

two regularizers to the optimizer in the couple layer.

3.4. Cross­modality Triplet Loss

Inspired by [1, 18], we design a cross-modality triplet

loss to learn more discriminative facial representations in

2D-3D HFR, which preserves the intra-personal similarity

and enlarges the inter-personal margin in different modali-

ties.

Given gi ∈ FTA = {F 1TA1, F 2TA2} that represents

the low-embeddings of the two different modalities after

projection, we randomly sample a set of cross-modality

triplet tuples (gai , g
p
i , g

n
i ), where the anchor sample gai and

the positive sample g
p
i are features of the same identity (they

can come from different modalities), while the negative one

gni is from a different identity.

The cross-modality triplet loss is then defined as:

LCMTL =
1

m

m
∑

i

[‖gai − g
p
i ‖

2 − ‖gai − gni ‖
2 + α]+ (6)
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Figure 4. Overview of the proposed DCSR based 2D-3D HFR method.

where m is the number of the cross-modality triplet tuples,

α is the margin between samples of different identities, and

[·]+ refers to max(·, 0).
The selection of the cross-modality triplet tuples is based

on the following constraints:



















‖gai − g
p
i ‖

2 < ‖gai − gni ‖
2

‖gai − gni ‖
2 < ‖gai − g

p
i ‖

2 + α

gai , g
p
i , g

n
i ∈ FTA = {F 1TA1, F 2TA2}

(7)

Under this constraint, all faces of the same identity (no

matter what modal they come from) are encouraged to be

projected closer to each other in the embedding space, while

the margin between the samples of different identities is en-

larged.

Figure 3 illustrates the concept of this cross-modality

triplet loss.

3.5. Network Architecture

Based on (3) and (6), we combine the CSR term and the

cross-modality triplet loss term as our final objective func-

tion:

LDCSR = LCSR + LCMTL (8)

The whole structure of DCSR is shown in Figure 4. The

network framework is similar to the CNN configuration pro-

vided in [23]. The ConvNet is composed of five sequences

of convolutional layers: two 64-dims, two 128-dims, three

256-dims, three 512-dims, and three 512-dims. We use

ReLU as the activation function. The size of all the recep-

tive fields is set as 3 × 3 and the stride in all the layers is

1. A max pooling layer is inserted between each pair of se-

quences. In the last convolutional layer, instead of the fully

connected layer, we use the global pooling layer [17], which

significantly reduces the feature dimensionality. The couple

layer follows the global pooling layer in the end.

4. Experiments

To evaluate the proposed method for 2D-3D HFR, we

conduct extensive experiments on the FRGC v2.0 database

[20]. To further validate its generalization ability, we carry

out additional experiments on the CASIA NIR-VIS 2.0

database [16].

The databases, parameter settings, protocols, and results

are described in the subsequent subsections.

4.1. Database

FRGC v2.0 is one of the most famous and comprehen-

sive databases to evaluate 2D-2D FR, 3D-3D FR, and 2D-

3D HFR approaches. It consists of 4,007 textured 3D face

models of 466 subjects, possessing large changes in fa-

cial expressions, illumination conditions and moderate vari-

ations in head poses. The facial texture and range im-

ages separately extracted from 3D models are resized to

224×224 pixels as input. Figure 5 shows some examples

of texture and range images from this database.

4.2. Protocols and Settings

To analyze the effectiveness and highlight the advan-

tage of our method, we design two experimental protocols,



(a) Texture images (b) Range images

Figure 5. Examples of facial texture and range images on the

FRGC v2.0 database: (a) texture images and (b) range images.

Table 1. Comparison of 2D-3D HFR methods in the person inde-

pendent experiment on FRGC v2.0.

Method Rank-1 RR % VR@FAR=0.001 %

PCA + CCA [5] 30.22 15.91

PCA + CSR [13] 47.40 23.86

OGMs + CCA [7] 58.01 41.68

OGMs + CSR [7][13] 71.26 53.76

Deep Feature + CCA [5] 63.31 32.24

Deep Feature + CSR [13] 75.18 49.84

Deep CCA [24] 69.78 49.21

DCSR 95.97 87.70

for the person independent (PI) and person dependent (PD)

problems.

Protocol I: For PI, no identities are shared in the training

and test sets. This experiment aims to simulate the open-set

situation, which requires high quality of the common sub-

space produced as well as a strong generalization ability.

We take the last 366 subjects according to the order of sub-

ject ID that have 2,964 images for each view as training data

to fine-tune CNN. The range images of the first 3D models

of the remaining 100 subjects compose the gallery set, and

the texture images of the rest 3D models of the 100 subjects

(943 images) are used as probes.

Protocol II: For PD, identities in the test set also appear

in the training set. This experiment is to simulate the close-

set situation, where high recognition accuracy is requested

for enrolled persons. Therefore, the gallery set can be in-

cluded as part of the training set. Besides the 2,964 images

from the last 366 subjects, we add the first texture and range

images from the gallery set into the training set, which to-

tally contains 3,064 images for each modality. The test set

is the same as that in Protocol I.

In both the protocols, different kinds of features are em-

ployed to represent 2D and 3D face images. In all the exper-

iments, the structure of CNN is described in Sec.3.5, and the

batch size and learning rate are set as 32 and 1e-5 respec-

tively. The Labeled Faces in the Wild (LFW) dataset [12] is
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Figure 6. ROC curves of different methods in the person indepen-

dent experiment

used to pre-train the CNNs, and the training data on FRGC

v2.0 are used for fine-tuning.

In the classification phase, the cosine similarity is em-

ployed to describe the relationship among different features

in the common sub-space. At last, we use Nearest Neighbor

(NN) as the classifier to make decision. The experimen-

tal results are reported with two standard indices, Rank-1

Recognition Rate (RR) and Verification Rate (VR) with the

False Acceptance Rate (FAR) at 0.001. The Receiver Oper-

ating Characteristic (ROC) curves of all the experiments are

provided to evaluate the performance of different methods.

The proposed DCSR is compared with pixel feature

based CCA [5] and CSR [13], OGMs feature based CCA

[7] and CSR [13], Deep feature (extracted from the VGG-

Face model [23]) based CCA [5] and CSR [13], and the

latest Deep CCA model [24] under the same settings. It

should be noted that the best hyper-parameters of η and λ

are set in CSR according to [13]. In DCSR, {η, λ, α} are

set as {1e-5, 1e-6, 1.0} respectively.

4.3. Personal Independent Results

Table 1 illustrates the results under Protocol I (PI). It

can be seen from the experimental scores that the tradi-

tional methods which separate feature extraction and cross-

modality mapping are generally unable to report satisfac-

tory performance in the open-set 2D-3D FR problem. The

best accuracy among those methods only reaches 75.18%

(through a simple combination of deep CNN features and

CSR) for identification. Deep CCA improves the perfor-

mance of direct integration of CNN and CCA, from 63.31%

to 69.78%, which shows the superiority of the end-to-end

trainable deep model. Compared with them, our DCSR

achieves the performance of 95.97%, with an approximate

20% promotion. Regarding the verification task, DCSR



Table 2. Comparison of 2D-3D HFR methods in the person depen-

dent experiment on FRGC v2.0.

Method Rank-1 RR % VR@FAR=0.001 %

PCA + CCA [5] 44.64 27.89

PCA + CSR [13] 66.38 48.37

OGMs + CCA [7] 66.91 54.61

OGMs + CSR [7][13] 80.06 66.70

Deep Feature + CCA [5] 90.99 74.13

Deep Feature + CSR [13] 96.08 92.05

Deep CCA [24] 97.56 97.99

DCSR 99.26 98.83
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Figure 7. ROC curves of different methods in the person dependent

experiment

shows a VR of 87.70% @FAR=0.001, which is the best

score among all the counterparts as well.

It is worth noting that all the CSR based methods per-

form better than CCA based ones using the same features,

which indicates that with the help of supervised informa-

tion, the shared subspaces learned from CSR are more dis-

criminative than the ones of the unsupervised methods. Ad-

ditionally, thanks to the cross-modality triplet loss and the

couple layer with which the joint optimization is conducted,

the advantages of CNN and CSR are sufficiently exploited,

greatly outperforming their simple combination.

As shown in Figure 6, the proposed DCSR method

achieves significantly better performance than the counter-

parts in the person independent experiment.

4.4. Personal Dependent Results

The results of different methods in protocol II (PD)

are displayed in Table 2. CSR based approaches learn

more discriminative subspaces for different facial represen-

tations than CCA based approaches do. Table 2 shows that

the methods with deep learning frameworks achieve better

scores in both identification and verification compared to

Table 3. Comparison with different NIR-VIS HFR methods on

CASIA NIR-VIS 2.0

Method Rank-1 % VR@FAR=0.001 %

TRIVET [18] 95.7 ± 0.5 91.0 ± 1.3

IDR [3] 97.3 ± 0.4 95.7 ± 0.7

W-CNN [4] 98.7 ± 0.3 98.4 ± 0.4

DCSR 98.4 ± 0.3 97.8 ± 0.4

the traditional methods using hand-crafted features. The

best performance of shallow features is only 80.06% for

Rank-1 RR and 66.70% for VR@FAR=0.001, while the ac-

curacies of deep feature based methods are dramatically im-

proved. The DCSR model reports the best performance,

99.26% for Rank-1 RR in identification and 98.83% for

VR@FAR=0.001 in verification.

Figure 7 shows the ROC curves in the person dependent

experiment. Due to the additional information provided by

sample labels, the DCSR model learns more discriminative

representations for both the two different modalities, lead-

ing to better precisions.

4.5. Experiments for NIR­VIS HFR

To further validate the generalization ability of our pro-

posed method, additional experiments are conducted in the

NIR-VIS HFR task on the CASIA NIR-VIS 2.0 database

[16].

CASIA NIR-VIS 2.0 is the largest and most challenging

NIR-VIS HFR database due to the large variations in light-

ing, expression, pose and distance. The database contains

725 subjects captured with 1-22 VIS and 5-50 NIR face im-

ages per subject. In the training phase, there are about 2,500

VIS and 6,100 NIR images from 357 subjects. In the test-

ing phase, the gallery set is constructed from 358 subjects

and each identity only has a single VIS image. The probe

set contains over 6,000 NIR images from the same 358 sub-

jects. The subjects in the training and testing are different

and the two sets are disjointed. Thus, it is an open-set recog-

nition problem.

We compare the performance of our DCSR method with

that of the other state-of-the-art NIR-VIS HFR methods,

such as TRIVET[18], IDR [3] and W-CNN [4]. For fair

comparison, the light CNN model [25] is used as the back-

bone network, pre-trained on the MS-Celeb-1M dataset [2].

10-fold cross validation experiments are conducted accord-

ing to the standard protocol described in [16].

Table 3 shows the results of different methods on CA-

SIA NIR-VIS 2.0. The performance of the proposed DCSR

method is 98.4 ± 0.3% for Rank-1 RR and 97.8 ± 0.4% for

VR@FAR=0.001. They are comparable to the best scores

reported in [4] for NIR-VIS HFR, which demonstrate the

good generalization ability of our method for other HFR

problems.



5. Conclusion

In this paper, we propose a novel end-to-end deep learn-

ing based approach for 2D-3D HFR, namely Deep Coupled

Spectral Regression (DCSR), which incorporates the advan-

tages of both CNN and CSR. For joint optimization in fea-

ture extraction and mapping learning, we build a simple yet

effective couple layer. A cross-modality triplet loss is de-

signed to further enhance the discriminative power of facial

features in different modalities. We validate our method

on FRGC v2.0 in two different scenarios of identification

and verification. The experiments with the person inde-

pendent and person dependent protocols, are carried out.

The proposed DCSR model reaches state-of-the-art perfor-

mance compared to the counterparts in 2D-3D HFR. The

results on CASIA NIR-VIS 2.0 also show that the proposed

method can be well generalized to other HFR problems.
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