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Abstract

We live in a connected world that requires us to

identify ourselves every time we want to access our

emails, work stations, bank accounts, health care

records, etc. Every system we interact with requires

us to remember a username/password combination,

have access to some private/public key pair, a hard-

ware token, or some third party authentication soft-

ware. Our digital identity is owned by the services

we are trying to access, no longer under our con-

trol. Self-Sovereign Identity promises to give back

control of his or her identity to the user. It is in

this context that we explore the use of biometrics

in order to empower users to be their own pass-

words, their own keys, their own means to authen-

ticate themselves. We propose Self-Sovereign Bio-

metric IDs (SelfIs), a novel approach that marries

the concepts of decentralization, cancelable biomet-

rics, bloom filters, and machine learning to develop

a privacy-first solution capable of allowing users to

control how their biometrics are used without risk-

ing their raw biometric templates.

1. Introduction

Online banking, virtual doctor visits, entertain-

ment, and all sorts of digital interactions require

we tie ourselves to one of many online unique dig-

ital identities (e.g., username/email and password

combinations). Privacy-aware systems may require

the generation of private/public key pairs which may

be linked to an account for authentication purposes

(e.g., github.com). Trying to manage identities then

becomes a challenge that will only grow as more ser-

vices are digitalized [40]. On one end, we are see-

ing the centralization of identitity services, where

we can log into our favorite website with our so-

cial media credentials (e.g., using OpenID [11] or

OAuth 2.0 [33]), thereby reducing the number of

credentials needed. Some of the downsides of this

approach include: 1) losing access to our main ac-

count will lock us out of all our linked accounts, 2)

we have no visibility into security/insecurity prac-

tices of the companies managing our accounts [24],

3) malicious actors could compromise one authen-

tication service and have access to all of our linked

accounts. Two-factor authentication is another layer

of security with its own pros and cons (e.g., losing a

second factor).

Blockchain technology [31] has introduced the

concept of decentralized identity to the mainstream.

Bitcoin [31], for instance, relies entirely on the idea

of decentralized identity, where each user generates

a public/private key pair and all interactions on the

Bitcoin network are done through the use of Bitcoin

addresses, which are derived from the users’ public

keys. This is very appealing as users do not need

to create passwords/accounts to interact with other

users, instead, this is seamlessly done by their mo-

bile Bitcoin wallets. The benefits of a decentralized

identity management system are manyfold, includ-

ing an always on notion, fully user controlled, on

top of the built-in privacy/security primitives.

Biometric technology aims to reduce the burdens

in today’s segmentated identity solutions [23, 8],

whereby the user becomes his/her own password,

because unlike passwords, keys, tokens, or access

codes, biometrics can answer the question: who am

I really talking to?
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Our main contributions are: 1) Introduced the

concept of Self-Sovereign Biometric IDs (SelfIs),

which are cancelable biometric templates fully man-

aged by the user. 2) A novel machine learning ap-

proach capable of extracting features from encoded

cancelable bloomed biometric templates.

2. Motivation

Our goal is to provide a way to use biometrics in

a secure, privacy-first way, without having to com-

promise matching accuracy. We want to be able to

integrate it into the same fabric as that of exist-

ing multi-factor authentication schemes. For that,

we will look to extend the concept of Decentral-

ized Identifiers [15]. Although two-factor authen-

tication, biometrics, decentralized identity schemes

such as PGP, Bitcoin [31], and SecureKey [20] are

very promising, they all address only part of the

spectrum of identity. Multi-factor authentication so-

lutions require two things: something you know,

and something you have. Passwords, PINs, secu-

rity questions are all things you know, while pri-

vate keys and access codes or tokens are things you

have. One of the hottest authentication form fac-

tors today are biometrics [23, 8]. Rather than being

something you know, or something you have, bio-

metrics are something you are, and unique to a per-

son [22]. By adding biometric sensors to mobile de-

vices the reach of biometric authentication technol-

ogy is magnified as mobile technology accounts for

over 75% of internet use [46]. One of the biggest

issues with biometrics is that once an attacker gets

access to the biometric templates, there is nothing

stopping an attacker from carrying out a replay at-

tack. Biometrics are especially at risk when central-

ized [34] as proven by major recent hacks [14, 26].

3. Related Work

3.1. Decentralized Identity

Pretty Good Privacy (PGP) [48] wanted to build

a web of trust, where users would have access to

keyrings, and prove their identity via PGP key own-

ership proofs. Bitcoin and many new initiatives

borrowed from these concepts to further the idea

of decentralized identity. The Bitcoin protocol re-

quires participants in the network to generate pri-

vate and public key pairs in order to transact within

the Bitcoin network. Bitcoin uses Bitcoin addresses,

which are derived from the user’s public key using

a one way function transformation. Consider a sim-

ple transaction between Bob and Alice, Bob sends

a Bitcoin to Alice’s receive address. Alice will then

be able to spend that Bitcoin by proving that she

owns the private key that is associated with that

public key address. Namecoin [32] was one of the

first to provide a directory like service, where users

could attach identity information such as PGP, OTR

keys, email, Bitcoin, and Bitmessage addresses to

an identity of their choice. HYPR [18] allows for

password-less authentication via biometrics, which

are stored locally on their hardware device, how-

ever, it requires each user to carry hardware don-

gles, which is a challenge since any sort of dongle

is hard to manage and easy to lose [42]. Like HYPR,

SecureKey [20], and many others who use tokens

to authenticate users can prove only one thing: You

have access to the keys associated with your iden-

tity rather than proving you have your biometrics.

Given the potential of decentralized identity, there

are many organizations now trying to define best

practices and standards [9, 16].

3.2. Secure Biometrics

Biometric technology has survived the test of

time [7, 29, 21]. Traditionally used by law enforce-

ment agencies [29], civil/criminal court, fraud [21],

financial industry, etc., it is now mainstream. India

and the UAE have major national programs [35, 2].

The academic community has extensively explored

ways to protect biometric data. One scheme in-

volves using biometrics to generate keys [39, 28,

17, 1, 43, 10], which are then used to authenticate

users, sign documents, etc. Hybrid cryptosystems

use a combination of biometrics and crypto primi-

tives to protect data [41, 30]. Cancelable biometrics

is a very promising field of research and the aca-

demic world has made significant strides since its

inception [36, 38]. Cancelable biometrics work by

introducing a sort of noise or applying some trans-

formation to the biometric data. This same trans-

formation is then applied at matching time. The

key benefit here is that if an attacker steals the

transformed biometric data, he or she cannot carry

out replay attacks as the template itself has a one-

way function applied to it, which in theory is irre-

versible. More recently, bloom filters have been suc-

cessfully applied to masking the different biometrics

and encoded template matching has been done with

promising results [37, 13, 27, 25]. The challenges

with these schemes are manyfold: 1) biometric sam-
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Figure 1. Bloom Filter Generation

pling is nondeterministic, 2) quantization steps lead

to quality loss, 3) noise is introduced to the biomet-

rics matching process, all necessary steps to protect

biometrics at the cost sacificing matching rates.

4. SelfIs: Self-Sovereign Biometric IDs

4.1. Overview: From selfies to SelfIs

Figure 2. SelfIs Uses

SelfIs are simple forms of Biometric IDs that be-

have similarly to passwords in the sense that pass-

words can be changed on demand. Moreover, like

secure passwords, SelfIs are salted before being

stored anywhere by using seeds (random numbers

used to deterministically transform SelfIs). Users

can choose to create temporary SelfIs, which may

have expiration dates, or used by different entities.

This is useful for things like physical access control

where the use of a SelfI can be highly regulated or

accessing sensitive data, whereby the data owner

and the SelfI owner are immediately notified. Any

system trying to use a SelfI will request two things

from the owner: 1) prove he/she owns the seeds,

and 2) provide a SelfI for matching. Figure 2 shows

a high-level diagram depicting a use case where a

user generates multiple SelfIs for interacting with

different entities. This use case will require man-

agement of some necessary metadata, and we envi-

sion an application managing SelfIs to behave simi-

larly to a Bitcoin wallet.

4.2. Cancelable Bloom Generation

Our work extents [36, 13] in that we 1) salt bio-

metric templates in order to allow for secure stor-

age of the templates and 2) apply one-way functions

to biometric data in order to mask the original tem-

plates. First, we take a selfie, a set of random num-

bers are generated (the seeds), which dictate how

the image is transformed and are stored locally un-

der user control. The second step is the bloom-

ing of the cancelable template. Once the bloom-

ing is done, we then store the bloom data as well

as hashes of the seeds in a Blockchain fabric such

as Hyperledger Fabric [6]. Figure 1 shows the dif-

ferent stages an image goes in order to extract a

set of bloom filters. First, the image is decomposed

into feature vectors of n-blocks, which are then re-

arranged and n−bit bym−word blocks are extracted

from the vertical group arrangement. These blocks

are then encoded in 2n−bits bloom filters. Which are

then stored for matching purposes. Bloom filters

can be further encoded and protected through the

introduction of noise to the process, which leads to

higher degree of security. One of the biggest bene-

fits here is that even if the bloomed data is compro-

mised, the transform is irreversible. Once a selfie

has made it through the Cancelable Bloom Genera-

tion process, a SelfI is generated. Listing 1 shows

a sample object generated and sent to the backend

for registration, where data consists of either a sin-

gle cancelable bloomed template for authentication

purposes, or an array of bloomed images for regis-

tration purposes. We integrate SelfIs with Decen-

tralized Identifiers (DIDs), which are a new type

of identifier for verifiable digital identity [15]. Each

DID Document contains at least three things: cryp-

tographic material, authentication suites, and ser-

vice endpoints. Cryptographic material combined

with authentication suites provide a set of mecha-

nisms to authenticate as the DID subject (e.g. pub-

lic keys, pseudonymous biometric templates, etc.).
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Service endpoints enable trusted interactions with

the DID subject [15]. Once the registration step

is complete, the DID belonging to the user is up-

dated with the necessary data for matching. List-

ing 2 shows an example of a DID corresponding to

a SelfI.

Listing 1. Registration JSON

1 {

2 "user": "danny",

3 "type": "register",

4 "uuid": "2b84def1-02e0-48a3-9af5-29d134da8960",

5 "data": ["A04B8081A08080088800...",

6 "80018000800080008000...",

7 "9309A000A040C1008001.."],

8 "nonce" : "1542140591.9916613",

9 "address" : "1A4aNCeC1Zt2BPHX8JDQtjPUgwvuDY4uxp"

,

10 "signature" : "HzPe9HSVT74SqVZgf..."

11 }

Listing 2. Sample DID Object

1 {

2 "@context": "https://w3id.org/did/v1",

3 "id": "did:selfi:2b84def1-02e0-48a3-9af5-29d134da89

60",

4 "authentication" : [{

5 "id": "did:selfi:2b84def1-02e0-48a3-9af5-29d134

da8960#facial",

6 "type": "cancelable_face",

7 "controller": "did:selfi:1A4aNCeC1Zt2BPHX8

JDQtjPUgwvuDY4uxp",

8 "seed_kx_hash": "4deb118d25fc29d51ba2f07...",

9 "seed_ky_hash": "abc6eb9a6075f3af43418b0..."

10 "data": ["A04B8081A08080088800...",

11 "80018000800080008000...",

12 "9309A000A040C1008001.."],

13 "ca_info": {

14 "signature": "HzPe9HSVT74SqVZgf...",

15 "entity": "did:v1:abbc2ab9-467e-4a80-87d5-df4

d904ca2af"

16 }

17 }],

18 "service": [{

19 "type": "AuthenticationService",

20 "serviceEndpoint": "https://host.auth.service.

com/api/v1/match"

21 }]

22 }

4.3. Enter the Blockchain

By using Blockchain we have decentralization for

distribution and matching of templates, as well as

crypto primitives built into the fabric to transfer

data in a secure way. If a user wants to prove to

someone that he/she owns the seeds to perform the

one-way transform for the biometric template, the

user can simply sign the hash of the seeds that are

associated with the bloomed data. Signing the hash

of the seeds tells someone that the user owns the

seeds associated with the bloom data. Similarly, if a

user is challenged and asked for the seeds in order

to do a match, the user can choose wether to answer

that challenge and provide his/her template’s seeds

or not. Distributing seeds can be done via PGP/Pub-

lic Key cryptography, whereby, the user knows the

address or PubKey of the person/system issuing the

challenge.

4.4. The Access Point

Once the seeds are distributed, the access point

will capture the user’s biometric template, apply the

seeds for the cancelable transformation, and pro-

ceed with the blooming. We assume the access point

is trusted (e.g., implemented with ARM TrustZone

[3]). If at any point in time an access point is com-

promised, then the user’s raw biometrics may be

compromised as well, which is a problem with any

biometric solution.

4.5. Machine Learning

At the core of our solution is a novel Deep

Learning-based approach that extracts and learns

features/patterns from cancelable bloom data

(SelfIs). This step will be described in more detail

in Section 5.

4.6. Use Case: Traveling with SelfIs

4.6.1 The Requirement

Consider the scenario where a user is to visit a for-

eign country and needs to do some banking, social

media, get through customs, etc. The user brings

his/her smart phone which can be used to satisfy the

two-factor requirements of many systems. Let’s fur-

ther assume that digital passports are accepted. In

this context, if the user has access to his/her phone

we are good. Now, consider a scenario where the

user does not have immediate access to the phone

(e.g., it is lost, broken, no WiFi password, out of bat-

tery, etc.). In this context what would be the next

best thing? Biometrics? Let’s assume the country

abroad uses Biometrics to do things like banking,

get through customs, etc. Now, the next question

is, do we trust a foreign country to properly man-

age our biometrics [14, 26]? Hence, the require-

ments: 1) Allow for multi-factor (possibly password,

PIN, some token multiple types of biometrics, etc.),
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Figure 3. SelfIs Architecture

2) If we lose any of our factors, we should still be

able to authenticate.

4.6.2 The Multi-Factor Solution

Before traveling we will register ourselves as well

as our authentication factors by extending DIDs

[15] to incorporate authentication factors such as

PINs, SelfIs, etc. Figure 3 shows a high-level di-

agram of our current prototype for registration of

SelfIs. For things like passwords, PINs, etc., things

we know, we can choose to create temporary to-

kens that can be deterministically derived from our

PINs/passwords. We can use these to authenti-

cate ourselves, we can register them as authentica-

tion factors with PubKey-derived addresses in our

Blockchain (e.g., linked to a DID). For tokens, or

access codes, we can assume we have our phone,

thus, we can use those factors to authenticate our-

selves. The key advantage of using SelfIs is that we

can lose our other authentication factors and still

be able to use our Biometrics. In this context, we

could then use our approach to support n-of-m fac-

tor authentication depending on what we want to

access. For instance, if we want access our Bank

account and get some cash out, the Bank may ask

for a PIN and a SelfI. Both of which can can use

the same infrastructure. The bank would pull the

PubKey associated with the PIN part of our DID,

use the PubKey to verify a challenge token signed

with the Private Key derived from our PIN . The

SelfIs would then be used as a second authentica-

tion factor.

4.6.3 Traveling with Agency-backed SelfIs

Users can use a mobile Application to register their

SelfIs with a trusted Backend of their choosing (1).

For instance, in Figure 3, a user is going to travel

abroad, thus, he/she needs to register their SelfIs

with the Airline (Cloud1). The Airline may choose to

trust the the Matching Service running in Cloud2, or

it could ask the user to use another trusted Match-

ing Service provider. The user will then register

his/her SelfI with the Airline, and provide among

other metadata, the necessary seeds to derive the

Cancelable Bloom Data (2). The seeds are dis-

tributed on demand, however, in this use case, we

assume the seeds are stored in the Airline’s backend

(Cloud1). The SelfIs are added to the Blockchain

fabric and Machine Learning backend (Cloud2) for

training purposes so that the user can be authenti-

cated at a later point in time (3).

When the user books a flight, the Airline will cre-

ate the necessary booking information (4). Next,

the user goes to Check-In and the automated kiosk

(an access point) (5). The Check-In kiosk then pulls

the necessary metadata from Cloud1 to generate the

matching SelfI (6), and makes the call to the Match-

ing backend (7) in Cloud2. The matching logic is

triggered and a response is securely (e.g., SSL) sent

back to the access point (8, 9). The Check-In process

can now continue (10).

In the event that a trusted SelfI is required,

a third party such as a Government Agency can

endorse SelfI. This process is similar to the one

above meaning that, when a user generates a SelfI,
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the user will follow the same steps as the use case

above, generate the SelfI, provide the seeds to

the Government agency, then let the Government

agency generate a SelfI for the user and match it. If

there is a match, the Government agency can then

endorse the user’s SelfI. This is analogous to the pro-

cess of digital certificates, whereby upon proving

ownership of a SelfI and its contents, the Certificate

Authority endorses it, and we can now use standard

methods to verify authenticity of a SelfI.

5. Model and Experimental Results

5.1. Architecture Software Stack

We developed an Android Application that is used

to capture the user’s selfies and register/authenti-

cate with our backend. IBM Cloud hosts our book-

ing and machine-learning logic. IBM’s Blockchain

Platform [19] is used to manage our user’s SelfIs via

RESTful endpoints [4]. We built a native library for

SelfI generation that supports ARM and x86 plat-

forms. We currently support Android, Raspberry Pi

3, and x86 trusted access points.

Figure 4. Overview of our model architecture

5.2. Template Matching Model

Convolutional neural networks (CNNs) have been

studied and used extensively to do image classifica-

tion. The task is to assign a label or class to an input

image and provide a confidence score or probability

that the input image belongs to a particular class.

In order to train these types of networks, a large

number of training samples per class are required,

and the data typically consists of RGB images with

3 channels. In the area of time series classification,

deep convolutional neural networks have been stud-

ied to demonstrated that feature learning is possi-

ble for time series classification [47]. One of the

reasons is that the use of very long sequences in

recurrent neural networks such as Long short-term

memory (LSTM) is difficult because it is a very te-

dious task to train these models due to the length of

the sequences. Furthermore, using sequential mod-

els like Dynamic Time Warping (DTW) [44] or Ham-

ming distance and variants of it [5] to measure the

similarity between two sequences either takes too

long to execute or might not be able to provide the

level of accuracy required to do template matching.

Inspired by the efforts to do and improve image clas-

sification as well as the on-going research to apply

deep learning to DNA classification and gene reg-

ulation [12, 45], we devised our own model to do

bloom classification. Our model takes into account

the spatial and temporal nature of the hexadecimal

bloom sequence by encoding the bloom filters as

images and using various layers to learn features

from the bloom filters. The model consists of time

distributed convolutional layers followed by Gated

Recurrent Unit (GRU) and fully connected layers.

Figure 4 shows a high level overview of the archi-

tecture. The intuition behind the proposed model

is to convert hexadecimal bloom filters into images

with 4 channels. Each channel holds a single bit,

which dictates if a feature is present or not for a

given bloom template. The convolutional layers are

used to learn high level features/patterns. The data

is then flatten and fed to a set of GRU and fully con-

nected layers. This allows us to extract and learn ad-

ditional features and train the model at a faster rate.

The activation used throughout the layers is ReLU.

Max pooling and batch normalization are used to

extract additional features, reduce overfitting, and

use of a higher learning rate. The softmax activa-

tion function is used in the final layer to get class

probabilities.

5.3. Data Sources and Pre-processing Steps

In order validate the proposed model, we created

our own dataset of face images taken from a Sam-
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sung Galaxy S9 Plus device. The dataset consist of

400 images of size 2448 x 3264 pixels taken under

different lighting, background, and face alignment

conditions. In total 20 images were taken per par-

ticipant, stored in JPEG format, and labeled with an

identification number. This dataset is representative

of the registration phase mentioned in the Traveling

Abroad use case since each person is required to use

his or her smartphone to take SelfIs, and the partic-

ipants take the images under different lighting and

background conditions. In addition, we used some

of the images from Caltech’s Frontal face dataset as

well. For the experiments and results reported in

this paper, we use the images from the dataset we

have created for training, testing, and validation.

Images from the Caltech dataset as well as some

images we took with a different device are used for

testing purposes only since the number of images

available per person in this dataset varies a lot and

we need at least 10 images per person to train our

model.

For the images in the dataset we have created, we

randomly split each set of 20 images into training,

testing, and validation sets. Of the 20 images taken

for each participant, 10 images are used to train our

model, 5 images are used to validate our model, and

the remaining 5 images are used for testing. For the

Caltech’s dataset images and other images we took,

we randomly selected 2 images per participant and

use them only for testing scenario 4, described in

Section 5.4. Upon splitting the data, we followed

the steps mentioned in the use case to detect the

face, transform (distort) the face, extract features

from the face region of the image, and generate the

bloom filters. Each bloom filter consists of 61,440

hexadecimal values that encode the feature vectors.

We then iterate through each hexadecimal value to

convert it to its binary representation (4 bits per

hexadecimal value) for a total of 245,760 bits. Fi-

nally, each binary bloom filter of size 1 x 245,760 is

converted into an image representation of size w x

h x c, where w is the width of the image, h is the

height of the image, and c is the number of channel-

s/depth. The resulting binary bloom image is of size

240 x 256 x 4. Each element of the binary bloom

image represents the hexadecimal value in binary

format. Figure 4 shows an example of the transfor-

mations that takes place to convert a hexadecimal

bloom filter to its corresponding binary bloom im-

age representation. Step 1 shows the 10 blooms of

a user, each in hexadecimal format. Step 2 shows

(a) (b)

(c) (d)

Figure 5. Distribution of confidence levels for the 4 sce-

narios described in section 5.4: (a) Scenario 1: test us-

ing same seeds used during registration; (b) Scenario 2:

test using randomly generated seeds never used before;

(c) Scenario 3: test using seeds of all registered users;

(d) Scenario 4: test using seeds of all registered users on

users that have not registered before.

the binary representation of the 10th hexadecimal

bloom filter. Step 3 shows the representation of the

bloom filter as a binary bloom image format. The

transformation from hexadecimal bloom filter to bi-

nary bloom image is done for all bloom filters for all

participants.

5.4. Experiments and Results

We conducted a set of experiments to test 4 dif-

ferent scenarios that are likely to occur when per-

forming face authentication using the SelfIs archi-

tecture shown in Figure 3. For the following scenar-

ios, let Ux be a person who has registered using the

SelfIs system, Sx be the seeds used to transform Ux

images, and Uy be a person who has not registered.
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This can be extended to all users who have regis-

tered, but for simplicity, the following scenarios de-

scribe the interaction between our system and users

Ux and Uy. Scenario 1 : Given the seeds generated

for Ux during the registration phase, use Ux seeds,

Sx, to bloom Ux images for authentication. This de-

scribes the case in which Ux wants to authenticate.

Scenario 2 : Given some randomly generated seeds

that are not equal to Sx, use these random seeds to

authenticate Ux. This describes the case in which

Ux wants to authenticate but the system performs a

different transformation since it is using some ran-

dom seeds that are not Sx. Scenario 3 : Given the

seeds generated from all other registered users, ex-

cluding Sx, use these seeds to authenticate Ux. This

describes the case in which the system is waiting for

Ux to authenticate, but a different user who has reg-

istered with the system tries to authenticate. Sce-

nario 4 : Given Uy, who has not registered, use the

seeds from all registered users to authenticate Uy.

This describes the case in which a user who has not

previously registered tries to authenticate.

We performed the pre-processing and dataset

splits described in section 5.3 to build our training,

validation, and testing sets for all 4 scenarios. Out

of the 20 sets of data from the dataset we created

(20 participants, 20 images each), 16 sets are used

for training, validation, and testing scenarios 1-3.

The remaining 4 sets from this dataset plus images

from the Caltech dataset and the images we took

from a difference device are used to test scenario 4

since this scenario requires images of participants

that the system has not seen before. We set the cut-

off confidence threshold to 80% to indicate a match

if the confidence level is equal or greater than 80%;

a mis-match if the confidence level is less than 80%.

The results are summarized in Table 1. For scenario

1, 62 out of the 80 predictions (77.5% of the predic-

tions) have a confidence score equal or greater than

80%. The remaining 18 predictions (22.5% of the

predictions) have a score less than 80%. Scenarios

2-4 have a high percentage of confidence levels be-

low the cutoff threshold as one would expect, 90.0%,

85.33%, and 91.25% respectively. For scenarios 3-

4, the number of predictions are much larger due to

the number of possible seed combinations. Figure 5

shows the distribution of confidence levels across

all 4 scenarios. The distributions show that the vast

majority of confidence levels for scenarios 2-4 are

within confidence levels 0.3 and 0.5. For scenario

1, 58 predictions have a confidence level between

Scenario 1 Scenario 2 Scenario 3 Scenario 4

# predictions 80 80 1200 960

# Above cutoff 62 8 176 84

# Below cutoff 18 72 1024 876

% Above cutoff 77.5% 10.0% 14.67% 8.75%

% Below cutoff 22.5% 90.0% 85.33% 91.25%

Table 1. Results summary for all 4 scenarios described in

section 5.4.

0.9 and 1.0, 4 between 0.80 and 0.89, and so forth.

These results indicate that our model learns from

the binary bloom images and is able to authenticate

(match) a large number of users if the same set of

seeds generated during the registration phase for

that particular user are used during the authentica-

tion phase. Otherwise, the system should not match

blooms if the features from the users are different or

if different transformations are applied to the data.

We also performed some optimization and tried

different models (different type and number of lay-

ers) during our experiments. These variations

showed higher matching rates (% above cutoff) for

Scenario 1 (e.g., 82.5% and 85% for two different

tests), but also higher false positive rates for Sce-

nario 2 (17.5% and 16.25%), Scenario 3 (16.0%

and 13.5%), and Scenario 4 (6.46% and 13.23%).

The above cutoff percentage rates for Scenarios 2-4

should be close or equal to 0%, or conversely, the be-

low cutoff percentage rates should be close or equal

to 100% to indicate that there is no match when

in fact there should not be a match. Furthermore,

we deployed the models and trained them with live

data, but we also observed lower accuracy results.

This leads us to believe that we need to fine-tune

our models further to account for different charac-

teristics such as different face orientations, lighting

conditions, etc.

6. Conclusion

This paper proposed the concept of Self-

Sovereign Biometric IDs (SelfIs). The idea is to

allow users to fully control how their biometrics

are used for the purpose of digital identity. We

show preliminary results describing the use of ma-

chine learning combined with cancelable biomet-

rics, which show promising acceptance rates. Fu-

ture work includes hyper parameter optimizations,

increase our data set to include images from mul-

tiple platforms, as well as integrate mixed-mode

blooming (other biometrics).
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