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Abstract

We live in a connected world that requires us to
identify ourselves every time we want to access our
emails, work stations, bank accounts, health care
records, etc. Every system we interact with requires
us to remember a username/password combination,
have access to some private/public key pair, a hard-
ware token, or some third party authentication soft-
ware. Our digital identity is owned by the services
we are trying to access, no longer under our con-
trol. Self-Sovereign Identity promises to give back
control of his or her identity to the user. It is in
this context that we explore the use of biometrics
in order to empower users to be their own pass-
words, their own keys, their own means to authen-
ticate themselves. We propose Self-Sovereign Bio-
metric IDs (Selfls), a novel approach that marries
the concepts of decentralization, cancelable biomet-
rics, bloom filters, and machine learning to develop
a privacy-first solution capable of allowing users to
control how their biometrics are used without risk-
ing their raw biometric templates.

1. Introduction

Online banking, virtual doctor visits, entertain-
ment, and all sorts of digital interactions require
we tie ourselves to one of many online unique dig-
ital identities (e.g., username/email and password
combinations). Privacy-aware systems may require
the generation of private/public key pairs which may
be linked to an account for authentication purposes
(e.g., github.com). Trying to manage identities then
becomes a challenge that will only grow as more ser-
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vices are digitalized [40]. On one end, we are see-
ing the centralization of identitity services, where
we can log into our favorite website with our so-
cial media credentials (e.g., using OpenID [11] or
OAuth 2.0 [33]), thereby reducing the number of
credentials needed. Some of the downsides of this
approach include: 1) losing access to our main ac-
count will lock us out of all our linked accounts, 2)
we have no visibility into security/insecurity prac-
tices of the companies managing our accounts [24],
3) malicious actors could compromise one authen-
tication service and have access to all of our linked
accounts. Two-factor authentication is another layer
of security with its own pros and cons (e.g., losing a
second factor).

Blockchain technology [31] has introduced the
concept of decentralized identity to the mainstream.
Bitcoin [31], for instance, relies entirely on the idea
of decentralized identity, where each user generates
a public/private key pair and all interactions on the
Bitcoin network are done through the use of Bitcoin
addresses, which are derived from the users’ public
keys. This is very appealing as users do not need
to create passwords/accounts to interact with other
users, instead, this is seamlessly done by their mo-
bile Bitcoin wallets. The benefits of a decentralized
identity management system are manyfold, includ-
ing an always on notion, fully user controlled, on
top of the built-in privacy/security primitives.

Biometric technology aims to reduce the burdens
in today’s segmentated identity solutions [23, 8],
whereby the user becomes his/her own password,
because unlike passwords, keys, tokens, or access
codes, biometrics can answer the question: who am
I really talking to?



Our main contributions are: 1) Introduced the
concept of Self-Sovereign Biometric IDs (Selfls),
which are cancelable biometric templates fully man-
aged by the user. 2) A novel machine learning ap-
proach capable of extracting features from encoded
cancelable bloomed biometric templates.

2. Motivation

Our goal is to provide a way to use biometrics in
a secure, privacy-first way, without having to com-
promise matching accuracy. We want to be able to
integrate it into the same fabric as that of exist-
ing multi-factor authentication schemes. For that,
we will look to extend the concept of Decentral-
ized Identifiers [15]. Although two-factor authen-
tication, biometrics, decentralized identity schemes
such as PGP, Bitcoin [31], and SecureKey [20] are
very promising, they all address only part of the
spectrum of identity. Multi-factor authentication so-
lutions require two things: something you know,
and something you have. Passwords, PINs, secu-
rity questions are all things you know, while pri-
vate keys and access codes or tokens are things you
have. One of the hottest authentication form fac-
tors today are biometrics [23, 8]. Rather than being
something you know, or something you have, bio-
metrics are something you are, and unique to a per-
son [22]. By adding biometric sensors to mobile de-
vices the reach of biometric authentication technol-
ogy is magnified as mobile technology accounts for
over 75% of internet use [46]. One of the biggest
issues with biometrics is that once an attacker gets
access to the biometric templates, there is nothing
stopping an attacker from carrying out a replay at-
tack. Biometrics are especially at risk when central-
ized [34] as proven by major recent hacks [ 1.

’

3. Related Work
3.1. Decentralized Identity

Pretty Good Privacy (PGP) [48] wanted to build
a web of trust, where users would have access to
keyrings, and prove their identity via PGP key own-
ership proofs. Bitcoin and many new initiatives
borrowed from these concepts to further the idea
of decentralized identity. The Bitcoin protocol re-
quires participants in the network to generate pri-
vate and public key pairs in order to transact within
the Bitcoin network. Bitcoin uses Bitcoin addresses,
which are derived from the user’s public key using
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a one way function transformation. Consider a sim-
ple transaction between Bob and Alice, Bob sends
a Bitcoin to Alice’s receive address. Alice will then
be able to spend that Bitcoin by proving that she
owns the private key that is associated with that
public key address. Namecoin [32] was one of the
first to provide a directory like service, where users
could attach identity information such as PGP, OTR
keys, email, Bitcoin, and Bitmessage addresses to
an identity of their choice. HYPR [18] allows for
password-less authentication via biometrics, which
are stored locally on their hardware device, how-
ever, it requires each user to carry hardware don-
gles, which is a challenge since any sort of dongle
is hard to manage and easy to lose [42]. Like HYPR,
SecureKey [20], and many others who use tokens
to authenticate users can prove only one thing: You
have access to the keys associated with your iden-
tity rather than proving you have your biometrics.
Given the potential of decentralized identity, there
are many organizations now trying to define best
practices and standards [9, 16].

3.2. Secure Biometrics

Biometric technology has survived the test of
time [7, 29, 21]. Traditionally used by law enforce-
ment agencies [29], civil/criminal court, fraud [21],
financial industry, etc., it is now mainstream. India
and the UAE have major national programs [35, 2].
The academic community has extensively explored
ways to protect biometric data. One scheme in-
volves using biometrics to generate keys [39,

) 1, which are then used to authenticate
users, sign documents, etc. Hybrid cryptosystems
use a combination of biometrics and crypto primi-
tives to protect data [41, 30]. Cancelable biometrics
is a very promising field of research and the aca-
demic world has made significant strides since its
inception [36, ]. Cancelable biometrics work by
introducing a sort of noise or applying some trans-
formation to the biometric data. This same trans-
formation is then applied at matching time. The
key benefit here is that if an attacker steals the
transformed biometric data, he or she cannot carry
out replay attacks as the template itself has a one-
way function applied to it, which in theory is irre-
versible. More recently, bloom filters have been suc-
cessfully applied to masking the different biometrics
and encoded template matching has been done with
promising results [37, 1. The challenges
with these schemes are manyfold: 1) biometric sam-
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Figure 1. Bloom Filter Generation

pling is nondeterministic, 2) quantization steps lead
to quality loss, 3) noise is introduced to the biomet-
rics matching process, all necessary steps to protect
biometrics at the cost sacificing matching rates.

4. Selfls: Self-Sovereign Biometric IDs

4.1. Overview: From selfies to Self1s
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Selfls are simple forms of Biometric IDs that be-
have similarly to passwords in the sense that pass-
words can be changed on demand. Moreover, like
secure passwords, Selfls are salted before being
stored anywhere by using seeds (random numbers
used to deterministically transform Selfls). Users
can choose to create temporary Selfls, which may
have expiration dates, or used by different entities.
This is useful for things like physical access control
where the use of a Selfl can be highly regulated or
accessing sensitive data, whereby the data owner
and the Selfl owner are immediately notified. Any
system trying to use a Selfl will request two things
from the owner: 1) prove he/she owns the seeds,
and 2) provide a Selfl for matching. Figure 2 shows
a high-level diagram depicting a use case where a
user generates multiple Selfls for interacting with
different entities. This use case will require man-
agement of some necessary metadata, and we envi-
sion an application managing SelfIs to behave simi-
larly to a Bitcoin wallet.
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4.2. Cancelable Bloom Generation

Our work extents [36, 13] in that we 1) salt bio-
metric templates in order to allow for secure stor-
age of the templates and 2) apply one-way functions
to biometric data in order to mask the original tem-
plates. First, we take a sel fie, a set of random num-
bers are generated (the seeds), which dictate how
the image is transformed and are stored locally un-
der user control. The second step is the bloom-
ing of the cancelable template. Once the bloom-
ing is done, we then store the bloom data as well
as hashes of the seeds in a Blockchain fabric such
as Hyperledger Fabric [6]. Figure 1 shows the dif-
ferent stages an image goes in order to extract a
set of bloom filters. First, the image is decomposed
into feature vectors of n-blocks, which are then re-
arranged and n—bit by m—word blocks are extracted
from the vertical group arrangement. These blocks
are then encoded in 2"~%"** bloom filters. Which are
then stored for matching purposes. Bloom filters
can be further encoded and protected through the
introduction of noise to the process, which leads to
higher degree of security. One of the biggest bene-
fits here is that even if the bloomed data is compro-
mised, the transform is irreversible. Once a selfie
has made it through the Cancelable Bloom Genera-
tion process, a Selfl is generated. Listing 1 shows
a sample object generated and sent to the backend
for registration, where data consists of either a sin-
gle cancelable bloomed template for authentication
purposes, or an array of bloomed images for regis-
tration purposes. We integrate Selfls with Decen-
tralized Identifiers (DIDs), which are a new type
of identifier for verifiable digital identity [15]. Each
DID Document contains at least three things: cryp-
tographic material, authentication suites, and ser-
vice endpoints. Cryptographic material combined
with authentication suites provide a set of mecha-
nisms to authenticate as the DID subject (e.g. pub-
lic keys, pseudonymous biometric templates, etc.).
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Service endpoints enable trusted interactions with
the DID subject [15]. Once the registration step
is complete, the DID belonging to the user is up-
dated with the necessary data for matching. List-
ing 2 shows an example of a DID corresponding to
a Selfl.

Listing 1. Registration [SON

"user":
"type":
"uuid":
"data":

"danny",

"register",

"2b84defl-02e0-48a3-9af5-29d134da8960",

["AO4B8081A08080088800...",
"80018000800080008000...",
"9309A000A040C1008001.."1,

"1542140591.9916613",

"1A4aNCeC1Zt2BPHX8JIDQtjPUgwvuDY4uxp"

"nonce" :
"address" :

’

"signature" : "HzPe9HSVT74SqVZgf..."

Listing 2. Sample DID Object

"@context": "https://w3id.org/did/v1",
"id": "did:selfi:2b84defl-02e0-48a3-9af5-29d134da89
60",
"authentication"
"id":

2 I
"did:selfi:2b84defl-02e0-48a3-9af5-29d134
da8960#facial",
"type": "cancelable_face",
"controller": "did:selfi:1A4aNCeC1Zt2BPHX8
JDQtjPUgwvuDY4uxp",
"seed_kx_hash": "4deb118d25fc29d51ba2f07...",
"seed_ky_hash": "abc6eb9a6075f3af43418b0..."
"data": ["AG4B8081A08080088800...",
"80018000800080008000. ..",
"9309A000A040C1008001.."1,
"ca_info": {
"signature": "HzPe9HSVT74Sqvzgf...",
"entity": "did:vl:abbc2ab9-467e-4a80-87d5-df4
d904cazaf"
}
P
"service": [{
"type": "AuthenticationService",
"serviceEndpoint": "https://host.auth.service.
com/api/vl/match"
H

4.3. Enter the Blockchain

By using Blockchain we have decentralization for
distribution and matching of templates, as well as
crypto primitives built into the fabric to transfer
data in a secure way. If a user wants to prove to
someone that he/she owns the seeds to perform the
one-way transform for the biometric template, the
user can simply sign the hash of the seeds that are
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associated with the bloomed data. Signing the hash
of the seeds tells someone that the user owns the
seeds associated with the bloom data. Similarly, if a
user is challenged and asked for the seeds in order
to do a match, the user can choose wether to answer
that challenge and provide his/her template’s seeds
or not. Distributing seeds can be done via PGP/Pub-
lic Key cryptography, whereby, the user knows the
address or PubK ey of the person/system issuing the
challenge.

4.4. The Access Point

Once the seeds are distributed, the access point
will capture the user’s biometric template, apply the
seeds for the cancelable transformation, and pro-
ceed with the blooming. We assume the access point
is trusted (e.g., implemented with ARM TrustZone
[3]). If at any point in time an access point is com-
promised, then the user’s raw biometrics may be
compromised as well, which is a problem with any
biometric solution.

4.5. Machine Learning

At the core of our solution is a novel Deep
Learning-based approach that extracts and learns
features/patterns from cancelable bloom data
(SelfIs). This step will be described in more detail
in Section 5.

4.6. Use Case: Traveling with SelfIs

4.6.1 The Requirement

Consider the scenario where a user is to visit a for-
eign country and needs to do some banking, social
media, get through customs, etc. The user brings
his/her smart phone which can be used to satisfy the
two-factor requirements of many systems. Let’s fur-
ther assume that digital passports are accepted. In
this context, if the user has access to his/her phone
we are good. Now, consider a scenario where the
user does not have immediate access to the phone
(e.g., it is lost, broken, no WiFi password, out of bat-
tery, etc.). In this context what would be the next
best thing? Biometrics? Let’s assume the country
abroad uses Biometrics to do things like banking,
get through customs, etc. Now, the next question
is, do we trust a foreign country to properly man-
age our biometrics [14, ]1? Hence, the require-
ments: 1) Allow for multi-factor (possibly password,
PIN, some token multiple types of biometrics, etc.),
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2) If we lose any of our factors, we should still be
able to authenticate.

4.6.2 The Multi-Factor Solution

Before traveling we will register ourselves as well
as our authentication factors by extending DIDs
[15] to incorporate authentication factors such as
PINs, Selfls, etc. Figure 3 shows a high-level di-
agram of our current prototype for registration of
Selfls. For things like passwords, PINs, etc., things
we know, we can choose to create temporary to-
kens that can be deterministically derived from our
PINs/passwords. We can use these to authenti-
cate ourselves, we can register them as authentica-
tion factors with PubKey-derived addresses in our
Blockchain (e.g., linked to a DID). For tokens, or
access codes, we can assume we have our phone,
thus, we can use those factors to authenticate our-
selves. The key advantage of using SelfIs is that we
can lose our other authentication factors and still
be able to use our Biometrics. In this context, we
could then use our approach to support n-of-m fac-
tor authentication depending on what we want to
access. For instance, if we want access our Bank
account and get some cash out, the Bank may ask
for a PIN and a Selfl. Both of which can can use
the same infrastructure. The bank would pull the
PubKey associated with the PIN part of our DID,
use the PubKey to verify a challenge token signed
with the Private Key derived from our PIN. The
Selfls would then be used as a second authentica-
tion factor.

4.6.3 Traveling with Agency-backed Selfls

Users can use a mobile Application to register their
SelfIs with a trusted Backend of their choosing (1).
For instance, in Figure 3, a user is going to travel
abroad, thus, he/she needs to register their Selfls
with the Airline (Cloudl). The Airline may choose to
trust the the Matching Service running in Cloud2, or
it could ask the user to use another trusted Match-
ing Service provider. The user will then register
his/her Selfl with the Airline, and provide among
other metadata, the necessary seeds to derive the
Cancelable Bloom Data (2). The seeds are dis-
tributed on demand, however, in this use case, we
assume the seeds are stored in the Airline’s backend
(Cloudl). The Selfls are added to the Blockchain
fabric and Machine Learning backend (Cloud2) for
training purposes so that the user can be authenti-
cated at a later point in time (3).

When the user books a flight, the Airline will cre-
ate the necessary booking information (4). Next,
the user goes to Check-In and the automated kiosk
(an access point) (5). The Check-In kiosk then pulls
the necessary metadata from Cloud]l to generate the
matching SelfI (6), and makes the call to the Match-
ing backend (7) in Cloud2. The matching logic is
triggered and a response is securely (e.g., SSL) sent
back to the access point (8,9). The Check-In process
can now continue (10).

In the event that a trusted Selfl is required,
a third party such as a Government Agency can
endorse Selfl. This process is similar to the one
above meaning that, when a user generates a SelfI,
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the user will follow the same steps as the use case
above, generate the Selfl, provide the seeds to
the Government agency, then let the Government
agency generate a Selfl for the user and match it. If
there is a match, the Government agency can then
endorse the user’s Selfl. This is analogous to the pro-
cess of digital certificates, whereby upon proving
ownership of a Selfl and its contents, the Certificate
Authority endorses it, and we can now use standard
methods to verify authenticity of a SelfI.

5. Model and Experimental Results
5.1. Architecture Software Stack

We developed an Android Application that is used
to capture the user’s selfies and register/authenti-
cate with our backend. IBM Cloud hosts our book-
ing and machine-learning logic. IBM’s Blockchain
Platform [19] is used to manage our user’s Selfls via
RESTful endpoints [4]. We built a native library for
Selfl generation that supports ARM and x86 plat-
forms. We currently support Android, Raspberry Pi
3, and x86 trusted access points.

Step 1: Bloom # User X Bloom Input Sequences
1 B 7 . . . 8 1
Hex
9 A 6 9 1
10 A 7 . 9 1
Step 2: . l
Binary {10 1 0 1 0 " 5 . 0 0 0 1
Step 3: |
Bi 0 i :
inary
Bloom 10 o
Image h i 0 3
(wx hx4) (0 P 0 0
0 o 4

Time Distributed - Convolutional Layers
Gated Recurrent Units
Fully Connected Layers
Softmax classifier | Output layer

Class probabilities

Figure 4. Overview of our model architecture

5.2. Template Matching Model

Convolutional neural networks (CNNs) have been
studied and used extensively to do image classifica-
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tion. The task is to assign a label or class to an input
image and provide a confidence score or probability
that the input image belongs to a particular class.
In order to train these types of networks, a large
number of training samples per class are required,
and the data typically consists of RGB images with
3 channels. In the area of time series classification,
deep convolutional neural networks have been stud-
ied to demonstrated that feature learning is possi-
ble for time series classification [47]. One of the
reasons is that the use of very long sequences in
recurrent neural networks such as Long short-term
memory (LSTM) is difficult because it is a very te-
dious task to train these models due to the length of
the sequences. Furthermore, using sequential mod-
els like Dynamic Time Warping (DTW) [44] or Ham-
ming distance and variants of it [5] to measure the
similarity between two sequences either takes too
long to execute or might not be able to provide the
level of accuracy required to do template matching.
Inspired by the efforts to do and improve image clas-
sification as well as the on-going research to apply
deep learning to DNA classification and gene reg-
ulation [12, 45], we devised our own model to do
bloom classification. Our model takes into account
the spatial and temporal nature of the hexadecimal
bloom sequence by encoding the bloom filters as
images and using various layers to learn features
from the bloom filters. The model consists of time
distributed convolutional layers followed by Gated
Recurrent Unit (GRU) and fully connected layers.
Figure 4 shows a high level overview of the archi-
tecture. The intuition behind the proposed model
is to convert hexadecimal bloom filters into images
with 4 channels. Each channel holds a single bit,
which dictates if a feature is present or not for a
given bloom template. The convolutional layers are
used to learn high level features/patterns. The data
is then flatten and fed to a set of GRU and fully con-
nected layers. This allows us to extract and learn ad-
ditional features and train the model at a faster rate.
The activation used throughout the layers is ReLU.
Max pooling and batch normalization are used to
extract additional features, reduce overfitting, and
use of a higher learning rate. The softmax activa-
tion function is used in the final layer to get class
probabilities.

5.3. Data Sources and Pre-processing Steps

In order validate the proposed model, we created
our own dataset of face images taken from a Sam-



sung Galaxy S9 Plus device. The dataset consist of
400 images of size 2448 x 3264 pixels taken under
different lighting, background, and face alignment
conditions. In total 20 images were taken per par-
ticipant, stored in JPEG format, and labeled with an
identification number. This dataset is representative
of the registration phase mentioned in the Traveling
Abroad use case since each person is required to use
his or her smartphone to take Selfls, and the partic-
ipants take the images under different lighting and
background conditions. In addition, we used some
of the images from Caltech’s Frontal face dataset as
well. For the experiments and results reported in
this paper, we use the images from the dataset we
have created for training, testing, and validation.
Images from the Caltech dataset as well as some
images we took with a different device are used for
testing purposes only since the number of images
available per person in this dataset varies a lot and
we need at least 10 images per person to train our
model.

For the images in the dataset we have created, we
randomly split each set of 20 images into training,
testing, and validation sets. Of the 20 images taken
for each participant, 10 images are used to train our
model, 5 images are used to validate our model, and
the remaining 5 images are used for testing. For the
Caltech’s dataset images and other images we took,
we randomly selected 2 images per participant and
use them only for testing scenario 4, described in
Section 5.4. Upon splitting the data, we followed
the steps mentioned in the use case to detect the
face, transform (distort) the face, extract features
from the face region of the image, and generate the
bloom filters. Each bloom filter consists of 61,440
hexadecimal values that encode the feature vectors.
We then iterate through each hexadecimal value to
convert it to its binary representation (4 bits per
hexadecimal value) for a total of 245,760 bits. Fi-
nally, each binary bloom filter of size 1 x 245,760 is
converted into an image representation of size w x
h x ¢, where w is the width of the image, h is the
height of the image, and c is the number of channel-
s/depth. The resulting binary bloom image is of size
240 x 256 x 4. Each element of the binary bloom
image represents the hexadecimal value in binary
format. Figure 4 shows an example of the transfor-
mations that takes place to convert a hexadecimal
bloom filter to its corresponding binary bloom im-
age representation. Step 1 shows the 10 blooms of
a user, each in hexadecimal format. Step 2 shows
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Figure 5. Distribution of confidence levels for the 4 sce-
narios described in section 5.4: (a) Scenario 1: test us-
ing same seeds used during registration; (b) Scenario 2:
test using randomly generated seeds never used before;
(c) Scenario 3: test using seeds of all registered users;
(d) Scenario 4: test using seeds of all registered users on
users that have not registered before.

the binary representation of the 10th hexadecimal
bloom filter. Step 3 shows the representation of the
bloom filter as a binary bloom image format. The
transformation from hexadecimal bloom filter to bi-
nary bloom image is done for all bloom filters for all
participants.

5.4. Experiments and Results

We conducted a set of experiments to test 4 dif-
ferent scenarios that are likely to occur when per-
forming face authentication using the SelfIs archi-
tecture shown in Figure 3. For the following scenar-
ios, let U, be a person who has registered using the
Selfls system, S, be the seeds used to transform U,
images, and U, be a person who has not registered.



This can be extended to all users who have regis-
tered, but for simplicity, the following scenarios de-
scribe the interaction between our system and users
U, and Uy,. Scenario 1: Given the seeds generated
for U, during the registration phase, use U, seeds,
S., to bloom U, images for authentication. This de-
scribes the case in which U, wants to authenticate.
Scenario 2: Given some randomly generated seeds
that are not equal to S, use these random seeds to
authenticate U,. This describes the case in which
U, wants to authenticate but the system performs a
different transformation since it is using some ran-
dom seeds that are not S,. Scenario 3: Given the
seeds generated from all other registered users, ex-
cluding S, use these seeds to authenticate U,. This
describes the case in which the system is waiting for
U, to authenticate, but a different user who has reg-
istered with the system tries to authenticate. Sce-
nario 4: Given U,, who has not registered, use the
seeds from all registered users to authenticate U,,.
This describes the case in which a user who has not
previously registered tries to authenticate.

We performed the pre-processing and dataset
splits described in section 5.3 to build our training,
validation, and testing sets for all 4 scenarios. Out
of the 20 sets of data from the dataset we created
(20 participants, 20 images each), 16 sets are used
for training, validation, and testing scenarios 1-3.
The remaining 4 sets from this dataset plus images
from the Caltech dataset and the images we took
from a difference device are used to test scenario 4
since this scenario requires images of participants
that the system has not seen before. We set the cut-
off confidence threshold to 80% to indicate a match
if the confidence level is equal or greater than 80%;
a mis-match if the confidence level is less than 80%.
The results are summarized in Table 1. For scenario
1, 62 out of the 80 predictions (77.5% of the predic-
tions) have a confidence score equal or greater than
80%. The remaining 18 predictions (22.5% of the
predictions) have a score less than 80%. Scenarios
2-4 have a high percentage of confidence levels be-
low the cutoff threshold as one would expect, 90.0%,
85.33%, and 91.25% respectively. For scenarios 3-
4, the number of predictions are much larger due to
the number of possible seed combinations. Figure 5
shows the distribution of confidence levels across
all 4 scenarios. The distributions show that the vast
majority of confidence levels for scenarios 2-4 are
within confidence levels 0.3 and 0.5. For scenario
1, 58 predictions have a confidence level between
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Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4
# predictions 80 80 1200 960
# Above cutoff 62 8 176 84
# Below cutoff 18 72 1024 876
% Above cutoff 77.5% 10.0% 14.67% 8.75%
% Below cutoff 22.5% 90.0% 85.33% 91.25%

Table 1. Results summary for all 4 scenarios described in
section 5.4.

0.9 and 1.0, 4 between 0.80 and 0.89, and so forth.
These results indicate that our model learns from
the binary bloom images and is able to authenticate
(match) a large number of users if the same set of
seeds generated during the registration phase for
that particular user are used during the authentica-
tion phase. Otherwise, the system should not match
blooms if the features from the users are different or
if different transformations are applied to the data.

We also performed some optimization and tried
different models (different type and number of lay-
ers) during our experiments. These variations
showed higher matching rates (% above cutoff) for
Scenario 1 (e.g., 82.5% and 85% for two different
tests), but also higher false positive rates for Sce-
nario 2 (17.5% and 16.25%), Scenario 3 (16.0%
and 13.5%), and Scenario 4 (6.46% and 13.23%).
The above cutoff percentage rates for Scenarios 2-4
should be close or equal to 0%, or conversely, the be-
low cutoff percentage rates should be close or equal
to 100% to indicate that there is no match when
in fact there should not be a match. Furthermore,
we deployed the models and trained them with live
data, but we also observed lower accuracy results.
This leads us to believe that we need to fine-tune
our models further to account for different charac-
teristics such as different face orientations, lighting
conditions, etc.

6. Conclusion

This paper proposed the concept of Self-
Sovereign Biometric IDs (Selfls). The idea is to
allow users to fully control how their biometrics
are used for the purpose of digital identity. We
show preliminary results describing the use of ma-
chine learning combined with cancelable biomet-
rics, which show promising acceptance rates. Fu-
ture work includes hyper parameter optimizations,
increase our data set to include images from mul-
tiple platforms, as well as integrate mixed-mode
blooming (other biometrics).
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