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Abstract

We explore practical tradeoffs in blockchain-based bio-

metric template storage. We first discuss opportunities and

challenges in the integration of blockchain and biometrics,

with emphasis in biometric template storage and protec-

tion, a key problem in biometrics still largely unsolved.

Blockchain technologies provide excellent architectures and

practical tools for securing and managing the sensitive and

private data stored in biometric templates, but at a cost. We

explore experimentally the key tradeoffs involved in that in-

tegration, namely: latency, processing time, economic cost,

and biometric performance. We experimentally study those

factors by implementing a smart contract on Ethereum

for biometric template storage,1 whose cost-performance

is evaluated by varying the complexity of state-of-the-art

schemes for face and handwritten signature biometrics. We

report our experiments using popular benchmarks in bio-

metrics research, including deep learning approaches and

databases captured in the wild. As a result, we experimen-

tally show that straightforward schemes for data storage in

blockchain (i.e., direct and hash-based) may be prohibitive

for biometric template storage using state-of-the-art bio-

metric methods. A good cost-performance tradeoff is shown

by using a blockchain approach based on Merkle trees.

1. Introduction

The integration of the advantages and characteristics of

public blockchains in biometric systems is a very recent

area of research, but with a high potential and interest.

Combining blockchain and biometrics could poten-

tially have many advantages. As a first approximation,

the blockchain technology [20] could provide biometric

systems with some desirable characteristics such as im-

mutability, accountability, availability or universal ac-

1Deployed to the Ethereum Ropsten testnet at address:

0x8f737f448de451db9b1c046be7df3b48839673a1

cess. These properties enabled by blockchain technology

may be very useful, among other applications in biomet-

rics, to secure the biometric templates [14], and to assure

privacy in biometric systems [3].

However, despite these opportunities, the current

blockchain technology suffers from some potential limita-

tions that must be carefully studied and characterized before

the combination of both biometrics and blockchain tech-

nologies.

The main contribution of this study is two fold: 1)

we analyze cost and performance tradeoffs when using

blockchain for biometric template storage. We first discuss

the existing alternatives for the storage of large volumes of

data in blockchains, and how the complexity of schemes

for face and handwritten signature biometrics affects to the

cost and execution time of the final system; and 2) we ex-

perimentally measure these factors, optimizing the storage

requirements of each biometric scheme while keeping their

performances.

The remainder of the paper is organized as follows. In

Section 2 a description of the most relevant features of

blockchains, and the challenges and limitations of the tech-

nology that directly affect to biometric technologies is pro-

vided. In Section 3, we describe three popular storage tech-

niques for public blockchains, briefly analyzing their main

characteristics. Sections 4 and 5 present the setup and meth-

ods used in the experiments, whose results are shown in

Section 6. Finally, Section 7 draws the final conclusions.

2. Blockchain for Biometrics

2.1. Smart contracts

A smart contract is, essentially, a piece of code ex-

ecuted in a secure environment that controls digital as-

sets. Examples of these secure environments include reg-

ular servers controlled by “trusted parties”, decentralized

networks (blockchains), or servers with secure hardware

(SGX) [8, 9].

Many public blockchains support the execution of smart
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contracts, but Ethereum [4] is currently considered the most

reliable, secure and used. In essence, Ethereum could be

seen as a distributed computer, with capability to execute

programs written in Turing-complete, high-level program-

ming languages. These programs comprise a collection of

pre-defined instructions and data that has been recorded at a

specific address of a blockchain. For biometric purposes, a

smart contract running in a blockchain can assure a seman-

tically correct execution.

2.2. Challenges and limitations

Despite the new opportunities already described in pre-

vious sections, the combination of both blockchain and bio-

metric technologies is not straightforward due to the limi-

tations of the current blockchain technology. Among them,

it is important to remark: 1) its transaction processing ca-

pacity is currently very low (around tens of transactions per

second), 2) its actual design implies that all system trans-

actions must be stored, which makes the storage space nec-

essary for its management to grow very quickly, and 3) its

robustness against different types of attacks has not been

sufficiently studied yet.

In addition, public blockchains suffer from other limi-

tations which could impact the deployment and integration

with biometric systems:

• Economic cost of executing smart contracts: In or-

der to support smart contracts in blockchains (like

Ethereum), and to reward the nodes that use their com-

puting capacity to maintain the whole system, each in-

struction executed requires the payment of a fee in gas

units. This gas is paid in the native cryptocurrency of

Ethereum, called ether.

• Privacy: By design, all operations carried out in a pub-

lic blockchain are known to all the participating nodes.

Thus, it is not possible to directly use secret crypto-

graphic keys, which reduces the number of potential

applications.

• Processing capability: Another important limitation

is related to its processing capability. Ethereum, for

example, is able to run just around a dozen transac-

tions per second, what it could be not enough for some

scenarios.

• Scalability: Currently, the size of the public

blockchains (Bitcoin and Ethereum) is around 200GB,

and it is growing very fast. This can be a problem

for some application scenarios such as the Internet of

Things (IoT).

3. Storage requirements analysis

As stated in the previous section, one of the main poten-

tial limitations for the integration of both technologies is the

Operation Gas/KB ETH/KB $/KB

READ 6,400 0.000032 $0.004

WRITE 640,000 0.0032 $0.448

Table 1. Non-volatile storage costs in Ethereum. We have consid-

ered a gas price of 1 gwei (1 gwei = 10
−9 ETH), and 1 ETH =

$140 (at time of writing, March 2019).

cost of running a biometric system (totally or partially) in a

blockchain. It is therefore crucial to properly estimate and

minimize that cost. The present paper is an initial attempt

in that regard.

This section describes the different existing schemes to

store large volumes of data (e.g., a database of biometric

templates) in public blockchains with smart contracts exe-

cution capabilities, like Ethereum.

There are essentially three approaches, which are pre-

sented below in terms of complexity (from lower to higher),

and economic cost (from higher lo lower):

• Full on-chain storage: all data is stored, as-is, in the

blockchain.

• Data hashing: the blockchain only stores a hash of the

data that guarantees its immutability. The data itself is

stored off-chain in other system: distributed (e.g., IPFS

[1]), cloud, or local.

• Merkle trees: data is stored also off-chain, but it is

preprocessed by constructing a Merkle tree structure,

which reduces storage costs and increases the band-

width.

These alternatives are discussed in more detail next.

3.1. Full on-chain storage

This is the simplest scheme and therefore, the most inef-

ficient and costly. In this case, the data are just stored in the

blockchain as is, without any type of pre-processing. For

example, biometric templates could be directly stored as a

data structure in a smart contract, as part of a more general

digital identity model.

In general terms, the storage space in public blockchains

is specially expensive compared to computation, in order to

discourage its abusive use. Therefore, as shown by exper-

iments and figures presented in Section 6, the use of this

storage scheme would commonly imply a prohibitive cost

for most biometric applications.

As an example, Table 1 depicts the cost of reading and

storing 1 Kilobyte of data in Ethereum in terms of gas units,

ether, and US dollars.

3.2. Data hashing

To overcome the problems of the previous scheme, a

more efficient approach is to store the data off-chain and



use the blockchain just as a integrity guarantee due to its

intrinsic immutability. This way, instead of the full data,

only a hash value of it is stored in the blockchain (smart

contract). Then, the complete template can be stored in any

other traditional external storage system (see Figure 1).

This possibility provides a great flexibility, because any

platform, as public clouds or existing corporate servers, can

be used to store the full set of biometric templates. In any

case, to maintain the distributed spirit, resistance to censor-

ship and high availability of public blockchains, distributed

storage systems such as IPFS or Swarm [16] would be de-

sirable in this case.

On the other hand, this approach can make use of any

cryptographic hash function, such as the SHA3 family,

which can produce outputs from 224 to 512 bits in length

[2]. In this work, we consider hashes of 256 bits per tem-

plate, which, in any case, can greatly reduce storage costs

compared to full on-chain storage.

One drawback of this approach is that it is still neces-

sary to ensure the availability of the data stored outside the

blockchain. If these data were lost or tampered, even when

this modification would be always noticed, the viability of

the system would be compromised.

3.3. Merkle trees

Finally, the previous scheme can be still further im-

proved, through the use of a data structure known as Merkle

tree [12]. This construction is widely used in cryptography

and computer science problems such as database integrity

verification [13], peer-to-peer networks [18] and, of course,

blockchains [4].

A Merkle tree is a binary tree data structure in which ev-

ery node contains the cryptographic hash of the concatena-

tion of its child nodes contents. Due to this recursive way of

constructing itself, the tree root contains statistical informa-

tion of the rest of nodes, and the modification of any node

content will cause the complete change of the value of the

root. This way, the integrity of an arbitrary amount of data

can be efficiently assured by arranging this data in a Merkle

tree form and securely storing the contents of its root node.

Regarding biometric template protection using

blockchains, a biometric system using this technique

would maintain a Merkle tree, storing a template at each

node and assuring the root node in a smart contract.

Therefore, when a new biometric template is created (after

the enrollement stage), or an existing one is modified or

deleted, the tree is re-calculated and the new root is updated

in the blockchain. A simplified scheme of this approach

can be found in Fig. 1 (right).

4. Experimental methods

4.1. Blockchain technology

The baseline architecture considered for performing the

experiments presented in this work was initially introduced

in [5]. This architecture substitutes the usual template

database of a biometric system by a blockchain, adding ba-

sic operations (i.e., creation, modification and deletion of

templates) through the use of smart contracts.

This design provides some advantages:

• The modifications to the existing biometric architec-

tures are minimal, so that usual biometric techniques

and algorithms (e.g., feature extraction and matching)

can be used normally.

• Since the biometric process is performed off-chain,

this architecture avoids the scalability problems of

public blockchains (except in a massive batch of user

registration during the system startup, for example).

• No need to use complex smart contracts, which facili-

tates development and reduces execution costs. Smart

contracts do not implement biometric “logic”, but only

the minimum necessary functions to manage the stor-

age of the templates.

As stated, we have implemented a basic smart contract,

that has been deployed to the Ropsten Ethereum testnet.

The contract models a biometric template as a data struc-

ture BiometricTemplate implemented as a raw array of

bytes. This structure is stored in a mapping (or hash table),

with an identifier number for the user acting as the mapping

key mapping(uint => BiometricTemplate). The

source code of smart contracts can be found in Appendix

A. The main operations are described below:

• Creation: Receives the user ID, template data and

metadata, and adds a new BiometricTemplate

structure to the blockchain.

• Modification: Modifies the template of an existing

user. For a hash table storage scheme, this is equiv-

alent to an addition operation.

• Deletion: Removes the link between a specific tem-

plate and user ID. Due to the public nature of

Ethereum, technically the old template data remains

forever in the blockchain.

• Retrieval: Retrieves the BiometricTemplate struc-

ture for a user. This function is a call, not a transaction

as the rest of functions. This operation is usually read-

only (and, therefore, free to execute), while the previ-

ous three operations were potentially state-changing.



Figure 1. Biometric systems using data hashing (left) and Merkle trees (right) blockchain storage techniques.

4.2. Biometric systems

Two different biometric traits are considered in the anal-

ysis: 1) face, and 2) dynamic signature. In this way we ex-

periment both with image-based physiological biometrics,

and with signal-based behavioral biometrics.

4.2.1 Face biometrics

One of the most popular face recognition based on deep

convolutional neural networks (DCNNs) are evaluated in

this study: VGG-Face [17].

In this system images are propagated through the CNN

obtaining the features at the last fully connected layer. The

final matching score is computed through the Euclidean dis-

tance of the features obtained from each face image. The

dimension of the face features are of 4,096.

4.2.2 Dynamic signature biometrics

Two popular approaches are evaluated in this study: i)

feature-based systems (a.k.a. global systems), and ii) time

functions-based systems (a.k.a. local systems).

For the global system, we extract for each signature a to-

tal of 100 global features from the normalized X and Y spa-

tial coordinates. These features are described in [11], and

are related to time, kinematic, direction, and geometry in-

formation. For the similarity computation, the Mahalanobis

distance is used to compare the similarity between a signa-

ture and a claimed user model.

For the local system, a total of 21 local features are ex-

tracted from the normalised signals X and Y spatial coor-

dinates [19]. For the similarity computation, DTW is used

to compare the similarity between genuine and query input

samples, finding the optimal elastic match among time se-

quences that minimises a given distance measure.

5. Experimental protocol

This section describes the main characteristics of the bio-

metric systems evaluated, and the key tradeoffs involved in

the integration of blockchain technology in both face and

dynamic signature biometric traits.

This integration is evaluated in terms of cost of storage,

execution, and performance in the Ethereum blockchain.

Two popular biometric databases are considered for the

analysis of face and signature biometrics: Labeled Faces in

the Wild (LFW) [10], and Biosecure [15].

5.1. Face

5.1.1 Databases

Face verification experiments are conducted on the LFW

database (Labeled Faced in the Wild) [7]. LFW is one of the

most popular datasets used in face recognition with more

than 13,000 face images of famous people collected from

the web. We have used the aligned dataset where each im-

age was aligned with funneling techniques.

5.1.2 Data processing

The VGG-Face pre-trained model was tested using the un-

restricted and outside training data protocols proposed in

[7]. The VGG-Face model was trained with VGG-Face

database [17], therefore there is not extra training for the

pre-trained model used here. The evaluation results are

computed for 6,000 one-to-one comparisons composed by

3,000 genuine pairs (pairs of images from the same person)

and 3,000 impostor pairs (pairs of images belonging to dif-

ferent persons) following the protocols from LFW database.
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Figure 2. System performance results in terms of the size of the

feature embeddings for VGG-Face CNNs model.

5.2. Dynamic signature

5.2.1 Databases

The dynamic signature verification technology is analyzed

using the Biosecure DS2 dataset. This dataset was captured

using a Wacom Intuous 3 digitizing tablet with an inking

pen in an office-like scenario, providing the following in-

formation: X and Y spatial coordinates, pressure, and times-

tamp (sampling frequency 100 Hz).

5.2.2 Data processing

In this study, we consider a set of 50 users. For each user,

the first 5 genuine signatures of the first session are used

for training, whereas the 15 genuine signatures of the sec-

ond session are left for testing in order to consider the inter-

session variability. In this study we analyze the robustness

of our proposed system against random (zero-effort) forg-

eries. Scores are obtained by comparing the training signa-

tures with one genuine signature of the remaining users. For

the global system, scores are obtained by comparing signa-

tures against the user model, while for the local system, the

average score of the five one-to-one comparisons is used.

5.3. Blockchain integration tradeoffs

5.3.1 Face

The system performance results in terms of EER (%) for

VGG-Face CNN model is depicted in Fig. 2 for different

sizes of the biometric template. This analysis has been car-

ried out by removing features randomly from the original

feature embedding.

Analyzing results in Fig. 2, in general the system perfor-

mance is very stable while we gradually remove features.

VGG-Face is able to obtain a verification rate with an ac-

curacy of 89% only using 100 features (only 2.5% from the

original 4096 features). This behavior shows that there is

a very high redundancy within the feature embedding of

CNNs face models, which makes possible to obtain very

competitive verification performance while keeping only a

small set of features.

5.3.2 Dynamic signature

The system performance results in terms of EER (%) of

both global and local systems are depicted in Fig. 3 for dif-

ferent sizes of the biometric template. This analysis has

been carried out using Sequential Forward Floating Search

(SFFS) in order to select the best subsets of global and local

features that improve the system performance in terms of

EER (%).

Analyzing in Fig. 3 (left) the global approach, the sys-

tem performance improves when increasing from 1 to 30-

40 global features. After that, a degradation of the system

performance is produced when adding more global features

to the optimal feature vector. Therefore, in order to reduce

the cost of saving the biometric templates in the blockchain

platform, and also achieve the best possible system perfor-

mance, we propose to save the best 30 global features in the

biometric template, achieving this way a final 1.5% EER.

The same analysis has been carried out for the local ap-

proach in Fig. 3 (right). The system performance improves

when adding more local features, achieving for the best sys-

tem performance a final 0.5% EER using 9 local functions

(total number of features = 9 local functions × average time

samples per signature = 3,087 features).

6. Experimental results

This section analyzes the results of the evaluation of the

integration of the biometric systems previously described in

Ethereum, resumed in Table 2.

The smart contract developed has been writ-

ten in Solidity language, and deployed to

the Ethereum Ropsten testnet at the address

0x8f737f448de451db9b1c046be7df3b48839673a1,

where can be verified with any blockchain explorer like

Etherscan [6]. It is a basic contract, which has not been

optimised and does not take care of security issues, and

should be used only for experimental purposes.

Table 2 shows the costs of the different operations over

the templates (creation, modification, deletion, and re-

trieval) in units of gas and US dollars, for the biometric

technologies and blockchain storage schemes evaluated.

The results clearly prove that the most efficient storage

scheme is the one based on Merkle trees. In fact, it is the

only one capable of storing any amount of data for the same
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Figure 3. System performance results in terms of the size of the optimal feature/time function vector selected by the SFFS algorithm.

Left: global system. Right: local system. For local system: #Features = #Local Functions × Average time samples per signature (=343).

Biometric
Operation

Storage scheme Performance

Scheme
Template

size
Full on-chain

Data hashing

(cost per template)

Merkle trees

(cost for any number

of templates)

Execution time

(average)

- -
Smart contract

deployment

498274 gas

($0.06972)
19.19 secs

Signature

Global

30 x 16 bits

Creation 108844 gas

($0.014)

86848 gas

($0.0122)
10.66 secs

Modification

Deletion
21378 gas

($0.003)

18850 gas

($0.0026)
11.55 secs

Retrieval - - - -

Local

3087 x 16 bits

Creation 4358990 gas

($0.610)

86848 gas

($0.0122)
12.61 secs

Modification

Deletion
504322 gas

($0.07)

18850 gas

($0.0026)
12.85 secs

Retrieval - - - -

Face
VGG-Face

100 x 32 bits

Creation 352912 gas

($0.049)

86848 gas

($0.0122)
10.53 secs

Modification

Deletion
49192 gas

($0.0068)

18850 gas

($0.0026)
16.38 secs

Retrieval - - - -

Table 2. We have considered a gas price of 1 gwei (1 gwei = 10
−9 ETH), and 1 ETH = $140 (accurate at time of writing, March 2019).

cost. The rest of the schemes would quickly have a pro-

hibitive cost for the number of templates to be stored in a

real environment.

For example, protecting a million of templates would

cost between $14,000 and $610,000 for the signature sys-

tem, and $49,000 for VGG Face using the full on-chain

storage scheme. Clearly this is not a realistic option, dis-

couraged not only in economic terms, but also for security

and performance reasons.

The data hashing scheme would improve significantly

those figures, because it does not store the data itself, but

only a hash that guarantees the integrity. For the same sce-

nario, the cost would be a much more reasonable amount of

$12,200 for all the biometric technologies.

Finally, the Merkle trees scheme would imply a cost of

only one cent of dollar ($0.0122) for the storage of any

amount of templates. In addition, also the modification op-

eration of a template would have the same cost. However,

even for a biometric system operating in a large corporation

or environment, these costs seem reasonable.

Of course, all these prices could vary greatly depending

on the price of ether, which, as the rest of cryptocurrencies,

usually suffers sharp increases and falls in price. However,

because it only needs to store 256 bits regardless of the total



volume of data, the Merkle tree scheme would still have a

reasonable cost in any case.

In terms of execution time and performance, the exper-

iments also show that this hybrid system is viable. It is

important to note that the tests have been carried out in a

testnet, where the confirmation times are higher and have

greater variability than in the mainnet. Times have been

measured performing each operation ten times, discarding

the minimum and maximum times, and calculating the av-

erage of the rest.

As can be seen, the execution time is slightly higher than

10 seconds for most of the operations and biometric sys-

tems, which seems an acceptable time for the usability of

the system even during a user enrollment, for example.

Finally, the retrieval operation, necessary for the verifi-

cation of a template, is a read-only operation and, therefore,

free of cost. In addition, it can be also considered imme-

diate in terms of execution time, due to that the request is

processed by the local Ethereum node, and it does not reach

the network.

7. Conclusions

In this paper we have explored the viability of biometric

systems based on blockchain with focus on storing the bio-

metric templates. This experimental exploration has been

around key cost-performance tradeoffs, in particular: time

of execution of the transactions, economic cost, and biomet-

ric performance.

We have first discussed the main storage schemes for

public blockchains (Ethereum), and implemented a smart

contract for the estimation of its storage cost. The results

obtained prove that straightforward schemes such as the di-

rect storage of the biometric templates on-chain, or direct

data hashing, are not appropriate for a real biometric sys-

tem. However, when Merkle trees are included as an inter-

mediate data structure, the storage costs become fixed re-

gardless the total volume of data to store, and reduced exe-

cution times (between 10 - 20 seconds for write operations)

are obtained. The read operations (retrieving) of templates

are usually free of cost and very fast to execute, because

they are processed locally.

In brief, in this work we have shown that the integration

of biometric and public blockchains is possible both from

an economic and performance perspective, including two

case studies with state-of-the-art methods and protocols in

face and signature biometrics.

Acknowledgments

This work has been supported by projects: BIBECA

(TEC2018 MINECO), Bio-Guard (Ayudas Fundacin BBVA

a Equipos de Investigacin Cientfica 2017), UAM Cecabank

chair on Biometrics, and UAM-Grant Thornton chair on

Blockchain. Ruben Tolosana is supported by a FPU Fel-

lowship from Spanish MECD.

References

[1] Juan Benet. IPFS - Content Addressed, Versioned, P2P File

System. jul 2014. 2

[2] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
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A. Appendix: Smart contract source code

pragma solidity >=0.4.22 <0.6.0;

contract BioBlockchain {

/// This struct models a simple biometric template

struct BiometricTemplate {

bytes templateMetadata;

bytes templateData;

}

/// Each template is indexed by an user ID

mapping(uint => BiometricTemplate) templates;

/// Store a new template

function createNewTemplate(uint _templateID,

bytes memory _templateMetaData,

bytes memory _templateData) public {

/// Add new template to mapping

templates[_templateID].templateMetadata = _templateMetaData;

templates[_templateID].templateData = _templateData;

}

/// Return a user template

function getTemplate(uint _templateID) view public returns (bytes memory) {

return(templates[_templateID].templateData);

}

/// Modify a user template

function modifyTemplate(uint _userID,

bytes memory _newTemplateMetaData,

bytes memory _newTemplateData) public {

// Due to that a mapping is internally implemented using

// a hash table, the modification operation is equivalent

// to a insertion

createNewTemplate(_userID, _newTemplateMetaData, _newTemplateData);

}

/// Return an specific template

function deleteTemplate(uint _userID) public {

delete templates[_userID];

}

}


