This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

DeepRing: Protecting Deep Neural Network with Blockchain

Akhil Goel*, Akshay Agarwal*, Mayank Vatsa*, Richa Singh*, and Nalini Ratha'
*IIIT Delhi and 'IBM Research, NY, USA

*{akhill5126, akshaya, mayank, rsingh}@iiitd.ac.in, 'ratha@us.ibm.com

Abstract

Several computer vision applications such as object de-
tection and face recognition have started to completely rely
on deep learning based architectures. These architectures,
when paired with appropriate loss functions and optimizers,
produce state-of-the-art results in a myriad of problems. On
the other hand, with the advent of “blockchain”, the cyber-
security industry has developed a new sense of trust which
was earlier missing from both the technical and commer-
cial perspectives. Employment of cryptographic hash, as
well as symmetric/asymmetric encryption and decryption
algorithms, ensure security without any human intervention
(i.e., centralized authority). In this research, we present the
synergy between the best of both these worlds. We first pro-
pose a model which uses the learned parameters of a typical
deep neural network and is secured from external adver-
saries by cryptography and blockchain technology. As the
second contribution of the proposed research, a new param-
eter tampering attack is proposed to properly justify the role
of blockchain in machine learning.

1. Introduction

The current era of artificial intelligence and machine
learning is converting several dreams to reality. Al sys-
tems are getting implemented for making recommendations
in social media and e-commerce sites to assisting medical
professionals in medical diagnosis and robotic surgeries,
and defending personnel with technologies such as drone
surveillance. Such a wide spectrum usage of these tech-
nologies requires that the algorithms are secure.

A lot of this success can be attributed to deep learning ar-
chitectures such as Convolutional Neural Networks (CNN)
[13, 14]. CNNs contain blocks where each block can be
referred to either as a convolutional layer or a combination
of the convolutional, pooling, and non-linearity layers. The
first layer which is an input layer passes the input samples
to the first block of CNN, and this way information passes
through the network to the last layer which makes the deci-
sion. For secure and correct use of these Al systems, fault-

Y
)

4. Modify

Template Templates

N~

Final
Decision

Feature
Extraction

Network
A

1. Adversarial 2. Tamper : 3. Tamper
Data Weights/Layer : Matcher

Sensor Matching

—|

BlockChain

Figure 1. Vulnerabilities of artificial intelligence network and in-
corporation of blockchain for security.

less authentication of each block is a necessity. In other
words, the accountability of each block which is missing in
the original CNN models might be provided with the com-
bination of the blockchain. Blockchain with its feature of
data privacy, transparency, security, and authentication can
help in the secure deployment of Al systems in the public
domain. The data privacy in an Al system can be referred
to as some information which is hidden from the general
public which can be decrypted only using the private key of
the authenticated owner of the system. On the other hand,
the security aspect can be thought of as a guard who checks
whether there has been any manipulation in the network ar-
chitecture or not. The authentication feature can be referred
to the property that the decision made by a particular block
of the Al model would require the validation of other blocks
connected with the block in concern.

Figure 1 shows the vulnerabilities of a typical artificial
intelligence system. The attack on an Al system can be
performed at an input level, architecture level, and deci-
sion level [17]. With the correct deployment of blockchain
technology, attacks at the architecture and the decision
levels can be avoided. For example, a recent algorithm,

Increase Security Reduce Fraud

Reduce Failure

Increase Auditability Increase Effectiveness

Ledger across the

Through cryptography
network

Avoiding Tampering at
any point

Changes require proper
authentication

Secure Sharing

Why do we require blockchain in AI?

Figure 2. Advantages of incorporation of blockchain in Al systems.

DeepChain, is proposed which is a collaborative training in
a distributed, secure and decentralized environment [22]. It
ensures the auditability of the training process and privacy
of local gradients.

Blockchain is secure and powerful because of the fol-
lowing properties:

e Transitive Hash
e Cryptographic encryption at each step
e Decentralized nature

With the help of transitive hash and cryptography, the ma-
nipulation in any component of the network, i.e., features
extraction and matching can no longer be performed. The
alteration in any element will raise the alarm and inform
the system that the operation implemented at a particular
block is malicious, and the system can be restored at the pre-
vious checkpoint. Decentralization property, on the other
hand, ensures that the entire control is not in the hands of
a single entity. Just like how an unscrupulous chief exec-
utive officer of a company may present an inflated version
of the company’s assets to attract prospective shareholder’s
attention, an unethical model owner may use unfair means
to boast about the model’s performance. Decentralization
makes sure that no foul play like this deceives the public.
These properties mentioned above are required to deliver
a safe and secure Deep Neural Network(DNN) model, and
hence this makes blockchain an appropriate candidate for
the job. Figure 2 summarizes the advantages of blockchain
mechanism which can be provided to the Al system when
successfully combined.

In this research, we have proposed the ‘DeepRing’ ar-
chitecture which combines CNN architecture with some
features of the blockchain technology. Each block of Deep-
Ring contains the following information which helps in au-
thentication of the block against tampering:

e Hash of the current and previous block
e Public keys of the neighborhood layers
e Encryption keys of the current block

e Parameters of the current and the next layer

The DeepRing is able to detect any attack performed ei-
ther at the parameter level or input level of each block (i.e.,
the network level attack). CNN models without blockchain
have shown vulnerability against tampering. Whereas, as
shown in Figure | the incorporation of blockchain in CNN
(i.e., DeepRing) is successfully able to remove network
level attack on CNN.

2. Components of the Proposed Solution

This section briefly explains the basic building blocks of
both the technologies i.e., (i) blockchain and (ii) Asymmet-
ric and Symmetric Key Cryptography.

2.1. Blockchain and Smart Contracts

Blockchain is a decentralized and a distributed ledger
that records transactions between different parties. The
recorded transactions are permanent and can be easily ver-
ified. Blockchain forms the basic building blocks of var-
ious crypto-currencies. Not directly relevant to the com-
bination of CNN and blockchain, however, some recent
work shows the potential of blockchain in various other
fields such as smart energy and grids [2, 15], health-care
[8, 16], and smart devices [20]. Recently, Delgado-Mohatar
et al. [0] have presented their view about the combination of
blockchain and biometrics to benefit both the technologies.

Smart Contracts [21] are pieces of codes that guaran-
tee secure and credible transactions. One big advantage of
smart contracts is that they eliminate the need for any third
party altogether.

2.2. Asymmetric and Symmetric Key Cryptography

Asymmetric key cryptography [18] is a class of encryp-
tion algorithms that uses two keys instead of one for encryp-
tion and decryption purposes. One of these keys is the pub-
lic key which is openly distributed and other is the private
key which is kept exclusive. With asymmetric key cryptog-
raphy, anyone can encrypt a message using the receiver’s
public key. This message can now only be decrypted using
his private key. Asymmetric key cryptography enhances se-
curity but comes at a cost of reduced speed. Symmetric key
cryptography uses only a single key to encrypt and decrypt
data. These algorithms are generally faster than asymmetric

HASH;j.1

Pubyj, Privj
Pubj.1, Pubj+]
AES;

wij, by, actj

Wit1, bi+1, actj+]
HASH;
Blockj

Figure 3. Depiction of layer ¢ of a DNN represented as block j of
the DeepRing

key algorithms but pose a challenge of securely transmitting
the keys between parties.

3. DeepRing: Proposed Combination of CNN
and BlockChain

In this section, an amalgamation of both important tech-
nologies i.e., CNN and blockchain is described through the
proposed model referred to as DeepRing.

3.1. Notation

Here we define the notations used in Figure 3 and
throughout the paper.

e HASH;: Hash of j'" block;

e Pub;: Public key of i*" layer;
e Priv;: Private key of i* layer;
e AES;: AES key of i*" layer;

e w;, b;, act;: weight, bias, and activation function of
the i'" layer;

e Wiit1, bir1, actjyq1: weight, bias, and activation
function of the layer next to the i*" layer;

e Block;: It is used to represent the block number for
possible identification. It has no significance in current
research.

3.2. Architecture

Figure 4 shows the transformation of a model from DNN
architecture to a DeepRing architecture. The architecture of
DeepRing is inspired by that of a blockchain. A blockchain
is a linked list of ever-growing blocks with transaction
records. DeepRing, on the other hand, is a closed chain of a
finite number of blocks. Each block (except the ouroboros
block) represents a layer of the deep neural network. Unlike
a typical block in a blockchain, blocks of DeepRing serve
the following purposes:

e Store the parameters of the layer

e Compute the output of the layer

e Update the ledger after output computation.
e Validate the output of the next layer

Figure 3 represents a block of the DeepRing. It com-
prises of the hashes of the current and previous block, public
and private keys of the current layer, public keys of the lay-
ers appearing immediately before and after the current layer
and AES key and model parameters of the current and the
next layer. Just like blocks in a blockchain, blocks in Deep-
Ring have a shared common ledger which stores the state of
the model. The hash associated with a block is a function
of the hash of the previous block and the parameters of the
current and next layer parameters. Hash of a block 5 which
corresponds to layer ¢ in the DNN architecture is given by:

HASH; = ®(HASH;_1,params;,params;1) (1)

Here, @ is any suitable hash function such as SHA256.
After successful setup of the model in the DeepRing frame-
work, hashes of all the blocks are stored by the ouroboros
block. This is later used to track the compromised block
in case of any tampering attack. One thing to note is that
blocks in the ring do not follow any chronological order.
They are arranged randomly. Even the blocks themselves
are not aware of the sequential index of the layer whose
purpose they serve.

3.3. Ouroboros Block

Ouroboros block is the start and end point of any DNN
query. It is named after the greek symbol of a serpent eating
its own tail called the ouroboros. It is the only known block
of the ring. The weight matrix of the ouroboros block is the
identity matrix, the bias is a zero vector and activation func-
tion is the identity function. Hence, output of an ouroboros
block is the input itself. Ouroboros block stores the original
value of the hash of the block preceding (origH ASHprey)
it and has an extra parameter called as the authenticity pa-
rameter.

authenticity <— origHASH e, == HASHprey
Ouroboros block works in two modes:

e Query Mode (authenticity = TRUE): This is the nor-
mal mode which takes in the input and sends back the
output.

e Tracking Mode (authenticity = FALSE): This mode
is triggered when block parameters of any block in the
network changes. Any change in any parameter is car-
ried on to the hash of the last block. In this mode, the
block suspends the general query business and tries to
figure out the compromised block.

Layer 1

Layer 2

Layer 3

Layer 4

Final Layer

HASH3
w3, b3, act3
Final Layer Block3
e)\ N /
sy

Pubpr, Privep,

Pub4, Pubg Pubg, Pub2
AESFL Ledger AES1
WFL; bFL, actFL wl, bl, actl
HASH HASH|
Wg, b, actg OUROBOROS w2, b2, act2
Blockyg Block
Layer3 BLOCK 1
HASH5
HASHy4 origHASH5
Pub3, Priv3 Authenticity
Pub2, Publ Pubg, Prng
AES3 Pubpr, Puby
w3, b3, act3 AESg
HASH5 Wg, bg, actg
w4, b4, act4 HASHg
Blocks w1, by, act]
- Blockq

Layer 2

HASH)
Puby, Privy
Pubj, Pub3
AES)

w2, by, acty

Layer 4

I)\
HASH| | ——
Pub4, Priv4
Pub3, Pubpy,

AES4
w4, b4, actd
HASH,
WwFL, bFL, actFL

Layer 1

HASH,
Publ, Privl

Figure 4. Transformation a typical DNN architecture to a DeepRing architecture

Hash of the ouroboros block is a function of only the
layer parameters:

HASH yyroboros = q)(paramsou'roborosa paTCLmSl))

Since the ouroboros block has special responsibilities,
this role should be taken by someone trusted, like the owner
of the model.

3.4. Working of DeepRing

Working of the proposed framework is divided into var-
ious phases each of which is described below.
3.4.1 Query Phase

The querent encrypts the query with the public key of the
only known block in the ring i.e., the ouroboros block. The
encrypted query and the public key of the querent are up-
dated on the ledger. DeepRing acknowledges a new query
cycle with the ledger update by the querent. Updated ledger:

(encrypt pup,, (query), Pubg) 3)
Here, Pubo is the public key of the ouroboros block and
Pubg is the public key of the querent.
3.4.2 Processing Phase

After processing the input to a block, each block updates
the ledger with the following four items:

e Layer output encrypted by its AES key
e AES key encrypted by the public key of the next layer

e Signature of the layer
e Hash of the output of the next layer

After each ledger update, all the blocks check whether
the update is signed by the layer that immediately precedes
them. The signature here refers a message encrypted by the
signer’s private key.

For a layer 4, let .S; be its signature, K; be its encrypted
AES key, X; be its encrypted layer output and H; be the
hash of the next layer’s output.

S; = ®(encrypt priy, (Mmessage)) 4
K; = encryptpup,,., (AES;) 5)
O; = ¢i(w; * x; + b;) (6)

Here, ¢; is the activation function, x; is the layer input and
w; and b; are learned layer parameters of layer .

X; = encryptags,(0;) 7

H; = ®(dit1(wig1 % O; + biy1)) ¥

Here, ¢, 1 is the activation function, and w; 41 and b; ;1 are
learned layer parameters of layer 7 4 1. Suppose this layer ¢
updates the ledger with S;, K;, X; and H;, then at any layer

J:

assert(®(message) == decryptpuy;_,(Si)) (9)

This assertion is true only when j — 1 equals 7. In other
words, the assertion is true for the (i + 1) layer. After
signature verification, K; is decrypted to retrieve the AES
key of the previous layer.

key = decrypt pys, ., (K;) (10)
th

i+1 (
This key is the required key to decrypt the input to (i + 1)
layer.

Tiy1 = decryptrey (X;) an

Layer i+1 updates the ledger with S; 1, K;11, X;41 and

H,; and the cycle goes on till the control falls back to the

ouroboros block. This two-step authentication guarantees
the following security concerns:

e Signature verification ensures that a layer listens to
only authorized senders;

o AES key decryption ensures that only the intended
layer gets to see the layer output.

3.4.3 Delivery Phase

The processing cycle completes when the control falls back
to the ouroboros block. When the block verifies that the last
ledger update has been made by the final layer of the model,
it follows the above procedure to retrieve the model output
(z_ouroboros). This output is encrypted using the public
key of the querent (Pubg). This ensures that no one but the
querent can access the model output results. After success-
ful completion of a query, the ordering of the blocks along
with the AES keys of the layers is changed to maintain ran-
domness in the network.

model_output = encrypt pup, (x-ouroboros) (12)

3.4.4 Tracking Phase

This phase is triggered when a change in any model param-
eters leads to a change in the hash of the containing block
and subsequently a change in the hash of the last block. In
this phase, the ouroboros block tries to find the first block
whose hash does not match with the hash in the records and
forces it to restore back to the state in which it previously
(at the time of framework setup) matched. This process is
repeated until the hash of the last block is restored to the
original value and authenticity signal again turns back on.

3.5. Validation and Consensus

Validation Principle: We define the output validation prin-
ciple for any layer ¢ as follows:

assert(H;_1 == ®(¢;(w; * x; + b;))) (13)

LAYER i-1

LAYERi LAYER i+1

VALIDATE VALIDATE

Figure 5. Validation of layer outputs. Here x; and o; refer to input
and output of layer ¢ respectively.

Proposition 1. Layer i is compromised if and only if the
validation principle for layer 1 is violated.

Proof. First, we prove the necessary condition (—)

Let us assume that layer ¢ is compromised. Any layer is
considered to be compromised if the input that it operates
on is actually perturbed. If z; is perturbed then from Figure
5 we have:

0i—1 7’é £
0i|layeri71 7& 0i|laye7‘i

Hence by the property of hash algorithms that hash of non-
equal elements is unequal, we conclude that the validation
principle does not hold.

We now present the sufficient condition (<—). Let layer
1 be the first encountered layer (after the ouroboros block)
for which the validation principle does not hold. Hence we
have,

H; 1 # ®(¢i(w; * v; + b;))
0i|layeri—1 7"é 0i|laye7'i

Therefore, either o;|iqyeri—1 is DOt genuine which implies
that layer 7 — 1 is compromised or Oi‘layeri is not genuine
which implies layer ¢ is compromised.

0i|1ayer i—1 has to be genuine because layer ¢ — 1 being
compromised implies that the validation principle failed for
(i — 1)*" layer which contradicts the initial assumption that
1 is the first layer for which the validation principle does not
hold. Hence proved that layer ¢ is compromised.

This concludes the proof of Proposition 1. O

Apart from producing the layer output, blocks in Deep-
Ring perform another major task and that is to validate the
output of the block that follows. Any layer ¢ updates the
ledger with S;, K;, X; and H;. After extracting x;11 from
X as explained above, layer 7 + 1 performs the assertion of
the validation principle. By Proposition 1, we can conclude
that consensus on successful computation of layer ¢ output
is achieved only when this assertion holds true.

4. Adversarial Attack and Security Analysis

This research aims to defend the DNN models against
adversaries who either aims to perturb the learned parame-
ters of the model or leverage the model information to craft
adversarial samples in a white-box framework'. The section
defines the proposed attack which tries to manipulate the
network parameter for possible malfunctioning of the net-
work. The section further presents security analysis of the
proposed DeepRing architecture with respect to two thread
models, i.e. perturbing the layer parameters and perturbing
the input of the block.

4.1. Adversarial Parameter Tampering

As shown in Figure 1, an adversary can attack the
deep learning model at multiple levels such as by attack-
ing the input or tampering the network parameters. While
a lot of work has happened in attacking at the input level
[1, 3, 7,9, 10], very limited research has focused on ad-
versarial attack on network parameters. In this section, we
present a parameter altering (attack) algorithm which per-
turbs parameters with the largest consequences to the net-
work. The proposed attack in a true sense justifies the role
of blockchain in deep CNN models and shows it’s effec-
tiveness in curbing the attack on network level (as shown in
Figure 1).

Recently, Keshari et al. [1 1] propose to reduce the num-
ber of parameters of CNNs by introducing a strength param-
eter for filter weights. We follow a similar approach and use
the strength of weights/kernel matrix as a measure to decide
whether it should be perturbed or not. Since the goal is to
achieve maximum deviation with a minimum level of dis-
tortion, we only perturb the parameters which are the most
important. Keeping the trained parameters of the network
fixed, we associate each layer with a logistic importance
parameter p, and train the network again to compute the
importance of each layer weights. Larger the value of p,
more important are the weights of the layer in reaching the
final decision. We perturb the weights of the most impor-
tant layer (largest p value) with Gaussian noise and monitor
the network performance. Naturally, since the parameters
are perturbed, the performance of the model is negatively
affected. The level of deviation depends on the quantity of
noise added.

Algorithm 1 presents the pseudo-code of the proposed
attack. © operation refers to the Hadamard product be-
tween the weights matrix and strength parameter, * oper-
ation refers to convolution operation in the context of con-
volutional layers and matrix multiplication operation in the
context of dense layers. Method Noise(u, o, shape) re-
turns a Gaussian matrix of specified shape with mean p and

'white-box framework is defined as a framework where the attacker
has complete access to the network information such as parameters and
gradient.

Algorithm 1 Proposed Parameter Tampering Attack

1: procedure ATTACK(model, img, labels, u, o)

2 1+ 0

3 n < num(model.layers)

4 while : < n do

5: parameters;.trainable = False

6 W, b; = parameters;

7 initialize p;

8 output; < ¢((W;©sigmoid(p;))*input;+b;)
9

: 14 1+1
10: end while
11 model.train(img, labels)
12: P=p;st.{Vien|3jen:p; >p}
13: noise = Noise(p, o, weights;.shape)
14: weights; < weights; + noise

15: end procedure

standard deviation o and method sigmoid refers to the lo-
gistic Sigmoid function.

4.2. Security Analysis

In this section, we analyze the robustness of the proposed
DeepRing architecture in various threat model scenarios.
An adversary or a compromised block can conspire against
the network in following two ways (and their security anal-
ysis thereof):

e Perturb the layer parameters of the block: Hash of
any block is a function of the parameters of the layer
it represents. Any change in the values of these pa-
rameters would correspond a change in the hash of the
block. Since the recomputed hash is a parameter for
the hash of the next block, the hash of the next block
changes too. This goes on until the hash of the last
block is changed. This change triggers the authentic-
ity signal of the ouroboros block to turn off and ac-
tivates its tracking mode. Normal query phase is re-
sumed once the parameters of the compromised blocks
are restored.

e Perturb the input to the block: Changing the input of
a layer does not affect the hash of that layer. However,
it affects the validation assertion explained previously.
Consider a block j representing layer ¢ of the DNN
model. Assuming it is under the influence of an adver-
sary and is compromised, it tries to perturb or change
its input to produce the wrong output. Proposition |
explains that in such a case, validation fails and hence
consensus can not be achieved. Since, a violation of
validation principle at any layer 7 indicates that it has
been compromised, in case of an actual violation, the
output from the previous layer is sent back to the cur-
rent layer.

Table 1. Number of layers (n) vs probability of guessing the correct
sequence of layers.

n | Probability (%)
2 50

3 16.66

5 0.83

7 0.019

10 2.7x10~°

Table 2. Object recognition performance of a VGG-19 [19] before
(i.e., original) and after the parameter tampering and input pertur-
bation attacks.

Type Model MNIST | CIFAR-10 | Tiny-ImageNet
Original DNN 99.07 83.89 76.12
Parameter DNN 51.20 63.18 41.96
Tampering DeepRing | 99.07 83.89 76.12
Input DNN 81.54 74.88 58.21
Perturbation | DeepRing | 99.07 83.89 76.12

Table 3. Object recognition performance of the described neural
network (NN) before (i.e., original) and after the parameter tam-
pering and input perturbation attacks.

Type Model MNIST | CIFAR-10
Original NN 98.10 62.35
Parameter NN 64.29 50.11
Tampering DeepRing | 98.10 62.35
Input NN 77.89 44.37
Perturbation | DeepRing | 98.10 62.35

White-box attack strategies such as C&W Ly [4] and
EAD [5] depend on model properties such as gradients to
craft adversarial samples. Due to complete random and en-
crypted nature of DeepRing, the simplest properties of the
model such as the route of information flow between blocks
is hidden from the external world. Anticipating the next
block which proceeds with the computation will entirely be
based on a random guess. The probability to guess the cor-
rect sequence of events decreases dramatically with an in-
crease in the number of layers. For the DeepRing architec-
ture:

Prob(guess the correct sequence) = % (14)

Table 1 shows that the probability of guessing the correct

sequence order drastically decreases with an increase in the

number of model layers. Therefore, it is difficult to attack

the DeepRing network by leveraging gradient flow in the

model as proposed in most of the existing adversarial attack
algorithms.

5. Experimental Results

In this section, we describe the experiments conducted
to evaluate the validity and robustness of the proposed ap-

proach. We modeled VGG-19 architecture [19] trained on
MNIST?, CIFAR-10 [12], and Tiny-ImageNet® in a Deep-
Ring framework. We also considered a neural network with
five dense layers with the following properties:

e Number of nodes in each layer [900, 600, 300 , 100,
number_of_classes]

e ReLU activation for all layers except the output layer.
Softmax activation is used for the output layer.

We trained this network on MNIST and CIFAR-10 datasets.
Further, we experimented with the following two cases:

e Attacking the model using the tampering attack:
We applied the parameter tampering attack on DNN
architecture and the DeepRing architecture. For the
case of DeepRing, tampering the parameters alerts the
ouroboros block and activates its tracking mode. The
parameters of the affected blocks are restored from the
last stable checkpoint.

e Compromising a block by changing its input: In or-
der to monitor the behavior of the DeepRing architec-
ture on input perturbations, we perturb the third convo-
lutional layer input of the VGG19 model and the third
dense layer input of the neural network architecture de-
scribed above. Perturbing the inputs leads to the failure
of the validation clause which indicates compromise.

Table 2 shows the performance of VGG-19 with and
without blockchain for the object recognition task on
MNIST, CIFAR-10, and Tiny ImageNet databases. Ta-
ble 3 shows the performance of the defined neural net-
work with and without blockchain for the object recogni-
tion task on MNIST and CIFAR-10. The networks are at-
tacked using the methods listed above. When the original
model is used for recognition, the VGG 19 model yields
99.07%, 83.89%, and 76.12% object recognition accuracy
on MNIST, CIFAR-10, and Tiny ImageNet databases, re-
spectively. However, because of no security mechanism de-
ployed in the individual block of a typical model, it shows
vulnerability towards attacks and performance suffers a sig-
nificant drop. The performance on CIFAR-10 drops by
20.71%, whereas, on MNIST and Tiny ImageNet datasets,
drop of more than 47% and 34%, respectively is observed.
However, as described in section 3, the proposed DeepRing
model is fault free because of multiple authentication blocks
such as validation/consensus and Hash functions. There-
fore, we do not observe any reduction in performance for
the proposed DeepRing. In case of compromising a block
by changing its input, DeepRing model will also trigger a

Zhttp://yann.lecun.com/exdb/mnist/
3https://tiny-imagenet.herokuapp.com/

violation and therefore, it can inherently provide adversar-
ial attack detection mechanism. In our experiments, we ob-
serve that the proposed DeepRing yields 100% accuracy for
detecting perturbations of input to a block.

6. Conclusion

In this research, we have shown that the synergy between
the power of DNN models and security of blockchain can
create tamper-proof models. The characteristic properties
of blockchain such as security and accountability are pro-
vided to the CNN models by employing cryptographic tech-
niques and by decentralizing layer operations. The blocks
of CNN models are placed in a random order where the
neighborhood blocks contain the information of the next le-
gitimate block. Hiding the network architecture and param-
eters from an adversary prevents the threat of any white-box
adversarial attack. Tampering in any block changes the hash
of the current and the subsequent blocks thereby highlight-
ing the performed attack. In this way, the transparency be-
tween the blocks and the entire network is increased. How-
ever, this enhanced version of security comes at a price of
increased computational complexity of performing expen-
sive cryptographic functions and protocols. In this research,
through experiments, we have shown that the network is
protected against adversarial tampering and layer perturba-
tion attacks. In the future, we will extend the approach to
make it efficient in terms of computational complexity and
defend models against input image perturbation.

References

[1] A.Agarwal, R. Singh, M. Vatsa, and N. Ratha. Are imageag-
nostic universal adversarial perturbations for face recogni-
tion difficult to detect. IEEE International Conference on
Biometrics: Theory, Applications and Systems, 2018. 6

[2] S. Aggarwal, R. Chaudhary, G. S Aujla, A. Jindal, A. Dua,
and N. Kumar. Energychain: Enabling energy trading for
smart homes using blockchains in smart grid ecosystem. In
ACM MobiHoc Workshop on Networking and Cybersecurity
for Smart Cities, page 1, 2018. 2

[3] N. Akhtar and A. Mian. Threat of adversarial attacks on
deep learning in computer vision: A survey. IEEE Access,
6:14410-14430, 2018. 6

[4] N. Carlini and D. Wagner. Towards evaluating the robustness
of neural networks. In IEEE Symposium on Security and
Privacy, pages 39-57, 2017. 7

[5] P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh. Ead:
elastic-net attacks to deep neural networks via adversarial
examples. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018. 7

[6] O. Delgado-Mohatar, J. Fierrez, R. Tolosana, and R.
Vera-Rodriguez. Blockchain and biometrics: A first
look into opportunities and challenges. arXiv preprint
arXiv:1903.05496, 2019. 2

(7]

(8]

(9]

(10]

(11]

(12]
[13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

A. Goel, A. Singh, A. Agarwal, M. Vatsa, and R. Singh.
Smartbox: Benchmarking adversarial detection and mitiga-
tion algorithms for face recognition. [EEE International
Conference on Biometrics: Theory, Applications and Sys-
tems, 2018. 6

W. J Gordon and C. Catalini. Blockchain technology for
healthcare: facilitating the transition to patient-driven in-
teroperability. Computational and structural biotechnology
Jjournal, 16:224-230, 2018. 2

G. Goswami, A. Agarwal, N. Ratha, R. Singh, and M. Vatsa.
Detecting and mitigating adversarial perturbations for robust
face recognition. International Journal of Computer Vision,
2019. doi: 10.1007/s11263-019-01160-w. 6

G. Goswami, N. Ratha, A. Agarwal, R. Singh, and M. Vatsa.
Unravelling robustness of deep learning based face recogni-
tion against adversarial attacks. Association for the Advance-
ment of Artificial Intelligence, pages 6829—-6836, 2018. 6

R. Keshari, M. Vatsa, R. Singh, and A. Noore. Learning
structure and strength of cnn filters for small sample size
training. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 9349-9358, 2018. 6

A. Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009. 7

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436, 2015. 1

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEFE, 86(11):2278-2324, 1998. 1

A. Magnani, L. Calderoni, and P. Palmieri. Feather forking
as a positive force: incentivising green energy production in
a blockchain-based smart grid. In ACM Workshop on Cryp-
tocurrencies and Blockchains for Distributed Systems, pages
99-104, 2018. 2

M Mettler. Blockchain technology in healthcare: The rev-
olution starts here. In IEEE International Conference on e-
Health Networking, Applications and Services, pages 1-3,
2016. 2

N. K. Ratha, J. H. Connell, and R. M. Bolle. Enhancing secu-
rity and privacy in biometrics-based authentication systems.
IBM systems Journal, 40(3):614-634, 2001. 1

G.J Simmons. Symmetric and asymmetric encryption. ACM
Computing Surveys, 11(4):305-330, 1979. 2

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 7

Q. Stokkink and J. Pouwelse. Deployment of a
blockchain-based self-sovereign identity. arXiv preprint
arXiv:1806.01926, 2018. 2

N. Szabo. Smart contracts: building blocks for digi-
tal markets. EXTROPY: The Journal of Transhumanist
Thought,(16), 18, 1996. 2

J Weng, Jian Weng, J Zhang, M Li, Y Zhang, and W Luo.
Deepchain: Auditable and privacy-preserving deep learning
with blockchain-based incentive. Cryptology ePrint Archive,
Report 2018/679, 2018. 2

