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Abstract

The Bitcoin transaction graph is a public data struc-
ture organized as transactions between addresses, each as-
sociated with a logical entity. In this work, we introduce
a complete probabilistic model of the Bitcoin Blockchain,
setting the basis for follow-up Al applications on Bitcoin
transactions. We first formulate a set of conditional depen-
dencies induced by the Bitcoin protocol at the block level
and derive a corresponding fully observed graphical model
of a Bitcoin block. We then extend the model to include
hidden entity attributes such as the functional category of
the associated logical agent and derive asymptotic bounds
on the privacy properties implied by this model. At the
network level, we show evidence of complex transaction-
to-transaction behavior and present a relevant discrimina-
tive model of the agent categories. Performance of both
the block-based graphical model and the network-level dis-
criminative model are evaluated on a subset of the public
Bitcoin Blockchain.

1. Introduction

Analysis of the Bitcoin Blockchain [30] is an area of
intense activity [25, 1], and one which has witnessed an
explosion of interest as the value of the Bitcoin cryp-
tocurrency has skyrocketed. Research areas include explo-
rations of address clustering techniques to identify logical
agents [26, 10], de-anonymization using side-channel at-
tacks [11, 17].

An understanding of the properties of Bitcoin transac-
tions is paramount to the legitimization of the cryptocur-
rency economy; it constitutes a building block to the con-
ception of adequate regulations [12], and to the design of
novel and integrated services benefiting society as a whole.

As of 2018, with more than 500 million address nodes,
the Bitcoin graph is comparable in size to a large social
network. Yet while probabilistic models of social net-
works have received considerable attention, from commu-
nity detection [24] to diffusion models and probabilistic
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graph modeling [22], probabilistic models of the Bitcoin
Blockchain network have not.

Bitcoin transactions are tantamount to a partially ob-
served social network, within which participants can have
multiple seemingly independent aliases. This distinguishes
our work from classical studies on partially observed social
networks, typically focused on partial observations of inter-
actions due to sampling [14], and makes it closer to the vast
body of work on entity resolution [36, 5].

A second challenge associated with modeling the Bit-
coin Blockchain transaction network consists of capturing
the complexity of the hidden structure associated with en-
tity transactions, together with the fine-grained block-level
specificities implied by the Bitcoin protocol. In particular,
Bitcoin is based on an unspent transaction output (UTXO)
model, which distinguishes suitable Bitcoin Blockchain
models from prior studies on credit card transactions [8, 23],
since the proper generative structure needs to account for
the underlying UTXO creation and deletion process [9].

In this work, we propose a first attempt at a compre-
hensive model of the Bitcoin transaction graph using a hy-
brid generative-discriminative model attempting to draw
strengths from both approaches [31]. The generative ap-
proach allows defining a model which complies with the
abstracted protocol, but which inherits learning capabilities
from graphical models, and could be used in practice to sup-
port further Al applications on Bitcoin, such as fraud detec-
tion, price prediction, policy evaluation.

Our work departs from the body of related work de-
scribed in Section 6 centered on discriminative models of
the Bitcoin Blockchain focused on de-anonymization, but
rather focus on generative modeling of the Blockchain cap-
turing fundamental properties of the protocol and hence
able to adequately model Bitcoin transactions. As an appli-
cation, we consider the problem of de-anonymization, and
provide both a theoretical and numerical analysis.

We first define pragmatic conditional independence as-
sumptions underlying the Bitcoin protocol, and formulate
a generative model of the Bitcoin Blockchain block. In
this context, we analyze the revealed entity behavior, both



theoretically and from a data perspective. We then turn to
network level modeling, present a discriminative model of
transaction-transaction behavior, and analyze the associated
medium-term categorical agent behavior.

The rest of the article is organized as follows. Section 2
and 4 define the probabilistic graphical model, Section 3
provides results on transaction privacy, Section 5 consists of
numerical experiments. Related work is discussed in Sec-
tion 6 and concluding remarks are provided in Section 7.

2. Probabilistic block model

A Bitcoin transaction consists of a set of input addresses
transferring BTC to a set of output addresses. More specifi-
cally, in the context of a transaction, each input address con-
tributes a possibly fractional subset of its UTXOs to the cre-
ation of the set of UTXOs associated with output addresses,
for the same total amount (minus a fee). Each UTXO is
associated with an address, and each address is associated
with a logical agent, who may hold an arbitrary number of
addresses, see Figure 1.

() () (@ ®
Figure 1. Bitcoin address-transaction bipartite graph data struc-
ture of visible addresses a;, (associated with unknown entities e;),
(left) with each arrow corresponding to an unspent transaction out-
put (UTXO), and corresponding hidden entity-transaction graph

(right). A block consists of many such transactions. A change ad-
dress, here a1, may be used to return the remainder of the UTXO.

We embed the Bitcoin Blockchain transaction graph in a
directed bipartite graph structure 4 = (&7, 7, &), with the
following vertex and edge features:

address vertex a € o/ number of UTXO kUTX© and
out-degree k2",

transaction vertex t € 7 : transaction value v and fee

fs

o directed address-transaction edge € &: outgoing
value v from address a via transaction ¢,
o directed transaction-address edge € &: incoming

value v to address a via transaction ¢.

Since the Bitcoin protocol specifies that transactions should
be validated in blocks and the proof-of-work consensus pro-
tocol incentivizes validators to agree on a single block-
chain, we ignore transient disagreements and assume a
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discrete-time simple path structure of blocks. We refer the
interested reader to [7] for a more thorough study of relevant
Blockchain graph semantics, in particular in the context of
Hyperledger Fabric [3].

We propose a stationary graphical model [18] of a Bit-
coin Blockchain block. First we develop a fully observ-
able block-transaction, address (BT-A) model, illustrated in
Figure 2, that we then augment with entity attributes into a
block-transaction, entity-address (BT-EA) model with more
complex structure.

Figure 2. Block-transaction address model, plate notation. Ob-
served random variables are shaded while non-observed variables
are plain.

2.1. Block-transaction address model

A block b is composed of the set of transactions ¢ vali-
dated by the peer node who solved the cryptographic chal-
lenge the fastest. With the approximation of stationary
inter-block time, and assuming independence between the
ability of solving the cryptographic challenge and the se-
lection of transactions, we model the number 7}, of transac-
tions per block as a Poisson distribution. Similarly assum-
ing stationary and independent address usage, we model the
number of input addresses I; and output addresses O; per
transaction as a Poisson random variable. The Poisson dis-
tribution is chosen because it corresponds to a number of
events within a fixed time period.

Definition 1 (Transactions, input and output addresses).

Vb € %, Tb ~ @(Asize)

Vt S y, It ~ yn(Azn) and Ot ~ @n()\out), (1)

where &2, is the normalized Poisson distribution on N*.

On the receiving end of a transaction, it is possible to
generate a new address. In the Bitcoin pseudonymous con-
text, this reduces the traceability of the full set of transac-
tions associated with an entity. Considering the set of output



addresses as a whole, we model the conditional distribution
of the number of new addresses given the number of output
addresses as a Binomial random variable.

Definition 2 (New address distribution).

Vt € 97 Nt|0t ~ %(Otapnew)' (2)

In the interest of a tractable inference procedure, and in
the absence of an informative prior, in this work we focus
our efforts on maximume-likelihood estimation, and assume
uniform prior Ag;ze, Ains Aout, Pnew-

We now proceed to describe the generative model of the
input and output addresses. A natural choice for the genera-
tive hierarchical model is the LDA or Dirichlet-multinomial
model used in topic modeling [6]. Here, given the full
observability of the model variables and decomposability
of the likelihood, motivated by topological social network
analysis, we use the Albert-Barabasi preferential attach-
ment model [4, 2], which can be seen as the posterior prob-
ability of an LDA model in the appropriate feature space.

Specifically, we consider that the probability of the i*"
address A; to be a given address a is proportional to the
number of available UTXO of the address. The model reads
as follows.

Definition 3 (Input addresses). Vi € {1,...,;}
k((}]TXO +1
Ywrea (kgTXC +1)

where < is the set of available addresses, kgTX O is the
number of unspent outputs of the address.

P(A; = alkVTXO) = 3)

The output address model is similar, except that the at-
tachment model is now considered a function of the out-
degree of the address, i.e. while the inclination of the ad-
dress to be part of the inputs (i.e. to spend) is considered to
be a function of the number of UTXOs it has still available,
the inclination of the address to be part of the outputs (i.e.
to accumulate) is considered to be a function of the number
of distinct UTXOs it has already spent.

Definition 4 (Output addresses). Vo € {1,...,0;}

P(A, = a|N;, k°"*) ~1(0o < Ny;a = ag) 4)
kout 4 1

Za’ed(kgyt + 1)

+ ]1(0 > Nt)

where agy denotes a new address.

For each input address, since empirically we observe that
the UT X O distribution is concentrated around 1, we model
the conditional distribution of the number U; of UTXOs
used given the number of UTXOs available as a geomet-
ric random variable with uniform prior. We then draw the
UTXOs uniformly from the available set.
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Definition 5 (Input UTXOs).

Vie{l,... . L}, Ui|k§TXO ~ ... kyrxo1(purx0,in)

Yu € {1,...7Ui},Vi’u‘Ui N%{lyn.7k%‘7"XO} ®))

where g[l,...,kgTXO] is the normalized geometric dis-
i

tribution  with support [1,... k5TXC), and where
%{1_’__'7,627)(()} is the uniform distribution over the set

{1,... Kgrxoy

‘We obtain the total transaction value V; as the sum of the
input UTXOs.

Definition 6 (Transaction value).

Vi, U Vi =Y, Y. Viu

1<i<I; 1<u<U;

(6)

A fee is paid to the miners to reward their validation
work and higher fees may nudge their selection of trans-
actions when creating blocks. We thus model the fee asso-
ciated with a Bitcoin transaction as a normalized Gaussian
distribution. The number of output UTXOs and their values
is modeled similarly to the input UTXOs.

Definition 7 (Fee value, output UTXOs).

vt e 97 Ft“/;f = f/V[O,Vt](/Jffeeyo'fee)
Yoe{l,...,0:}, U, ~9(purxo.out)
vue {13"'7UO}7 Vo,u‘VtaFt N%[l,“wvt—Ft] (7)
where N, ) denotes the Gaussian distribution normalized
over the interval [a, b, and where % denotes the normal-

ized uniform distribution (the V, ., are also normalized in
order to sum to V (t) — F(t)).

The resulting block-transaction address model (1)-(2)-
(3)-(4)-(5)-(6)-(7) is presented in Figure 2.

We now turn to a more complex variant of the proposed
model meant to capture categorical behavior of the unob-
served entities transacting on the Blockchain.

2.2. Block-transaction entity-address model

An entity e is associated with a Bitcoin user and fully
characterized by a set of addresses A(e) = {az(-e)}i. In this
section we extend the BT-A model to take into account cat-
egorical entity behavior. We assume that entities belong to
different categories ¢ € ¢, with potentially different behav-
iors.

We first model the fact that the hyper-parameters \;,, and
Aout associated with the number of input and output ad-
dresses, depend on the category c of the associated entity,
and are noted \;;, . and A,y . Similarly the parameter as-
sociated with the number of new addresses in the output



Pnew,c» and the number of UTXO in the input pyrx0,in,c
and output pyTx0,0ut,c are category-dependent.

Second we update the conditional independence struc-
ture of the generative model to reflect the fact that address
selection (3)-(4) is now also conditioned on entities.

Definition 8 (Input and output entities and addresses).
EUTXO 1

Yeres (kGO +1)

1(a € A(Ey)) (KUTXO 1 1)

P(Et _ 6|]€UTXO)

P(A4; = a|kVTXO E,) =

Za’ed,aeA(Et)(kg’TXO +1)
kout +1
P(E, = e|kom) = € — (8)
Ze’esz{(ke’ ¢ + 1)
P(A, = alk®*,E,) = 1(o < Ni;a = ap)

1(a € A(E,)) (k2" +1)
Pwrest acam, kot +1)
This dependency structure intending to capture the be-

havior of distinct categories of entities is illustrated in Fig-
ure 3.

+ ]1(0 > Nt)

Ty +1

PUTXO,0ut,c PUTXO,in,c

Figure 3. Block-transaction entity-address model, including
category-specific variables, as well as hidden entities. As per
the protocol, all input addresses are associated with only 1 en-
tity, while output addresses are generally associated with multiple
entities.

[€]+1

2.3. Model inference

We assume a known dependency structure as described
above, hence we do not require learning the structure, and
we simply estimate the model parameters. Since the prior
is decomposable over nodes, and since all variables are ob-
served in the BT-A model, the MLE inference amounts to
local computation over each node and its parents.

4324

Regarding the BT-EA model, while the hidden entity
variables make the inference more complex in general, here
we assume that a separate heuristic such as the multi-input
heuristic [10] allows associating each address with an entity,
hence the inference process over the labeled set reduces to
the scalable process used for the BT-A model.

3. Block-level privacy analysis

In this section we present an analysis of address re-use
behavior in the context of the probabilistic model intro-
duced in the previous section, as well as implications of
these results for Bitcoin transaction anonymity.

3.1. Attacker model

We model an attacker, attempting to identify the full set
of addresses A(e) associated with an entity e. We assume
that the attacker uses the standard multi-input heuristic [10],
which associates the full set of address inputs for each trans-
action to a single entity and applies transitive closure. From
the perspective of the external attacker, the true set of ad-
dresses A(e) of an entity e is partitioned into A, aliases,
a-priori seen as distinct entities;

Ale) = U A(e);,

1<i<A,

where A(e); denotes the address set associated with alias 4
of entity e. In this setting, when participating in a transac-
tion ¢ on the input side, we consider that the targeted entity
e selects { Ny, ; }1<i< 4, addresses from its available set fol-
lowing a generic multinomial distribution with parameters
{piti1<i<a,, which includes the special case for which the
alias distribution is a linear function of kV7TX©.

This models the typical Bitcoin user who, while being
concerned by his privacy, is not particularly careful about
address selection, and uses multiple distinct aliases with
distinct address sets, but sometimes mixes these address in
the same transaction input, leading to a privacy collapse.

Given the multi-input heuristic, it is indeed sufficient for
an attacker to observe two addresses from distinct aliases
and to associate these two aliases to the same entity using
the multi-input heuristic. Formally, upon observing the in-
put addresses from a transaction ¢ associated with input en-
tity e, the attacker is able to associate the following address
set with entity e:

{a € A(e)i U A(e);|1(Nin,i > 0; Ninj >0),1 <1i,5 < Ac}.

3.2. Privacy analysis

In the following for simplicity we consider a one-step
iteration and assume that the attacker is only aware of the



set of addresses associated with alias A(e);. In this sense
the control parameter p; plays the role of 1-p,e,, from the
BT-EA model. We analyze the number D, ; of addresses
from entity e that the attacker is able to discover after seeing
the addresses involved in 1 transaction, expressed as:

Ae
De7f, = Z ‘A(e)i‘]].(NmJ' > 0; Nm’l > O)
1=2

We can express the number of discovered addresses D, ; as
a function of the alias addresses selection probabilities p;.

Proposition 1 (Privacy loss from address re-use).

1 —exp (—Ain,ep

Ae
_ 1) (1 —exb (— Mo
Bl = =g oy, 25 AN (1 =exp (Aancp)
©)
Proof. By definition of D., t, we have
Ae
E[De,t] = Z ‘A(e)zIP(Nm,z >0A Nin,l > O‘Et = 6).
i=2

Let B be the second factor in the summation term, by
marginalizing over [; and using the chain rule, we can write:

B = ]P)(Nlnl >0A Nin,l > 0|Et = e)

= ZP(Nm,i > 0A Nipa >0|E; =e, I, =n)
n>1

P(It = Tl|Et = 6’).

Letting C' denote the first factor in the summation term
above, we have:

C= P(Nin,i >0A Nin,l > OlEt =e I = n)
= > P({Nin,; = n;};|Er = e, I = n)

A
n;>0,n1 >O,Zj:€1 n;=n

= 2

n71>0,n1>0,z;4:61 nj=n

P A
n. i
HA | Hp]

e .
j=1"M3" j=1

where the last equality is obtained by definition of the
multinomial distribution. Similarly since the number of in-
put addresses I; follows a binomial distribution we have:

)\?’ﬂ.c
P(Iy = n|E; = ¢) = n!(exp (Ain,e) — 1)’

and combining this expression with the expression of C,
we can simplify the expression of B to finally obtain equa-
tion (9), which concludes the proof. O]
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With p; as the control parameter, the expression states
that the attacker information gain is an exponential func-
tion of the probability of using addresses already identified
(i.e. address re-use). The asymptotic behavior of a privacy-
conscious user is described next.

Proposition 2 (Privacy-conscious asymptotics). If p1 < pi
we have:

E[De,t] ~ Ainp1(|A(e)] = [A(e)1]).

This result shows that the one-step information gain from
the attacker is a linear function of the probability of using
already-used addresses, and also linear in the number of ad-
dresses typically used as input. This result at the transac-
tion level can be readily extended to a chain-length estimate
by accounting for the probability of an entity to transact,
as provided explicitly in equation (8) of the BT-EA model.
We also highlight that while a low p; models a privacy-
conscious user, the user strategy is non-adaptive, in the
sense that the user does not try to adjust his strategy based
on the attacker strategy.

4. Probabilistic transaction graph model

We now consider the behavior of entities across trans-
actions, and assume that entity categories exhibit different
behaviors. Given the lack of a-priori underlying modeling
structure to this behavior, and given the combinatorial na-
ture of such behavior, we propose a discriminative frame-
work in which model selection can be carried out more effi-
ciently based on a possibly large set of relevant features. We
rely on the classical multi-input heuristic [10] for defining
entities, and formulate a decision-tree based classification
problem in the following feature space.

We consider the following five feature classes, and for
continuous features explicitly consider the feature mean and
standard deviation; address features, entity features, tempo-
ral features, graph centrality metric features, motif features.

Address-specific features include attributes such as the
total BTC received, the total BTC balance, the number of
input/output transactions, etc. Analogous features are de-
fined at the entity level as well as the number and proportion
of Coinbase transactions (indicative of BTC creations).

Temporal features are those such as the number of
weeks, months, years of activity. the number of entity
traded with per week, month, year, the number of receiv-
ing/sending/receiving sending days, the activity period du-
ration, and the active day ratio. Graph centrality metric fea-
tures are standard features.

Motif features are presented in Figure 4. Here we con-
sider 1, 2, and 3 motifs, extending the 2-motifs from [33].
Motifs are a comprehensive description of the transaction-
to-transaction properties.
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Figure 4. 2-motif features (rectangular white boxes) annotated
over a 2-motif. A N-motif is a path of length 2/N on the bipar-
tite entity-transaction graph. We distinguish Direct motifs from
Loop motifs, the latter indicating that an entity is transacting with
itself using distinct addresses.

l mid_val ] l out_val ]

5. Experiments

In this section we present numerical results of our prob-
abilistic Bitcoin Blockchain model. We first describe the
training procedure for the generative block model and dis-
cuss obtained model parameters. We then turn to the
transaction-to-transaction discriminative model results and
analyze the properties revealed by the joint analysis.

5.1. Dataset

We consider the set of blocks of height inferior or
equal to 514,971, corresponding to blocks created be-
fore March 24th 2018, 15:19:02, which contains about
500, 000,000 addresses. Address labels, revealing entity
identifiers, are obtained from WalletExplorer https://
www.walletexplorer.com/. The set of address en-
tity label pairs used has been made available at https://
github.com/Maru92/EntityAddressBitcoin.

We interact with the Blockchain via the BlockSci tool-
box v.0.4.5 released on March 16th 2018 [20], on a 64 GB
machine. The final labeled dataset used in numerical exper-
iments consists of 28,353,493 addresses, associated with
|€known| = 260 entities representing 4 entity categories in
the following proportions:

e Exchange (E): 108 entities, 7,892,587 addresses,
e Service (S): 68 entities, 17,606,608 addresses,

e Gambling (G): 65 entities, 2,775,810 addresses,

e Mining Pool (M): 19 entities, 78,488 addresses.

When training the probabilistic model, we restrict ourselves
to the period from January 1st 2016 to March 16th 2018,
where overall patterns are relatively stationary. Indeed since
the proposed model is static we do not attempt to study
its ability to model transient regimes. We observe UT X O
statistics in Table 1 and UT X O distribution in Figure 5,
showing wide variability across multiple scales.

5.2. Transaction subset modeling

Since we consider a subset of the transaction graph, we
need to model transactions originating from our subset and
directed outside it, or vice-versa. We follow the proposed
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Quantity E S G M All
mean ;1(V,,,) 862 053 0.11 127 4.39
stdo (Vo) 931 41.6 081 425 70.0

Table 1. UTXO empirical statistics in BTC: the UTXO output
values have a large standard deviation compared to their mean,
and vary significantly across entity categories.

1-CDF

10° 10¢

UTXO BTC
Figure 5. BTC UTXO distribution : 1 minus the cdf of the UTXO
represented in log log coordinates, with 99.9% of the distribution

qualitatively following a power law on the interval [107%, 10%].

0= 1n-1 a 10 1
1 1 167 10° 1

model structure and model the number of external output
addresses as a Poisson distribution &?(\4yp). Transactions
from unknown addresses towards known input addresses
are modeled with no known input and a number of trans-
actions per block T} in.coming following a Poisson distribu-
tion & (Asize,sub). Coinbase transactions are created in a
similar manner: no inputs, number of addresses in the out-
puts drawn following a Poisson distribution of parameter
Aout,subs With new addresses, prew,sup, and several UTXOs
created per addresses, PuTx0,out,sub-

5.3. Block model training

We train the model using data from the period January
1st 2016 to March 16th 2018 consisting of about 10 million
addresses. We first verify the main independence assump-
tion, between the number of input addresses and the number
of output addresses. Since ppearson (s, Or) = 0.015, we
consider the marginal independence hypothesis validated.

The inference produces a value Ay;,. = 65.6 for both
models. In Table 2 we present the model parameter results
from the model training for the BT-A and BT-EA models.

The results reflect the idiosyncratic properties of Bit-
coin Blockchain transactions, with for instance the need to
gather UTXOs from various addresses, which is illustrated
by the fact that \;,, > A\,qy¢. It is also clear from the UTXO
parameters that the input parameters are more discrimina-
tive than the output parameters, which reflect transfers from
other parties from the perspective of the entity concerned.



Parameter BT-EA BT-A
E S G M All
P(E,=e¢) 033 0.55 0.09 0.03 1
Ain 379 258 198 212 299
Aout 068 196 021 7.04 1.21
purxo,n 095 092 084 0.67 092
pPuTx0,0ut  1.00 1.00 1.00 1.00 1.00
Pnew 0.23 020 047 055 0.26

Table 2. Model parameters from calibration on the period from
January 1st 2016 to March 16th 2018, for the Exchange, Services,
Gambling, Mining Pool categories.

Lastly we observe significant address generation distinc-
tions across entity categories, with Gambling and Mining
Pools seemingly more privacy-conscious given their higher
probability of generating new addresses. They also trans-
act less frequently, using more input addresses. Detailed
impact of entity behavior on privacy properties is analyzed
subsequently.

5.4. Block model testing

In order to assess the model performance, we now eval-
uate out-of-sample model accuracy. Starting from scratch,
we train the model on 4911 blocks corresponding to the pe-
riod from January 1st 2017 to January 31st, 2017, and eval-
uate the model on 2150 blocks associated with the period
from February 1st, 2017, to February 14th, 2017.

Metric BT-EA BT-A
E S G M All

MSE 1.22 -030 -0.02 0.06 1.12
RMSE 125 533 1.15 519 90.5
MAE 156 094 020 242 747
RMAE 182 1.74 186 193 1.69
NRMSE 134 128 142 122 129

Table 3. Error statistics in BTC for UTXO output values V,, ,:
from the BT-A level overall value, as well as per category from the
BT-EA model, for the Mean Signed Error (MSE), Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), Relative Mean
Absolute Error (RMAE) and Normalized Root Mean Squared Er-
ror (N-RMSE) expressed as RMSE divided by o(Vi,0).

The results from Table 3 illustrate that given the multi-
scale nature of the underlying distributions, the model es-
timates are relatively close on average, i.e. well within an
order of magnitude. Furthermore, the BT-EA model sig-
nificantly reduces the bias (MSE) as well as the variance
(RMSE) for most categories. The Exchange category is the
only one for which both bias and variance increase, suggest-
ing a fundamental modeling limitation.

The error terms are relatively large in absolute terms for
both models, which is largely explained by the inherent
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variance in the data, both at the population level and at the
class level. Indeed, the bias is low and most of the data vari-
ance is explained, with a N-RMSE ranging between 1.22
and 1.34.

5.5. Privacy analysis validation

Given the calibrated model parameters, we now validate
experimentally the theoretical privacy properties of Bitcoin
Blockchain transactions expressed by equation (9). We
leverage the generative model and attacker model described
above to simulate transaction traces and evaluate the pro-
portion of the addresses that are re-identified for distinct
categories, as a function of the number of transactions.

10 - o Theoric E
—— Empiric E
=== Theoric G
—— Empiric G
Theoric M 7,
Empiric M
Theoric 5
—— Empirie 5

Known proportion

Mumber of Transaction

Figure 6. Proportion of identified addresses: by category, as a
function of the number of transactions.

Figure 6 shows agreement between the analytics results
and the simulation of the block model. The figure also
illustrates that Exchanges and Services typically are less
privacy-conscious (lower probability of generating new ad-
dresses, frequent transactions), and hence for an equiva-
lent number of Blockchain transactions, typically reveal a
greater proportion of their address set.

Transaction anonymity however depends also on the
transaction-to-transaction behavior. Indeed, it is conceiv-
able that certain entities, while not following best block-
level practices on address re-use, hence easily identifiable as
entities, could be transacting in a way that little information
is gathered from their network level transaction structure.
In order to assess the latter, we now turn to the numerical
results of our proposed network transaction model.

5.6. Transaction network model

We use the Python LightGBM implementation of the
gradient boosted decision tree model [21] with a 70/30
training/test partition of our dataset. A Gaussian Process
(GP)-based optimization procedure for hyper-parameter
optimization is implemented using the Python skopt
library https://scikit-optimize.github.io/
with initial parameter values obtained from a coarse random



search. The learning rate hyper-parameter is optimized over
the interval [0.01, 0.5] with early stopping after having done
arandom search over [0, 2]; the resulting value is 0.18. The
GP procedure is used with 50 iterations.

We make use in total of 10 address features, 8 entity
features, 16 temporal features, 42 centrality features, 44 1-
motif features, 81 2-motif features, and 114 3-motif fea-
tures. We present in Table 4 the F1, Accuracy and Precision
results over the entire dataset and for each category.

Category  Accuracy F;  Precision

Exchange 0.94 0.92 0.91

Gambling 0.95 0.97 1.00
Mining 0.50 0.67 1.00
Service 0.95 0.88 0.83
Overall 0.92 0.91 0.92

Table 4. Classification performance: for the 4 entity categories
considered, and overall.

The results illustrate that the model is able to very well
capture the behavior of most entity categories. Furthermore,
the network-level privacy analysis confirms the prior block-
level analysis, with Mining Pools being the most privacy-
conscious. Indeed, considering the most relevant features
of the LightGBM model, in a 1 vs. all setting, it appears
that for most categories except the Mining Pool, motif fea-
tures are the most informative, indicating that the Light-
GBM model is not able to leverage the transaction sub-
graph for identification of the Mining Pool category.

6. Related work

A number of studies on the graph properties of the Bit-
coin Blockchain transaction graphs have analyzed statistics
and structure of vertices and edges [35, 13].

Heuristics for clustering multiple addresses to an entity
have been studied in [26] and consistent address re-use pat-
terns have been shown in [15].

Analysis of the Bitcoin protocol in the context of at-
tacks have been proposed, for instance inference of peer-
to-peer communication structure, in [11], statistical analy-
sis of bloom filters in [32], and analysis of Bitcoin mint-
ing patterns in [27] with application to de-anonymization.
Flow-based address-transaction graph studies can be found
in [28, 16]. The obfuscation of Bitcoin transactions trace-
ability has been considered in [29]. Reference to using side
informations can be found in [34].

Several studies have applied discriminative models to the
problem of de-anonymizing Bitcoin transactions, with for
instance the use of transaction-specific features in [37], able
to achieve 70% accuracy for classifying entities into sev-
eral types. In [33], the authors introduce transactions paths
with application to the detection of Bitcoin exchanges, and
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achieve greater than 80% accuracy. Similar transactions
paths features are used in [19] for a 5-class classification
problem with above 90% accuracy results.

7. Conclusion

In this work, we proposed a probabilistic model of the
Bitcoin Blockchain which accounts for the complex Bit-
coin protocol features. The model consists of a hierarchi-
cal structure from unspent transaction output (UTXO), to
address, transaction, and block. We take into account en-
tity modeling, including features relevant for robustness to
de-anonymization attacks, namely address re-use patterns.
We also propose a discriminative model of transaction-to-
transaction behavior and show its effectiveness in practice.

We analyzed the accuracy of the generative model us-
ing a large Bitcoin dataset of more than 10 million address
vertices, discussed the significant block-level heterogeneity
of the model parameters across entity categories, and pro-
vide a complementary analysis of transaction-to-transaction
behavior using the discriminative model. We consider in
particular the de-anonymization properties of certain behav-
iors, which is one of the main focus areas of Bitcoin studies.

Extensions of this work may include the design of more
complex graphical models including latent variables for
modeling transaction intent, and shared side-information
across entities, inducing multivariate preferential attach-
ment. A significant challenge for such models with more
complex dependency structure and hidden variables is the
design of a tractable training and inference procedure given
the large-scale nature of such public cryptocurrency trans-
action graphs.
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