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Abstract

The Bitcoin transaction graph is a public data struc-

ture organized as transactions between addresses, each as-

sociated with a logical entity. In this work, we introduce

a complete probabilistic model of the Bitcoin Blockchain,

setting the basis for follow-up AI applications on Bitcoin

transactions. We first formulate a set of conditional depen-

dencies induced by the Bitcoin protocol at the block level

and derive a corresponding fully observed graphical model

of a Bitcoin block. We then extend the model to include

hidden entity attributes such as the functional category of

the associated logical agent and derive asymptotic bounds

on the privacy properties implied by this model. At the

network level, we show evidence of complex transaction-

to-transaction behavior and present a relevant discrimina-

tive model of the agent categories. Performance of both

the block-based graphical model and the network-level dis-

criminative model are evaluated on a subset of the public

Bitcoin Blockchain.

1. Introduction

Analysis of the Bitcoin Blockchain [30] is an area of

intense activity [25, 1], and one which has witnessed an

explosion of interest as the value of the Bitcoin cryp-

tocurrency has skyrocketed. Research areas include explo-

rations of address clustering techniques to identify logical

agents [26, 10], de-anonymization using side-channel at-

tacks [11, 17].

An understanding of the properties of Bitcoin transac-

tions is paramount to the legitimization of the cryptocur-

rency economy; it constitutes a building block to the con-

ception of adequate regulations [12], and to the design of

novel and integrated services benefiting society as a whole.

As of 2018, with more than 500 million address nodes,

the Bitcoin graph is comparable in size to a large social

network. Yet while probabilistic models of social net-

works have received considerable attention, from commu-

nity detection [24] to diffusion models and probabilistic

graph modeling [22], probabilistic models of the Bitcoin

Blockchain network have not.

Bitcoin transactions are tantamount to a partially ob-

served social network, within which participants can have

multiple seemingly independent aliases. This distinguishes

our work from classical studies on partially observed social

networks, typically focused on partial observations of inter-

actions due to sampling [14], and makes it closer to the vast

body of work on entity resolution [36, 5].

A second challenge associated with modeling the Bit-

coin Blockchain transaction network consists of capturing

the complexity of the hidden structure associated with en-

tity transactions, together with the fine-grained block-level

specificities implied by the Bitcoin protocol. In particular,

Bitcoin is based on an unspent transaction output (UTXO)

model, which distinguishes suitable Bitcoin Blockchain

models from prior studies on credit card transactions [8, 23],

since the proper generative structure needs to account for

the underlying UTXO creation and deletion process [9].

In this work, we propose a first attempt at a compre-

hensive model of the Bitcoin transaction graph using a hy-

brid generative-discriminative model attempting to draw

strengths from both approaches [31]. The generative ap-

proach allows defining a model which complies with the

abstracted protocol, but which inherits learning capabilities

from graphical models, and could be used in practice to sup-

port further AI applications on Bitcoin, such as fraud detec-

tion, price prediction, policy evaluation.

Our work departs from the body of related work de-

scribed in Section 6 centered on discriminative models of

the Bitcoin Blockchain focused on de-anonymization, but

rather focus on generative modeling of the Blockchain cap-

turing fundamental properties of the protocol and hence

able to adequately model Bitcoin transactions. As an appli-

cation, we consider the problem of de-anonymization, and

provide both a theoretical and numerical analysis.

We first define pragmatic conditional independence as-

sumptions underlying the Bitcoin protocol, and formulate

a generative model of the Bitcoin Blockchain block. In

this context, we analyze the revealed entity behavior, both
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theoretically and from a data perspective. We then turn to

network level modeling, present a discriminative model of

transaction-transaction behavior, and analyze the associated

medium-term categorical agent behavior.

The rest of the article is organized as follows. Section 2

and 4 define the probabilistic graphical model, Section 3

provides results on transaction privacy, Section 5 consists of

numerical experiments. Related work is discussed in Sec-

tion 6 and concluding remarks are provided in Section 7.

2. Probabilistic block model

A Bitcoin transaction consists of a set of input addresses

transferring BTC to a set of output addresses. More specifi-

cally, in the context of a transaction, each input address con-

tributes a possibly fractional subset of its UTXOs to the cre-

ation of the set of UTXOs associated with output addresses,

for the same total amount (minus a fee). Each UTXO is

associated with an address, and each address is associated

with a logical agent, who may hold an arbitrary number of

addresses, see Figure 1.
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Figure 1. Bitcoin address-transaction bipartite graph data struc-

ture of visible addresses ai, (associated with unknown entities ei),

(left) with each arrow corresponding to an unspent transaction out-

put (UTXO), and corresponding hidden entity-transaction graph

(right). A block consists of many such transactions. A change ad-

dress, here a1, may be used to return the remainder of the UTXO.

We embed the Bitcoin Blockchain transaction graph in a

directed bipartite graph structure G = (A ,T ,E ), with the

following vertex and edge features:

• address vertex a ∈ A : number of UTXO kUTXO
a , and

out-degree kouta ,

• transaction vertex t ∈ T : transaction value v and fee

f ,

• directed address-transaction edge ∈ E : outgoing

value v from address a via transaction t,

• directed transaction-address edge ∈ E : incoming

value v to address a via transaction t.

Since the Bitcoin protocol specifies that transactions should

be validated in blocks and the proof-of-work consensus pro-

tocol incentivizes validators to agree on a single block-

chain, we ignore transient disagreements and assume a

discrete-time simple path structure of blocks. We refer the

interested reader to [7] for a more thorough study of relevant

Blockchain graph semantics, in particular in the context of

Hyperledger Fabric [3].

We propose a stationary graphical model [18] of a Bit-

coin Blockchain block. First we develop a fully observ-

able block-transaction, address (BT-A) model, illustrated in

Figure 2, that we then augment with entity attributes into a

block-transaction, entity-address (BT-EA) model with more

complex structure.
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Figure 2. Block-transaction address model, plate notation. Ob-

served random variables are shaded while non-observed variables

are plain.

2.1. Block­transaction address model

A block b is composed of the set of transactions t vali-

dated by the peer node who solved the cryptographic chal-

lenge the fastest. With the approximation of stationary

inter-block time, and assuming independence between the

ability of solving the cryptographic challenge and the se-

lection of transactions, we model the number Tb of transac-

tions per block as a Poisson distribution. Similarly assum-

ing stationary and independent address usage, we model the

number of input addresses It and output addresses Ot per

transaction as a Poisson random variable. The Poisson dis-

tribution is chosen because it corresponds to a number of

events within a fixed time period.

Definition 1 (Transactions, input and output addresses).

∀b ∈ B, Tb ∼ P(λsize)

∀t ∈ T , It ∼ Pn(λin) and Ot ∼ Pn(λout), (1)

where Pn is the normalized Poisson distribution on N
∗.

On the receiving end of a transaction, it is possible to

generate a new address. In the Bitcoin pseudonymous con-

text, this reduces the traceability of the full set of transac-

tions associated with an entity. Considering the set of output
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addresses as a whole, we model the conditional distribution

of the number of new addresses given the number of output

addresses as a Binomial random variable.

Definition 2 (New address distribution).

∀t ∈ T , Nt|Ot ∼ B(Ot, pnew). (2)

In the interest of a tractable inference procedure, and in

the absence of an informative prior, in this work we focus

our efforts on maximum-likelihood estimation, and assume

uniform prior λsize, λin, λout, pnew.

We now proceed to describe the generative model of the

input and output addresses. A natural choice for the genera-

tive hierarchical model is the LDA or Dirichlet-multinomial

model used in topic modeling [6]. Here, given the full

observability of the model variables and decomposability

of the likelihood, motivated by topological social network

analysis, we use the Albert-Barabasi preferential attach-

ment model [4, 2], which can be seen as the posterior prob-

ability of an LDA model in the appropriate feature space.

Specifically, we consider that the probability of the ith

address Ai to be a given address a is proportional to the

number of available UTXO of the address. The model reads

as follows.

Definition 3 (Input addresses). ∀i ∈ {1, . . . , It}

P(Ai = a|kUTXO) =
kUTXO
a + 1∑

a′∈A
(kUTXO

a′ + 1)
(3)

where A is the set of available addresses, kUTXO
a is the

number of unspent outputs of the address.

The output address model is similar, except that the at-

tachment model is now considered a function of the out-

degree of the address, i.e. while the inclination of the ad-

dress to be part of the inputs (i.e. to spend) is considered to

be a function of the number of UTXOs it has still available,

the inclination of the address to be part of the outputs (i.e.

to accumulate) is considered to be a function of the number

of distinct UTXOs it has already spent.

Definition 4 (Output addresses). ∀o ∈ {1, . . . , Ot}

P(Ao = a|Nt, k
out) ∼✶(o ≤ Nt; a = a0) (4)

+ ✶(o > Nt)
kouta + 1∑

a′∈A
(kouta′ + 1)

where a0 denotes a new address.

For each input address, since empirically we observe that

the UTXO distribution is concentrated around 1, we model

the conditional distribution of the number Ui of UTXOs

used given the number of UTXOs available as a geomet-

ric random variable with uniform prior. We then draw the

UTXOs uniformly from the available set.

Definition 5 (Input UTXOs).

∀i ∈ {1, . . . , It}, Ui|k
UTXO
Ai

∼ G[1,...,kUTXO
Ai

](pUTXO,in)

∀u ∈ {1, . . . , Ui}, Vi,u|Ui ∼ U{1,...,kUTXO
Ai

} (5)

where G[1,...,kUTXO
Ai

] is the normalized geometric dis-

tribution with support [1, . . . , kUTXO
Ai

], and where

U{1,...,kUTXO
Ai

} is the uniform distribution over the set

{1, . . . , kUTXO
Ai

}.

We obtain the total transaction value Vt as the sum of the

input UTXOs.

Definition 6 (Transaction value).

Vt|It, Ui, Vi,u =
∑

1≤i≤It

∑

1≤u≤Ui

Vi,u. (6)

A fee is paid to the miners to reward their validation

work and higher fees may nudge their selection of trans-

actions when creating blocks. We thus model the fee asso-

ciated with a Bitcoin transaction as a normalized Gaussian

distribution. The number of output UTXOs and their values

is modeled similarly to the input UTXOs.

Definition 7 (Fee value, output UTXOs).

∀t ∈ T , Ft|Vt = N[0,Vt](µfee, σfee)

∀o ∈ {1, . . . , Ot}, Uo ∼ G (pUTXO,out)

∀u ∈ {1, . . . , Uo}, Vo,u|Vt, Ft ∼ U[1,...,Vt−Ft] (7)

where N[a,b] denotes the Gaussian distribution normalized

over the interval [a, b], and where U denotes the normal-

ized uniform distribution (the Vo,u are also normalized in

order to sum to V (t)− F (t)).

The resulting block-transaction address model (1)-(2)-

(3)-(4)-(5)-(6)-(7) is presented in Figure 2.

We now turn to a more complex variant of the proposed

model meant to capture categorical behavior of the unob-

served entities transacting on the Blockchain.

2.2. Block­transaction entity­address model

An entity e is associated with a Bitcoin user and fully

characterized by a set of addresses A(e) = {a
(e)
i }i. In this

section we extend the BT-A model to take into account cat-

egorical entity behavior. We assume that entities belong to

different categories c ∈ C , with potentially different behav-

iors.

We first model the fact that the hyper-parameters λin and

λout associated with the number of input and output ad-

dresses, depend on the category c of the associated entity,

and are noted λin,c and λout,c. Similarly the parameter as-

sociated with the number of new addresses in the output
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pnew,c, and the number of UTXO in the input pUTXO,in,c

and output pUTXO,out,c are category-dependent.

Second we update the conditional independence struc-

ture of the generative model to reflect the fact that address

selection (3)-(4) is now also conditioned on entities.

Definition 8 (Input and output entities and addresses).

P(Et = e|kUTXO) =
kUTXO
e + 1∑

e′∈E
(kUTXO

e′ + 1)

P(Ai = a|kUTXO, Et) =
✶(a ∈ A(Et)) (k

UTXO
a + 1)∑

a′∈A ,a∈A(Et)
(kUTXO

a′ + 1)

P(Eo = e|kout) =
koute + 1∑

e′∈A
(koute′ + 1)

(8)

P(Ao = a|kout, Eo) = ✶(o ≤ Nt; a = a0)

+ ✶(o > Nt)
✶(a ∈ A(Eo)) (k

out
a + 1)∑

a′∈A ,a∈A(Eo)
(kouta′ + 1)

.

This dependency structure intending to capture the be-

havior of distinct categories of entities is illustrated in Fig-

ure 3.
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Figure 3. Block-transaction entity-address model, including

category-specific variables, as well as hidden entities. As per

the protocol, all input addresses are associated with only 1 en-

tity, while output addresses are generally associated with multiple

entities.

2.3. Model inference

We assume a known dependency structure as described

above, hence we do not require learning the structure, and

we simply estimate the model parameters. Since the prior

is decomposable over nodes, and since all variables are ob-

served in the BT-A model, the MLE inference amounts to

local computation over each node and its parents.

Regarding the BT-EA model, while the hidden entity

variables make the inference more complex in general, here

we assume that a separate heuristic such as the multi-input

heuristic [10] allows associating each address with an entity,

hence the inference process over the labeled set reduces to

the scalable process used for the BT-A model.

3. Block-level privacy analysis

In this section we present an analysis of address re-use

behavior in the context of the probabilistic model intro-

duced in the previous section, as well as implications of

these results for Bitcoin transaction anonymity.

3.1. Attacker model

We model an attacker, attempting to identify the full set

of addresses A(e) associated with an entity e. We assume

that the attacker uses the standard multi-input heuristic [10],

which associates the full set of address inputs for each trans-

action to a single entity and applies transitive closure. From

the perspective of the external attacker, the true set of ad-

dresses A(e) of an entity e is partitioned into Ae aliases,

a-priori seen as distinct entities;

A(e) =
⋃

1≤i≤Ae

A(e)i,

where A(e)i denotes the address set associated with alias i
of entity e. In this setting, when participating in a transac-

tion t on the input side, we consider that the targeted entity

e selects {Nin,i}1≤i≤Ae
addresses from its available set fol-

lowing a generic multinomial distribution with parameters

{pi}1≤i≤Ae
, which includes the special case for which the

alias distribution is a linear function of kUTXO.

This models the typical Bitcoin user who, while being

concerned by his privacy, is not particularly careful about

address selection, and uses multiple distinct aliases with

distinct address sets, but sometimes mixes these address in

the same transaction input, leading to a privacy collapse.

Given the multi-input heuristic, it is indeed sufficient for

an attacker to observe two addresses from distinct aliases

and to associate these two aliases to the same entity using

the multi-input heuristic. Formally, upon observing the in-

put addresses from a transaction t associated with input en-

tity e, the attacker is able to associate the following address

set with entity e:

{a ∈ A(e)i ∪A(e)j |✶(Nin,i > 0; Nin,j > 0), 1 ≤ i, j ≤ Ae}.

3.2. Privacy analysis

In the following for simplicity we consider a one-step

iteration and assume that the attacker is only aware of the
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set of addresses associated with alias A(e)1. In this sense

the control parameter p1 plays the role of 1-pnew from the

BT-EA model. We analyze the number De,t of addresses

from entity e that the attacker is able to discover after seeing

the addresses involved in 1 transaction, expressed as:

De,t =

Ae∑

i=2

|A(e)i|✶(Nin,i > 0; Nin,1 > 0).

We can express the number of discovered addresses De,t as

a function of the alias addresses selection probabilities pi.

Proposition 1 (Privacy loss from address re-use).

E[De,t] =
1− exp (−λin,cp1)

1− exp (−λin,c)

Ae∑

i=2

|A(e)i|(1−exp (−λin,cpi))

(9)

Proof. By definition of De, t, we have

E[De,t] =

Ae∑

i=2

|A(e)i|P(Nin,i > 0 ∧Nin,1 > 0|Et = e).

Let B be the second factor in the summation term, by

marginalizing over It and using the chain rule, we can write:

B = P(Nin,i > 0 ∧Nin,1 > 0|Et = e)

=
∑

n≥1

P(Nin,i > 0 ∧Nin,1 > 0|Et = e, It = n)

P(It = n|Et = e).

Letting C denote the first factor in the summation term

above, we have:

C = P(Nin,i > 0 ∧Nin,1 > 0|Et = e, It = n)

=
∑

ni>0,n1>0,
∑Ae

j=1
nj=n

P({Nin,j = nj}j |Et = e, It = n)

=
∑

ni>0,n1>0,
∑Ae

j=1
nj=n

n!
∏Ae

j=1
nj !

Ae∏

j=1

p
nj

j

where the last equality is obtained by definition of the

multinomial distribution. Similarly since the number of in-

put addresses It follows a binomial distribution we have:

P(It = n|Et = e) =
λn
in,c

n!(exp (λin,c)− 1)
,

and combining this expression with the expression of C,

we can simplify the expression of B to finally obtain equa-

tion (9), which concludes the proof.

With p1 as the control parameter, the expression states

that the attacker information gain is an exponential func-

tion of the probability of using addresses already identified

(i.e. address re-use). The asymptotic behavior of a privacy-

conscious user is described next.

Proposition 2 (Privacy-conscious asymptotics). If p1 ≪ pi
we have:

E[De,t] ∼ λin p1(|A(e)| − |A(e)1|).

This result shows that the one-step information gain from

the attacker is a linear function of the probability of using

already-used addresses, and also linear in the number of ad-

dresses typically used as input. This result at the transac-

tion level can be readily extended to a chain-length estimate

by accounting for the probability of an entity to transact,

as provided explicitly in equation (8) of the BT-EA model.

We also highlight that while a low p1 models a privacy-

conscious user, the user strategy is non-adaptive, in the

sense that the user does not try to adjust his strategy based

on the attacker strategy.

4. Probabilistic transaction graph model

We now consider the behavior of entities across trans-

actions, and assume that entity categories exhibit different

behaviors. Given the lack of a-priori underlying modeling

structure to this behavior, and given the combinatorial na-

ture of such behavior, we propose a discriminative frame-

work in which model selection can be carried out more effi-

ciently based on a possibly large set of relevant features. We

rely on the classical multi-input heuristic [10] for defining

entities, and formulate a decision-tree based classification

problem in the following feature space.

We consider the following five feature classes, and for

continuous features explicitly consider the feature mean and

standard deviation; address features, entity features, tempo-

ral features, graph centrality metric features, motif features.

Address-specific features include attributes such as the

total BTC received, the total BTC balance, the number of

input/output transactions, etc. Analogous features are de-

fined at the entity level as well as the number and proportion

of Coinbase transactions (indicative of BTC creations).

Temporal features are those such as the number of

weeks, months, years of activity. the number of entity

traded with per week, month, year, the number of receiv-

ing/sending/receiving sending days, the activity period du-

ration, and the active day ratio. Graph centrality metric fea-

tures are standard features.

Motif features are presented in Figure 4. Here we con-

sider 1, 2, and 3 motifs, extending the 2-motifs from [33].

Motifs are a comprehensive description of the transaction-

to-transaction properties.
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Figure 4. 2-motif features (rectangular white boxes) annotated

over a 2-motif. A N-motif is a path of length 2N on the bipar-

tite entity-transaction graph. We distinguish Direct motifs from

Loop motifs, the latter indicating that an entity is transacting with

itself using distinct addresses.

5. Experiments

In this section we present numerical results of our prob-

abilistic Bitcoin Blockchain model. We first describe the

training procedure for the generative block model and dis-

cuss obtained model parameters. We then turn to the

transaction-to-transaction discriminative model results and

analyze the properties revealed by the joint analysis.

5.1. Dataset

We consider the set of blocks of height inferior or

equal to 514, 971, corresponding to blocks created be-

fore March 24th 2018, 15:19:02, which contains about

500, 000, 000 addresses. Address labels, revealing entity

identifiers, are obtained from WalletExplorer https://

www.walletexplorer.com/. The set of address en-

tity label pairs used has been made available at https://

github.com/Maru92/EntityAddressBitcoin.

We interact with the Blockchain via the BlockSci tool-

box v.0.4.5 released on March 16th 2018 [20], on a 64 GB

machine. The final labeled dataset used in numerical exper-

iments consists of 28, 353, 493 addresses, associated with

|Eknown| = 260 entities representing 4 entity categories in

the following proportions:

• Exchange (E): 108 entities, 7,892,587 addresses,

• Service (S): 68 entities, 17,606,608 addresses,

• Gambling (G): 65 entities, 2,775,810 addresses,

• Mining Pool (M): 19 entities, 78,488 addresses.

When training the probabilistic model, we restrict ourselves

to the period from January 1st 2016 to March 16th 2018,

where overall patterns are relatively stationary. Indeed since

the proposed model is static we do not attempt to study

its ability to model transient regimes. We observe UTXO
statistics in Table 1 and UTXO distribution in Figure 5,

showing wide variability across multiple scales.

5.2. Transaction subset modeling

Since we consider a subset of the transaction graph, we

need to model transactions originating from our subset and

directed outside it, or vice-versa. We follow the proposed

Quantity E S G M All

mean µ(Vu,o) 8.62 0.53 0.11 1.27 4.39

std σ(Vu,o) 93.1 41.6 0.81 4.25 70.0

Table 1. UTXO empirical statistics in BTC: the UTXO output

values have a large standard deviation compared to their mean,

and vary significantly across entity categories.

Figure 5. BTC UTXO distribution : 1 minus the cdf of the UTXO

represented in log log coordinates, with 99.9% of the distribution

qualitatively following a power law on the interval [10−3, 103].

model structure and model the number of external output

addresses as a Poisson distribution P(λsub). Transactions

from unknown addresses towards known input addresses

are modeled with no known input and a number of trans-

actions per block Tb,incoming following a Poisson distribu-

tion P(λsize,sub). Coinbase transactions are created in a

similar manner: no inputs, number of addresses in the out-

puts drawn following a Poisson distribution of parameter

λout,sub, with new addresses, pnew,sub, and several UTXOs

created per addresses, pUTXO,out,sub.

5.3. Block model training

We train the model using data from the period January

1st 2016 to March 16th 2018 consisting of about 10 million

addresses. We first verify the main independence assump-

tion, between the number of input addresses and the number

of output addresses. Since ρpearson(It, Ot) = 0.015, we

consider the marginal independence hypothesis validated.

The inference produces a value λsize = 65.6 for both

models. In Table 2 we present the model parameter results

from the model training for the BT-A and BT-EA models.

The results reflect the idiosyncratic properties of Bit-

coin Blockchain transactions, with for instance the need to

gather UTXOs from various addresses, which is illustrated

by the fact that λin > λout. It is also clear from the UTXO

parameters that the input parameters are more discrimina-

tive than the output parameters, which reflect transfers from

other parties from the perspective of the entity concerned.
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Parameter BT-EA BT-A

E S G M All

P (Et = e) 0.33 0.55 0.09 0.03 1

λin 3.79 2.58 1.98 21.2 2.99

λout 0.68 1.96 0.21 7.04 1.21

pUTXO,in 0.95 0.92 0.84 0.67 0.92

pUTXO,out 1.00 1.00 1.00 1.00 1.00

pnew 0.23 0.20 0.47 0.55 0.26

Table 2. Model parameters from calibration on the period from

January 1st 2016 to March 16th 2018, for the Exchange, Services,

Gambling, Mining Pool categories.

Lastly we observe significant address generation distinc-

tions across entity categories, with Gambling and Mining

Pools seemingly more privacy-conscious given their higher

probability of generating new addresses. They also trans-

act less frequently, using more input addresses. Detailed

impact of entity behavior on privacy properties is analyzed

subsequently.

5.4. Block model testing

In order to assess the model performance, we now eval-

uate out-of-sample model accuracy. Starting from scratch,

we train the model on 4911 blocks corresponding to the pe-

riod from January 1st 2017 to January 31st, 2017, and eval-

uate the model on 2150 blocks associated with the period

from February 1st, 2017, to February 14th, 2017.

Metric BT-EA BT-A

E S G M All

MSE 1.22 -0.30 -0.02 0.06 1.12

RMSE 125 53.3 1.15 5.19 90.5

MAE 15.6 0.94 0.20 2.42 7.47

RMAE 1.82 1.74 1.86 1.93 1.69

NRMSE 1.34 1.28 1.42 1.22 1.29

Table 3. Error statistics in BTC for UTXO output values Vu,o:

from the BT-A level overall value, as well as per category from the

BT-EA model, for the Mean Signed Error (MSE), Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE), Relative Mean

Absolute Error (RMAE) and Normalized Root Mean Squared Er-

ror (N-RMSE) expressed as RMSE divided by σ(Vu,o).

The results from Table 3 illustrate that given the multi-

scale nature of the underlying distributions, the model es-

timates are relatively close on average, i.e. well within an

order of magnitude. Furthermore, the BT-EA model sig-

nificantly reduces the bias (MSE) as well as the variance

(RMSE) for most categories. The Exchange category is the

only one for which both bias and variance increase, suggest-

ing a fundamental modeling limitation.

The error terms are relatively large in absolute terms for

both models, which is largely explained by the inherent

variance in the data, both at the population level and at the

class level. Indeed, the bias is low and most of the data vari-

ance is explained, with a N-RMSE ranging between 1.22
and 1.34.

5.5. Privacy analysis validation

Given the calibrated model parameters, we now validate

experimentally the theoretical privacy properties of Bitcoin

Blockchain transactions expressed by equation (9). We

leverage the generative model and attacker model described

above to simulate transaction traces and evaluate the pro-

portion of the addresses that are re-identified for distinct

categories, as a function of the number of transactions.

Figure 6. Proportion of identified addresses: by category, as a

function of the number of transactions.

Figure 6 shows agreement between the analytics results

and the simulation of the block model. The figure also

illustrates that Exchanges and Services typically are less

privacy-conscious (lower probability of generating new ad-

dresses, frequent transactions), and hence for an equiva-

lent number of Blockchain transactions, typically reveal a

greater proportion of their address set.

Transaction anonymity however depends also on the

transaction-to-transaction behavior. Indeed, it is conceiv-

able that certain entities, while not following best block-

level practices on address re-use, hence easily identifiable as

entities, could be transacting in a way that little information

is gathered from their network level transaction structure.

In order to assess the latter, we now turn to the numerical

results of our proposed network transaction model.

5.6. Transaction network model

We use the Python LightGBM implementation of the

gradient boosted decision tree model [21] with a 70/30
training/test partition of our dataset. A Gaussian Process

(GP)-based optimization procedure for hyper-parameter

optimization is implemented using the Python skopt

library https://scikit-optimize.github.io/

with initial parameter values obtained from a coarse random
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search. The learning rate hyper-parameter is optimized over

the interval [0.01, 0.5] with early stopping after having done

a random search over [0, 2]; the resulting value is 0.18. The

GP procedure is used with 50 iterations.

We make use in total of 10 address features, 8 entity

features, 16 temporal features, 42 centrality features, 44 1-

motif features, 81 2-motif features, and 114 3-motif fea-

tures. We present in Table 4 the F1, Accuracy and Precision

results over the entire dataset and for each category.

Category Accuracy F1 Precision

Exchange 0.94 0.92 0.91

Gambling 0.95 0.97 1.00

Mining 0.50 0.67 1.00

Service 0.95 0.88 0.83

Overall 0.92 0.91 0.92

Table 4. Classification performance: for the 4 entity categories

considered, and overall.

The results illustrate that the model is able to very well

capture the behavior of most entity categories. Furthermore,

the network-level privacy analysis confirms the prior block-

level analysis, with Mining Pools being the most privacy-

conscious. Indeed, considering the most relevant features

of the LightGBM model, in a 1 vs. all setting, it appears

that for most categories except the Mining Pool, motif fea-

tures are the most informative, indicating that the Light-

GBM model is not able to leverage the transaction sub-

graph for identification of the Mining Pool category.

6. Related work

A number of studies on the graph properties of the Bit-

coin Blockchain transaction graphs have analyzed statistics

and structure of vertices and edges [35, 13].

Heuristics for clustering multiple addresses to an entity

have been studied in [26] and consistent address re-use pat-

terns have been shown in [15].

Analysis of the Bitcoin protocol in the context of at-

tacks have been proposed, for instance inference of peer-

to-peer communication structure, in [11], statistical analy-

sis of bloom filters in [32], and analysis of Bitcoin mint-

ing patterns in [27] with application to de-anonymization.

Flow-based address-transaction graph studies can be found

in [28, 16]. The obfuscation of Bitcoin transactions trace-

ability has been considered in [29]. Reference to using side

informations can be found in [34].

Several studies have applied discriminative models to the

problem of de-anonymizing Bitcoin transactions, with for

instance the use of transaction-specific features in [37], able

to achieve 70% accuracy for classifying entities into sev-

eral types. In [33], the authors introduce transactions paths

with application to the detection of Bitcoin exchanges, and

achieve greater than 80% accuracy. Similar transactions

paths features are used in [19] for a 5-class classification

problem with above 90% accuracy results.

7. Conclusion

In this work, we proposed a probabilistic model of the

Bitcoin Blockchain which accounts for the complex Bit-

coin protocol features. The model consists of a hierarchi-

cal structure from unspent transaction output (UTXO), to

address, transaction, and block. We take into account en-

tity modeling, including features relevant for robustness to

de-anonymization attacks, namely address re-use patterns.

We also propose a discriminative model of transaction-to-

transaction behavior and show its effectiveness in practice.

We analyzed the accuracy of the generative model us-

ing a large Bitcoin dataset of more than 10 million address

vertices, discussed the significant block-level heterogeneity

of the model parameters across entity categories, and pro-

vide a complementary analysis of transaction-to-transaction

behavior using the discriminative model. We consider in

particular the de-anonymization properties of certain behav-

iors, which is one of the main focus areas of Bitcoin studies.

Extensions of this work may include the design of more
complex graphical models including latent variables for
modeling transaction intent, and shared side-information
across entities, inducing multivariate preferential attach-
ment. A significant challenge for such models with more
complex dependency structure and hidden variables is the
design of a tractable training and inference procedure given
the large-scale nature of such public cryptocurrency trans-
action graphs.
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