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Abstract

Swallowing and breathing are vital, life-sustaining up-

per airway functions that require precise, reciprocal coor-

dination of the vocal folds (VFs). During swallowing, the

VFs must fully close to prevent aspiration of food/liquid into

the lungs, whereas during breathing, the VFs must remain

open to prevent obstruction of airflow into and out of the

lungs. This coordination may become impaired by a vari-

ety of neurological conditions and diseases. Clinical eval-

uation relies on transnasal endoscopy to visualize the VFs

within the larynx, and subjective interpretation of VF func-

tion by clinicians. However, objective, quantitative, and

high-throughput analysis of VF function is important for

early diagnosis, monitoring disease progression, treatment

monitoring, and treatment discovery. In this paper we pro-

pose a fully automated, deep learning based VF segmenta-

tion system for the analysis of VF motion behavior captured

using flexible endoscopes with low-speed capability. Exper-

imental results on human laryngeal videos showed promis-

ing results that were robust to many challenges caused by

imaging, anatomical, and behavioral variations. The pro-

posed segmentation and tracking system will be used to

compute quantitative outcome measures describing VF mo-

tion behavior in order to help clinical practice and scientific

discovery.

1. INTRODUCTION

Swallowing and breathing are life-sustaining physiologi-

cal functions of the upper airway that require precise, recip-
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rocal coordination of the vocal folds (VFs). During swal-

lowing, safe passage of food and/or liquid boluses from the

mouth to the stomach without entering the lungs (i.e., as-

piration) is ensured by complete closure of the VFs to seal

the glottis (opening between the VFs), which momentarily

prevents breathing. During breathing, the glottis must re-

main wide open to prevent obstruction of airflow into and

out of the lungs for respiration. These opposing behav-

iors of the VFs are predominantly controlled by a single

cranial nerve (vagus), its laryngeal branches, and multiple

laryngeal muscles [1] that are vulnerable to many neuro-

logical conditions/diseases such as degenerative (e.g., amy-

otrophic lateral sclerosis/ALS, Parkinsons, and advanced

aging), cerebrovascular (e.g., cerebral ischemia or infarc-

tion), congenital (e.g., DiGeorge syndrome and Rett syn-

drome), and neoplastic processes (e.g., tumors) and their

associated surgical and/or medical interventions [2] [3]. A

leading cause of death in these conditions/diseases is res-

piratory failure resulting from aspiration pneumonia, often

due to impaired VF function that fails to protect the airway

during swallowing [4].

Clinical evaluation of VF function during swallow-

ing and breathing relies on laryngeal endoscopy (laryn-

goscopy), a medical test in which a flexible fiberoptic cam-

era is passed through the nose into the upper throat in

the awake patient. Current practice relies predominantly

on subjective interpretation of VF motion during real-time

viewing or video playback [5] [6] [7]. While objective,

manual analysis of laryngoscopy videos is possible, the pro-

cess is extremely labor intensive and creates a major bottle-

neck in scientific discovery and clinical use. In this pa-

per, we explore the use of computer vision and machine

learning approaches for automated and quantitative analy-

sis of laryngoscopy videos. This work addresses the criti-



cal need for automated, high-throughput, quantitative anal-

ysis of imaging data to increase the diagnostic utility of this

medical test.

The first and most critical step in automated analysis of

laryngoscopy videos is segmentation of the VFs and glottal

region. Measurements characterizing the shape and motion

of the VFs can then be computed using the output of this

step. Recently, several video analysis pipelines have been

developed using rigid endoscopes with high-speed cam-

eras to visualize the VFs. However, the large diameter

and inflexible structure of rigid endoscopes require transoral

(through the mouth) insertion, which restricts assessment

of VF function to vocalization (mainly vowel production)

rather than the coordination of swallowing and breathing.

For example, in [8], vibrating vocal fold edges during vo-

calization are segmented in high-speed rigid laryngoscopy

videos using a seeded region-growing algorithm and adap-

tive thresholding. In [9], Zernike moments operator and

level set algorithm are used to detect the glottal edges at

a subpixel level. In [10], spatio-temporal information is ex-

ploited by using rigid motion compensation, saliency de-

tection, and 3D geodesic active contours to segment the

glottal region. In [11], flexible thresholding technique is

combined with a refining level set method that incorpo-

rates prior glottal shape knowledge. However, video data

obtained using rigid, high-speed ( > 100 frames per sec-

ond, fps) endoscopes has markedly different characteristics

than video data captured using flexible, low-speed (30 fps)

endoscopes. In particular, the larger diameter of rigid en-

doscopes typically results in high resolution images, better

illumination, and less degradation of images compared to

flexible endoscopes. High-speed video capture further fa-

cilitates VF tracking because the high frame rate results in

observation of smoother motion that is more predictable.

In this paper, we focus on the more challenging analy-

sis of VF videos obtained using flexible endoscopes. In-

spired by the recent successes of deep learning in computer

vision in general, and biomedical image analysis in partic-

ular [12] [13] [14] [15], we have developed a deep learning

system for segmentation of the VFs and glottal region in

transnasal flexible laryngoscopy videos. Section 2 provides

details of the proposed system and the network training pro-

cedures. Section 3 presents system evaluation approaches

and experimental results. Section 4 concludes the paper and

describes future directions.

2. METHODOLOGY

We have developed a deep learning system for segmenta-

tion of the glottal region in laryngoscopy videos using Fully

Convolutional Regression Networks (FCRN). The trained

network has the ability to automatically segment the glottal

region despite large appearance variations in the acquired

images due to anatomical differences, imaging factors (i.e.,

(a) Anatomical variations and VF state differences.

(b) Imaging and illumination variations.

(c) Full VF closure and glottal gap occlusion.

Figure 1. Various factors affecting appearance of VFs and glottal

region.

type/model of endoscope, endoscope position, and strength

of illumination), state of the VFs (fully open, fully closed,

partially open, etc.), gradual or sudden motion of the cam-

era or subject during imaging, and saliva that affects the

visibility of the laryngeal region. Some of glottal region

appearance variations are illustrated in Figure 1.

2.1. Semi­automated Vocal Fold Tracking

While deep learning methods are powerful, a large

amount of labeled training data is needed to train a reli-

able model. Training data generation for segmentation tasks

is typically more labor intensive compared to detection or

classification tasks, particularly for biomedical images, be-

cause manual segmentation often requires expert knowl-

edge and careful boundary tracing. We have developed VF-

Track [16] (Figure 2), an interactive VF motion tracking

software for efficient training data generation for glottal re-

gion segmentation. VFTrack operates as follows:

1. On the first video frame, the user selects three points:

one on the left (pL), one on the right (pR), and one in

the middle (po) at the junction of the left and right VFs

respectively (blue, red, and green points in Figure 3).

2. VFTrack independently tracks each point (pL, pR, po)

in time. When a track is lost, VFTrack prompts the

user to re-select the point of interest and restarts the

tracking process.

3. Once all three points are tracked for the duration of the

video clip, the VFs are modeled in each frame with

two lines LL passing through the points pL and po and



LR passing through the points pR and po (blue and red

lines in Figure 3).

Detailed performance analysis of VFTrack compared to

fully manual VF marking is given in [16]. When tested

on endoscopy videos of a laryngeal nerve injury mouse

model, VFTrack produced a pixel distance error compara-

ble to inter-reviewer distance with drastically reduced pro-

cessing time (18 minutes shorter compared to manual anal-

ysis) [16].

Figure 2. VFTrack, our semi-automatic vocal fold tracking and

vocal fold motion analysis software.

2.2. Training Data Generation

Once the VFs are interactively tracked, training data is

prepared using the following steps:

1. Training mask generation: A triangle defined by the

points pL, pR, po is used to produce the glottal region

training mask, where pixels inside and outside of the

triangle are assigned 1 and 0 values, respectively. Note

that this triangle may not fully cover the upper section

of the glottal gap.

2. Normalization, cropping, and resizing: Input images

are normalized by mean subtraction. The endoscope

field of view is automatically detected. Training im-

ages and masks are first cropped using the bounding

Figure 3. Anatomical structures and interest points selected for VF

tracking.

box of the endoscope field of view, then resized to

128× 128 patches.

3. Distance transformation: Euclidean distance trans-

form is applied to the training masks to produce con-

tinuous valued training labels that are lower (closer to

the glottal region boundaries), higher (towards glottal

region center), and zero (everywhere else).

Figure 4 shows a sample training image and corresponding

glottal region mask and training labels (distance map).

Figure 4. Dataset preparation steps for the fully convolutional re-

gression network (FCRN).

2.3. Network Architecture

We have designed and implemented a fully convolutional

regression network (FCRN) that maps its 3-channel RGB

input to a 1-channel distance map that acts like a glottal

region likelihood map. The network architecture consists

of 13 layers as shown in Figure 5 and detailed in Table 1.

The proposed network was implemented using Matlab deep

learning toolbox [17]. Training of the proposed FCRN ar-

chitecture was done using the images and corresponding

distance maps prepared as described in Section 2.2. FCRN

network learns a mapping from the endoscopy image to

the distance map of the glottal region, leading to a robust

segmentation that can capture both localization and shape

information of the glottal region. The number of layers

in the network was experimentally determined to optimize

the segmentation performance. A not very deep network

was proposed to be able to train the network with a limited

amount of training data.

Figure 5. Proposed fully convolutional regression network

(FCRN) for glottal region segmentation.

2.4. Glottal Region to Vocal Fold Model Conversion

The ultimate goal of this study is to develop high-

throughput image analysis techniques for automated anal-

ysis of VF shape and motion patterns. Laryngeal region

appearance and motion behavior can be captured through

region-based (glottal mask) or boundary-based (VF lines)



Table 1. Layer information for the fully convolutional regression

network (FCRN) proposed for glottal region segmentation.

Layer Layer Type Parameters

1 Convolution
32 5 × 5 × 3 convolutions; stride [1

1]; padding 2

2 Normalization Batch normalization; 32 channels

3
Rectified

Linear Unit
ReLU

4 Convolution
32 3× 3× 32 convolutions; stride [1

1]; padding 1

5 Normalization Batch normalization; 32 channels

6 RELU Rectified Linear Unit

7 Convolution
32 3× 3× 32 convolutions; stride [1

1]; padding 1

8 Normalization Batch normalization; 32 channels

9 RELU Rectified Linear Unit

10 Convolution
32 3× 3× 32 convolutions; stride [1

1]; padding 1

11 Normalization Batch normalization; 32 channels

12 RELU Rectified Linear Unit

13 Regression
1 3 × 3 × 32 convolutions; stride [1

1]; padding 1

descriptors. These approaches have different advantages

and disadvantages. While the glottal region mask better

captures complex shape information, modeling the VFs will

allow independent analysis of the left and right VF behav-

iors, enabling capture of motion symmetry and synchrony

information (as we used in [16] for quantitative analysis of

laryngeal nerve injury). This section describes modeling of

the VFs given a glottal region mask. Processing steps are

illustrated in Figures 6, 7 and described as follows. First,

given the glottal region mask, glottal region boundaries are

extracted. Then, boundary points are clustered using K-

means clustering to identify left and right VFs and upper

boundary of the glottis. Note that during imaging, the endo-

scope can be tilted left or right. K-nearest neighbor search is

used to further improve VF assignments. Finally, two lines

are fitted to the left and right boundaries to model the left

and right VFs.

Figure 6. Extraction of VF line models from glottal segmentation

mask. (1) Glottal mask boundaries, (2) preliminary clustering of

boundary points, (3) refined clustering of boundary points used to

extract VF line models.

Figure 7. Evaluation of the proposed fully automated glottal region

segmentation method using interactive VF tracking results.

3. Experimental Results

The dataset used to train and evaluate the proposed deep

learning based glottal region and VF segmentation system

has been collected from 20 participants according to the

protocol described in [18]. The data collection protocol was

approved by the University of Missouri Institutional Re-

view Board. Twenty healthy nonsmoking human subjects

(7 men and 13 women) aged 20 to 40 years were recruited

and tested. The test procedure entailed transnasal passage of

a flexible 3.7-mm outer-diameter endoscope with a 1.5-mm

inner-diameter working channel (11302BD2, Karl Storz).

The endoscope tip was positioned at a typical level for view-

ing laryngeal pathology to permit visualization of the bilat-

eral VFs throughout the procedure. In total 58 videos were

collected, and 7892 color images of size 480 × 720 × 3
were extracted from these videos. The proposed network

was trained with 1661 images and tested with 6231 images.

Training labels for these images were obtained using our

interactive VF tracking software, VFTrack, as described in

Section 2.2 and illustrated in Figure 4. For comparison

purposes, we have also built and trained a convolutional

encoder-decoder network similar to semantic segmentation

network described in [19]. However, this network, as in

the case of the proposed regression network, was built with

much less layers due to limited availability of training data.

Both networks contained 4 convolutional layers, plus one

classification or regression layer (also other types of layers

such as pooling, RELU etc. not listed here). The encoder-

decoder network was trained on the same training dataset,

and for the same number of epochs (1000) as the proposed

deep convolutional regression network.

3.1. Qualitative Evaluation

Sample results from the proposed system are presented

in Figures 8 and 11. Figure 8 shows single frames from

different videos and corresponding results (network outputs

and produced binary masks) obtained using the proposed

deep regression network. The frames are selected to show

variations in endoscope position and illumination, opening

angles of the VFs, mucosal color, visibility of the VFs, and

glare. Satisfactory segmentation results were obtained in

each case despite these variations. Figure 11 shows per-



formance of the proposed system on a sequence of frames

in two selected videos. The set of frames are selected to

show the segmentation behavior through the laryngeal ad-

ductor reflex (LAR), which entails brief bilateral closure of

the VFs in response to air puff stimulation of the laryngeal

mucosa [18]. LAR events are a challenging case for both

VF tracking and glottal region segmentation approaches.

When the VFs are fully closed, the glottal region becomes

invisible, leading to false detections during segmentation.

VF tracking typically relies on frame to frame matching of

VF transition pattern (tissue to glottal gap). Disappearance

of the glottal gap during LAR event disrupts this pattern,

leading to tracking failures. Figure 11 demonstrates that the

proposed segmentation scheme is even able to handle LAR

events.

3.2. Performance Evaluation using VF Line Models

In order to quantitatively evaluate the system perfor-

mance, we have performed two types of analysis: (1) com-

parison to interactively tracked VFs on all test frames; (2)

comparison to manually segmented glottal regions on a sub-

set of test frames.

We have interactively tracked the VFs in the 6231 test

frames using our VFTrack software as described in Sec-

tion 2.2. Any tracking error was manually fixed using the

same software. Using the tracking output, for each frame in

the test set, we have produced two lines LGT
L and LGT

R mod-

eling the VFs, to be used as our ground-truth. For the pro-

posed fully automated segmentation system, we have com-

puted VF lines L
Seg
L and L

Seg
R from the glottal region seg-

mentation masks using the steps described in Section 2.4.

Evaluation is done in terms of line to line distance between

the ground-truth and the proposed segmentation results at

left and right VFs, and in terms of difference of VF open-

ing angles (angle between lines LL and LR). For line

to line distance, we find the unique vector of two points

between the two lines, where this vector is perpendicular

to both lines and represents the shortest distance between

them. The Mean errors are reported in Table 2. VF opening

angle distributions are compared in Figure 9. The differ-

ences in VF angle estimation are largely due to line fitting

and ground-truth errors. While we choose to represent the

VFs with lines for the sake of model simplicity, the VFs

are actually deformable curves. Lines fitted at different por-

tions of the curve produce different linear models leading

to VF opening angle differences. Sample problem cases are

shown in Figure 10.

3.3. Performance Evaluation using Manually Gen­
erated Ground­truth Regional Masks

We have manually generated ground-truth segmentation

masks for 500 randomly selected images from the test set.

Sample segmentation masks produced using the proposed

Table 2. Segmentation performance evaluation using VF line

model.

Measure Value

Left VF distance 8.6 pixels

DistLine(L
Seg
L , LGT

L )
Right VF distance 11.9 pixels

DistLine(L
Seg
R , LGT

R )
Difference in VF opening angles 17°

DistAngle(AngleSeg, AngleGT )

Table 3. Segmentation mask evaluation measures. TP, FP, FN, TN,

IS , IGT denote true positives, false positives, false negatives, true

negatives, segmentation mask, ground-truth mask respectively.

Evaluation measure Equation

Accuracy TP
TP+FN

Intersection over

Union (IOU)

TP
TP+FP+FN

Rand Index (RI) TP+TN
TP+TN+FP+FN

Dice similarity 2∗TP
2∗TP+FP+FN

Hausdorff distance h(IS , IGT ) = max
is∈IS

{ min
igt∈IGT

{d(IS , IGT )}}

deep regression network and encoder-decoder network used

for comparison are shown in Figure 12. Both networks are

able to detect the glottal region. Proposed deep regression

network produces more accurate masks of the glottal re-

gion, compared to the encoder-decoder segmentation net-

work. This is predominantly due to use of distance trans-

form that captures shape information better than binary

mask. For quantitative evaluation, ground-truth and seg-

mentation masks are compared in terms of accuracy, inter-

section over union (IOU), rand index (RI), dice similarity,

and Hausdorff distance measures [17] [20] [21] described

in Table 3. Region-based segmentation evaluation mea-

sures for the randomly selected 500 images are reported

in Table 4. The proposed deep regression network outper-

forms comparable encoder-decoder segmentation network

in all measures. We have also computed VF lines for the

ground-truth segmentation masks using the steps described

in Section 2.4. VF line comparison measures as described in

Section 3.2 were made between proposed segmentation and

ground-truth masks for the selected 500 images (Table 5).



(a) (b) (c) (d)

Figure 8. Sample glottal region segmentation results. (a) Original image, (b) segmentation output, (c) segmentation output visualized in

3D (top view), (d) segmentation output visualized in 3D (side view enlarged)

Table 4. Performance evaluation using ground-truth regional

masks. Regional evaluation measures.

Measure Proposed Encoder-

Decoder

Accuracy 0.9469 0.7358

Intersection over union

(IOU)

0.8807 0.7137

Rand index (RI) 0.9936 0.9481

Dice Similarity 0.8576 0.6897

Hausdorff distance 4.26 7.42

Table 5. Performance evaluation using ground-truth regional

masks. VF line model comparison measures.

Measure Value

Left VF distance 3.3 pixels

DistLine(L
Seg
L , LGT

L )

Right VF distance 3.6 pixels

DistLine(L
Seg
R , LGT

R )

Difference in VF opening angles 10°

DistAngle(AngleSeg, AngleGT )

4. Conclusion and Future Work

We have presented a deep fully convolutional regression

network for segmentation of the glottal region in human la-



Figure 9. VF opening angle distributions. Red and green plots de-

note VF opening angles computed using proposed deep regression

segmentation method and VFTrack software. Blue plot denotes

distribution of angular differences between the two methods.

ryngeal endoscopy videos. The proposed network learns

to map the three channel RGB image into a distance map

that acts like a glottal likelihood function that captures the

location and precise shape of the glottal region between

the VFs. We also describe methods to convert the glottal

mask to the VF line model and vice versa. Experimental

results on healthy human subjects showed promising per-

formance despite large variations between the images. This

network constitutes the first step towards a fully automated,

high-throughput, quantitative VF motion behavior analysis

pipeline using flexible, low-speed endoscopes. Our goal is

to use this processing pipeline of healthy adults to establish

normative values of VF motion during a variety of upper

airway functions, including swallowing, breathing, and the

LAR. Our ultimate goal is to use this system for objective

and quantitative analysis of disease progression and treat-

ment outcomes in clinical settings.
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